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Introduzione

Dato N > 1, un N-cluster in R? & una famiglia di insiemi di perimetro finito
E = (E(1),...,E(N)) che soddisfa le seguenti proprieta:

(i) 0< |E(h)] <oco perogni h=1,...,N;
@iy |[E(h)NE(RW)| =0 perogni h#h'.

Le componenti F(h) sono chiamate camere del cluster. Inoltre, si definisce la
camera esterna come

N
E(0) =R\ | J E(h).
h=1

Lo scopo del lavoro di tesi ¢ di presentare una dimostrazione del Teorema di
Compattezza Concentrata e dedurre 1’esistenza di soluzioni del seguente problema
variazionale

inf {P(E) : E N-cluster, |E(1)| = my,...,|E(N)| =mn} (1)
1 & 1 ("

dove P(E) := 5 Z P(E(h)) + 2P< U E(h)> e mq,..., my rappresentano i
h=1 h=1

volumi (fissati) delle camere del cluster. Le soluzioni di (1) prendono il nome di clu-
ster isoperimetrici. Il caso N = 1 coincide con il classico problema isoperimetrico,
eperd =3e N > 1,il modello fisico delle soluzioni ¢ quello delle bolle di sapone.
Il problema dell’esistenza e unicita della soluzione ¢ stato largamente affrontato in
letteratura. Uno dei risultati cardine ¢ il Teorema di Esistenza di Almgren, che si
accompagna ad uno studio sulla regolarita delle frontiere ridotte delle camere del
cluster [Alm76]:

Teorema 0.1. Se d, N > 2 e (mq,...,my) € Rf, allora esiste una soluzione
di (1). Se E ¢ un minimo, allora e limitato in RY. Inoltre, se 0 < h < k < N,
allora 8* E(h) N 0* E(k) é una ipersuperficie regolare in R® con curvatura media
costante. Infine,

N
> HEHOE(h) \ 9*E(h)) = 0.
h=0



v

Figura 1: La double bubble nel piano. Figura 2: La triple bubble nel piano.

Come spesso accade nella risoluzione di problemi di tipo isoperimetrico, anche
nella dimostrazione di questo risultato la teoria della regolarita delle soluzioni e lo
studio della loro esistenza viaggiano di pari passo: un esempio, sono gli argomenti
di simmetrizzazione che possono essere applicati per mostrare I’ esistenza di minimi
nel problema isoperimetrico. Una delle ragioni per cui I’aspetto dell’esistenza si
appoggia alla regolarita risiede nell’impossibilita di applicare il Metodo Diretto, a
causa della mancanza di compattezza dello spazio ambiente: infatti, le successioni
minimizzanti potrebbero avere componenti di misura positiva che “scappano all’in-
finito”, ma che non possono essere trascurate; vanno quindi “tirate” indietro per
non perdere massa. Argomenti di compattezza concentrata permettono di costruire
minimi come limiti Lllo . di successioni minimizzanti anche nel caso in cui queste
ammettano componenti “all’infinito”. Inoltre, con la compattezza concentrata sia-
mo in grado di separare la parte dell’esistenza da quella della regolarita, anche se
non del tutto: infatti, tornano ad interagire nell’applicazione del Lemma di Almgren
(Lemma (4.10)), che ¢ tipicamente considerato il punto di partenza della teoria del-
la regolarita. In ogni caso, la compattezza concentrata rappresenta uno strumento
self-contained, che per questo motivo pud essere ben applicato anche a contesti pit
astratti (si veda ad esempio [NPST22]).

Per quanto riguarda invece I’unicita (a meno di isometrie), conosciamo la forma
dei minimi soltanto in alcuni casi particolari: ad esempio, per N = 1, come gia
detto, si tratta del ben noto problema isoperimetrico, mentre il caso N = 2 ¢ stato
risolto prima da Foisy, Alfaro, Brock, Hodges e Zimba in R? [Foi+93] e poi da
Reichardt in R% [Rei07]. La soluzione & meglio conosciuta con il nome di standard
double bubble e consiste nell’unione di due sfere le cui interfacce si incontrano a
120 gradi (Figura 1). Per quanto riguarda il caso N = 3, parliamo di standard
triple bubble e ricordiamo in particolare il contributo di Wichiramala, sempre nel
piano (Figura 2) [Wic02] e di Milman-Neeman per d > 3 [MN25]. Per N = 4,
Paolini-Tamagnini in [PT18] e Paolini-Tortorelli in [PT20] hanno caratterizzato il
minimo in R? nel caso in cui tutte le camere abbiano uguale volume (Figura 3);
mentre in dimensione maggiore o uguale a 4, il caso ¢ stato risolto per volumi
qualunque ancora da Milman-Neeman, sempre in [MN25]. Nello stesso articolo
[MN25], si risolve anche il caso N = 5, d > 5. Negli ultimi anni, il problema ¢
stato studiato anche in contesti diversi da quello euclideo: ad esempio, considerando
S? come spazio ambiente [Law19], (o in generale S%, [MN25]), oppure dotando R



della misura gaussiana [MN22].

I primi tre capitoli della tesi sono dedicati a richiamare strumenti e nozioni di
Analisi Funzionale e Teoria Geometrica della Misura che utilizzeremo nell’ ultima
parte. In particolare, il primo capitolo contiene nozioni preliminari di Teoria della
Misura e Analisi Funzionale; il secondo capitolo ¢ dedicato allo studio delle funzioni
a variazione limitata (BV'), richiamando teoremi di compattezza e semicontinuita
inferiore; nel terzo capitolo approfondiremo la teoria degli insiemi di perimetro
finito, concentrandoci in particolar modo sulla stretta relazione con la teoria delle
funzioni BV, sulla nozione di frontiera ridotta da essi indotta e richiamando infine
la classica disuguglianza isoperimetrica. Per la stesura di questi primi capitoli,
abbiamo fatto maggiormente riferimento a [AFP00] e [GE15]. Infine, nel quarto
capitolo affronteremo I’aspetto dell’esistenza di soluzioni di (1) grazie al Teorema
(4.6).

Figura 3: Il caso N = 4 per volumi tutti uguali. La forma prende il nome di
sandwich.






Capitolo 1

Nozioni preliminari

In questo primo capitolo richiameremo alcuni concetti di base della Teoria della
Misura.

1.1 Misure, Misure Esterne e Teorema di Radon-Nikodym

Definizione 1.1. Sia X un insieme non vuoto e M C P(X). Diremo che M ¢é una
o —algebra se verifica:

(1) 0 e M;
(2) se A € M, allora A€ € M;

(3) se {A, :n €N} C M, allora J,,cy An € M.
La coppia (X, M) é detta spazio misurabile.

Esempio 1.2. (a) Se S ¢ una famiglia di sottoinsiemi di X, & possibile definire
la o—algebra generata da S come la piu piccola o—algebra che contiene S.

(b) Se (X, 7) €& uno spazio topologico, si indica con B(X ) la o —algebra generata
da tutti gli aperti di X. B(X) & chiamata oc—algebra di Borel.

Definizione 1.3. Siano X un insieme e S C P(X) non vuoti. Una funzione
p S — [0, 00| e detta:

(1) numerabilmente additiva, se per ogni famiglia {S,, : n € N} di sottoinsiemi
disgiunti di X tali che | ),y Sn € S, si ha

© <U Sn) = Z/L(Sn)
neN neN

(2) numerabilmente sub-additiva, se per ogni famiglia {S,, : n € N} C S e per
ogni A C X tale che A C |J,,cn Sn» i ha

p(A) < 3 (S0

neN
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(3) o—finita, se esiste {S, : n € N} C S tale che X C e Sn € u(Sn) < o0
perognin € N.

Definizione 1.4. Siano (X, M) uno spazio misurabile e p : M — [0, 00|. Diremo
che . é una misura positiva su M se:

(1) p(0) =0;
(2) pénumerabilmente additiva e laserie ), . 11(Sy) converge assolutamente.

La terna (X, M, ) é detta spazio mensurale e gli insiemi E € M sono detti
insiemi p-misurabili.

Quest’ultima definizione puo essere generalizzata:

Definizione 1.5. Se (X, M) é uno spazio misurabile e ji : M — R%, diremo che
W & una misura su M se:

(1) n(0) =0;
(2) p e numerabilmente additiva e la serie ), _ 11(Sy) converge assolutamente.

Inoltre, se d = 1, diremo che p e una misura reale; se d > 1 diremo che é una
misura vettoriale.

Definizione 1.6. Se p é una misura a valori in R cond > 1, si definisce la sua
variazione totale come:

(o]
|1l (E) = sup {Z W(Ey)| : By p—misurabile, E = | | Ek}
k=0 keN
per ogni E y—misurabile.

Osservazione. Si puo verificare ([Mag21]) che |u| € una misura positiva e finita,
ie. p(X) < oo.

Definizione 1.7. Dati (X, M) e (Y, M) spazi misurabili, diciamo che una funzione
f: X — Y é misurabile se f~'(E) € M per ogni E € M'. Diremo che f é
boreliana nel caso in cui M, M’ siano le oc—algebre dei boreliani di X e Y
rispettivamente.

Definizione 1.8. Siano p una misura positiva e v una misura reale o vettoriale,
definite su uno spazio misurabile (X, M). Diremo che v é assolutamente continua
rispetto a (i, e scriveremo v <K |1, se

VEeM te wE)=0=v(E)=0.
Osservazione. Si puo facilmente notare che:

(1) per qualsiasi misura, vale v < |v|;
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Q) rv<p = V<.

Definizione 1.9. Se u e v sono misure positive definite su uno spazio misurabile
(X, M), diremo che sono mutualmente singolari, e scriveremo i L v, se esiste
E € M tale che pn(E) = 0ev(X \ E) = 0. Se pu e v sono misure vettoriali,
diremo che sono mutualmente singolari se lo sono |u| e |v|.

Teorema 1.10. (Radon-Nikodym)

Sia (X, M, i) uno spazio mensurale con p o—finita, e sia v una misura assolu-
tamente continua rispetto a 1. Allora esistono uniche v®, v* misure a valori in R
tali che:

() v < p
(i) v L p;
(iii) v =v"+ V",

Inoltre, esiste un’unica funzione f € L'((X, 1), R?) tale che v* = fu. Tale f ¢
detta densita (di v rispetto a ) e si indica con f = dv/dp.

Dimostrazione. Per una dimostrazione dettagliata, si puo consultare [Mag21]. [J

Corollario 1.11. (Decomposizione polare)
Sia ju ¢ una misura a valori in R?, definita su uno spazio misurabile (X, M), allora
esiste un’unica f € L'((X, |p|), R?) a valori in S™! e tale che i = f|pu).

1.2 Misure di Radon e Teorema di Rappresentazione di
Riesz

Definizione 1.12. Dato X insieme non vuoto, una funzione i : P(X) — [0, 00] &
una misura esterna se:

(1) p(0) =0;
(2) p e numerabilmente sub-additiva.

Definizione 1.13. Sia X uno spazio metrico localmente compatto e separabile (in
breve, l.c.s.) e i : P(X) — [0, o] una misura esterna. Diremo che y é una misura
di Radon se verifica le seguenti proprieta:

(1) w é boreliana;
(2) p(K) < oo perogni K compatto di X ;
(3) p(A) =sup{u(K): K C A, K C X compatto} per ogni A aperto di X;

(4) w(E) =inf{u(A): E C A, A C X aperto} perogni E C X.
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Proposizione 1.14. Siano p e una misura di Radon ed EE C X p-misurabile, con
w(E) < oco. Allora

pu(E) = sup{u(K) : K C E, K compatto}.

Proposizione 1.15. Se X ¢ uno spazio metrico l.c.s., p una misura di Radon su X
a valori in R e |y la sua variazione totale, allora

d
||(A) = sup {Z/X% dpi : ¢ € Co(A,RY), [lolloo < OO}
i=1

Per delle dimostrazioni dettagliate delle proposizioni appena enunciate, ¢ pos-
sibile consultare [Mag21].

Definizione 1.16. Dato X spazio metrico l.c.s., definiamo lo spazio Co(X,R?)
come la chiusura di C.(X,R?) rispetto alla norma infinito.

Definizione 1.17. Dato X spazio metrico l.c.s., diciamo che un funzionale L :
Co(X,R?) — R ¢ lineare e limitato se verifica

(i) L(f +9) = L(f) + L(g) Vf,g € Co(X,R?);
(ii) ||L|| := sup{L(f) : f € Co(X,R%),|f| <1} < oo.

Teorema 1.18. (Riesz) Sia X uno spazio metrico l.c.s. e sia L : Co(X,R%) — R
un funzionale lineare e limitato. Allora esistono uniche una misura di Radon p e
una funzione pi-misurabile g : X — R, con |g(x)| = 1 p-q.o., tali che

L(f)z/Xf‘gdu

perogni f € Co(X,R%).

Il Teorema di Riesz suggerisce che lo spazio delle misure di Radon pud essere
interpretato come il duale delle funzioni in Co(X, R?). Questa dualita induce una
nozione di convergenza debole* sulle misure, che ¢ la seguente.

Definizione 1.19. Sia X uno spazio metrico l.c.s e siano i, {ux }ren misure di
Radon su X, a valori in R%. Diciamo che {u, }ren converge localmente debole* a

I se
Jim /X f dpy = /X fdu  Vf € Co(X,RY),

Se le misure u,{pr} sono finite, diciamo che {uy}ren converge debole* a

(i = ) se

lim fd,uk:/fd,u Vf e Co(X,RY).
k—oo X X

Teorema 1.20. Sia X uno spazio metrico l.c.s e sia { g }ren una successione di
misure di Radon finite su X tale che sup{|u;|(X) : k € N} < oo. Allora {py}r
ammette una sottosuccessione che converge debole*.

Dimostrazione. La tesi segue dal Teorema di Banach-Alaoglu, osservando che
Co(X,R?) & separabile. O



Capitolo 1. Nozioni preliminari 5

1.3 Mollificatori, convoluzione e proprieta

Definizione 1.21. Siano f,g : R — R funzioni £L%—misurabili. Per ogni x €
R?, definiamo la convoluzione tra f e g come

(f * o) /f:c—

Proposizione 1.22. Date f,g : R? — R funzioni L*—misurabili e = € RY, se
(If] * |g])(z) < oo, allora (f * g)(x) é ben definita e reale. Inoltre, |(f x g)(z)| <

(F1 gD ().

Dimostrazione. Per ipotesi, sappiamo che

(171 * lg) (& / 11— ) 19l(y) dy —/ (@ — y)g(y)|dy < oo,
cioé f(x —y)g(y) € L*(RY) Vy € R% Maallora (f * g)(z) & ben definito e

Frgl /Ifw— Ylo(w) dy = (1] * 1g)(@).

O]

Osservazione. Per ogni 2 € R? e per ogni coppia di funzioni f,g per cui la
convoluzione sia ben definita, si ha

= [ e =vawy= [ 1= s)dy= (o Hla). 1.0
R

Come ¢ noto, la convoluzione ¢ molto utile per “regolarizzare” funzioni che
non hanno buone proprieta di regolarita, come ad esempio le funzioni LP. Piu nello
specifico, vedremo come una particolare classe di funzioni lisce, i mollificatori, si
presti a tale scopo. Partiamo dalla loro costruzione.

Sia p € C®(RY) tale che

020, @)= —p(@), spoC Bi(0), / pde = 1.
B1(0)

. soddisfa le seguenti proprieta:
b:20 we) =), swpeCB0), [ pde=
(0

Una tale funzione ¢ un mollificatore.
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Osservazione. La convoluzione di una funzione con un mollificatore permette di
allargare il supporto della funzione originaria, cio¢:

spt(f * ¢e) C spt(f) + B (0).
Lemma 1.23. Sia p € [1,00) e siano f € LP(R?), p € C(R?). Allora
(f ) € C®°(RY) e Oi(f*x¢)=f*x0ip perognii=1,...,d.
Inoltre, valgono le seguenti stime:

1 * @lloo < W fllpllelloe IV *@lloo < [ fllpl[Velly,

dove q e ’esponente coniugato di p.

Lemma 1.24. Siano p € [1,00) e f € LP(RY). Allora
I — fll, = 0.
tim 1 e = fllp =0

Per le dimostrazioni dei risultati appena enunciati, si puo consultare [Vel24].



Capitolo 2

Funzioni a variazione limitata

In questo capitolo daremo la definizione classica (variazionale) di funzioni a va-
riazione limitata ed approfondiremo alcune loro proprieta che ci saranno utili nel
seguito. In particolare, arriveremo a dimostrare un teorema di compattezza “L'”
per funzioni BV'.

D’ora in avanti, se non altrimenti specificato, indicheremo con €2 un aperto di
R%,

Definizione 2.1. Data u € L(Q), diciamo che u ¢ una funzione a variazione
limitata se esiste una misura di Radon Du = (Dyu ... Dgu) a valori in ) tale che

Vo € C°(92), /ug(p d:c:—/cpdDiu peri=1,...,d. 2.1
Q X Q

Indichiamo con BV () lo spazio delle funzioni a variazione limitata.

Osservazione. ['uguaglianza (2.1) ¢ equivalente a richiedere che per ogni ¢ €
C>(Q, R?) si abbia

d
/ udivp dr = — Z/ w; dD;u. 2.2)
Q = Ja
Esempio 2.2. Dati a < b numeri reali, ¢ definita la funzione indicatrice di (a,b)

come
0 b
ﬂ(a b)(x) — 9 sex ¢ (a7 )
’ 1, sex € (a,b)

E una funzione in BV (R) e la sua derivata distribuzionale & §(b) — §(a), dove 6 &
la Delta di Dirac.

Se A C RY, & sempre possibile definire la funzione indicatrice ad esso associata,
ma non & detto che questa abbia variazione limitata in R?. Approfondiremo questo
aspetto nel Capitolo 3.
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Definizione 2.3. Data u € L} .(S2), si definisce la variazione di u in £ come

V(u, ) = sup {/ udivpdr - ¢ € C(Q,RY), [|¢]le < 1} (2.3)
Q

Teorema 2.4. Data u € L*(Q), allora u € BV (Q) se e solo se V (u,{) < oo.
Inoltre, V (u, ) e | Du|(S2) coincidono per ogni v € BV (2).

Dimostrazione. (=) Se u € BV (£2), allora per ogni ¢ € C°(2, R%)

d
/ udivpdr = —2/ i dDiju < |Dul()
Q — Ja

per la proposizione (1.15). Passando al sup sulle p € C°(Q2, R%) con ||¢loo < 1,
si ottiene che V' (u, 2) < |Du|(2) < oc.
(<=) Supponiamo che V (u, 2) < oo e consideriamo ¢ € C°(, R?). Si ha

1
/ udivp dx = H(pHOO/ u dive dr < ||¢lleo V (u, ).
Q o el

Per densita di C2°(©2,R?) in Cp(Q,RY), possiamo considerare un funzionale li-
neare L che coincida con ¢ — [, udivpdz su C°(Q,R?). Poiché ||L|| <
lellooV (u, ) < o0, per il Teorema (1.18) esiste una misura di Radon x a valori
in R? tale che

d
L(p) = Z/ﬂ% dui, Yo € CX(Q,RY).
i—1

In altre parole, abbiamo ottenuto che u € BV (£2), con Du = —p, dacui | Du|(2) =
|¢|(£2). Infine, dalla proposizone (1.15) deduciamo || L|| = |u|(£2), per cui si ottiene
[Dul(Q) = |[L]| <V (u, ).

Le due quantita coincidono quindi per ogni u € BV (2). O

Motivate dal Teorema appena visto, ci riferiremo a | Du| come alla variazione
totale di u. Vediamo adesso un’importante proprieta di |Dul|: la semicontinuita
inferiore rispetto alla convergenza Lllo -

Teorema 2.5. Sia {uy}ren una successione di funzioni in BV (Q) e u € L*(Q)

Ll
tali che uy, =5 u. Allora

| Du|(2) < limkinf | Dug|(£2).
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Dimostrazione. Consideriamo o € C2°(Q,R?) con ||¢||s < 1, allora

/udivcpda:—lim/ uy, divep dx
Q ko Jo

:—lilgn/ ¢ frd|Dug| per (2.1) e (1.10)
Q
Sliminf/ lo -+ fi| d| Dug|

k Q

<llol ill iyt | d|Dus

Slimkinf | Dug|(€),
da cui
| Du|(2) = sup {/ udivpdr : ¢ € CZ(Q), ||¢lloo < 1} < limkinf | Dug|(€2).
Q

O]

E possibile definire su BV (£2) una norma che lo renda uno spazio di Banach,
ponendo

[ullBv ) = llullLy ) + [Dul (). (2.4)

Tuttavia, tale norma risulta essere troppo forte: ad esempio, lo spazio C'' () non sa-
rebbe denso in BV (£2), e si perderebbero le classiche proprieta di approssimazione.
Nonostante questo, le funzioni a variazione limitata possono essere approssimate
da funzioni regolari e con gradiente limitato in norma L' (si veda il Teorema (2.6)).
Inoltre, questa norma non induce buone proprieta di compattezza: di seguito enun-
ceremo un teorema di compattezza “in L' (Teorema (2.10)), che comunque ci &
sufficiente per gli scopi di questo lavoro.

Teorema 2.6. Sia u € L'(Q). Allora u € BV (Q) se e solo se esiste una
successione {uy }reny C C*°(Q) tale che:

(i) up, — v in LY(Q), perk — oo;
(i) L :=limp_ 0o fQ |Vug|dx < oc.
Inoltre, si ha che L = |Du|(f2).

Dimostrazione. Per una dimostrazione dettagliata, si rimanda al Teorema 3.9 in
[AFPOO0]. O

Per ottenere delle proprieta di compattezza pit forti, ¢ necessaria una nozione
di convergenza piu debole rispetto a quella indotta dalla norma in (2.4), che ¢ la
convergenza debole*.
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Definizione 2.7. Siano u, {uy}ren funzioni in BV (Q2). Diremo che wuy, converge

1
debole* in BV () se uy, ) e Duy, = Du in Q.

Prima di trattare il teorema di compattezza sopracitato, enunciamo e dimostria-
mo due lemmi che ci aiuteranno nella successiva dimostrazione.

Lemma 2.8. Se Q' ¢ un aperto di R e {uy,}ren & una successione di funzioni in
BV () tale che

iug ukll By oy < o0 e up, — u in LYY,
€

alloraw € BV(Q') e Duy = Du in (.

Dimostrazione. Sappiamo che u € BV (Q)) <= |Du|(€) < co. Siccome
|luk|lBy < oo Vk € N, allora anche |Dug|(€)') < oo Vk € N. Infine, per I’ipotesi
di convergenza L' e per la Proposizione (2.5), concludiamo che | Du|(€') < oco. Per
quanto riguarda la convergenza debole* delle derivate distribuzionali, osserviamo
che I’ipotesi di limitattezza della norma BV delle uj ci permette di applicare il
Teorema (1.20) ed ottenere quindi una sottosuccessione Duy; che converge debole*
ad una certa misura pu, per j — co. Ci basta verificare che ;. coincide proprio con
|Du|. A questo scopo, se consideriamo ¢ € CZ°(€2), otteniamo

/cpdDiukj:—/ukjgfd:c Vi=1,...,d
Q Q 7

per cui, passando al limite per j — oo ed osservando che lim sup; ||Vip||oo [lu; —
ul|z1 < 0, si ottiene

/<pd,u2-:—/uaso dx Vi=1,...,d.
0 o Oz

O

Lemma 2.9. Sia v € BV (2) e K C Q un compatto. Posto 6 = dist(K,00),
allora

/ lux p: —u|dz < e|Dul|(Q) Ve € (0,6),
K
dove { ¢} ¢ una famiglia di mollificatori.

Dimostrazione. Per prima cosa, osserviamo che dal Teorema (2.6) possiamo sup-
porre che u € C'*(Q). Inoltre, per come & definita la convoluzione, per y € By e
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e < 4, si ha che

/KIU*%—udw:/K‘AdU(w—sy)we(y)dy—U(x)

Z/K‘/RdU(w—Ey)%(y) dy — u(z) /Rd ve(y) dy
<[] e =)~ u@le-o)] du da

:/ / lu(z — ey) — u(z)| dz v (y)dy. (2.5)
Rd JK

dx

dzx

Siccome u(z —ey) —u(z) =€ fol Vu(z — tey) - (—y) dt, vale

1 1
/ |u(z—ey)—u(z)|dx < 6/ / ly-Vu(x—tey)| dt do < 5/ / |Vu(z)|dzdt.
K K Jo 0 JK+B(0,te)

Sostituendo quest’ultima disuguaglianza in (2.5), otteniamo

1
/]u*gpa—uldmgs/ // |Vu(z)| dzdt p-(y) dy
K R?JO JK+B(0,te)

< [ [ [oucidac.

< |Dul(Q) /R puly) dy = <|Dul(€).

Teorema 2.10. Data una successione {uy}rcn in BV (Q) tale che
sup {/ |ug| dx 4 [Dug|(A) : k € N} < oo VA € Qaperto,
A

allora esiste una sottosuccessione {uy, } jen ed una funzione u € BV () tale che
Lioe(9)
U, —
Dimostrazione. A meno di prendere una successione di aperti { A, },en relativa-
mente compatti in {2 tali che A,, 1 €2 e applicare un argomento diagonale, possiamo
ridurci a considerare un aperto A relativamente compatto in {2; ci basta mostrare
che esiste una sottosuccessione {uy,} che converge in L'(A) ad una funzione u.
La funzione limite v sara una funzione a variazione limitata in A per il Lemma
(2.8).
Chiamiamo 6 = dist(A, 92) > 0 e consideriamo U un §/2-intorno di A. Siano
poi 0 < & < §/2 e per ogni k € N poniamo uy . = u, * ¢., con ¢, mollificatore.

Abbiamo cosi ottenuto funzioni in C*°(A) che, per il Lemma (1.23), verificano

[ukellecay < llukllor@)ll@e o Vurellocay < lurllzrw) Vel
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Siccome supy, [|uk||py(4) < oo, la prima stima ci dice che la successione
{ug ¢ }ren € equilimitata, mentre la seconda ci assicura che ¢ equicontinua e dun-
que, per ¢ fissato, possiamo estrarre una sottosuccessione {ukj <}j che converge
uniformemente in C'(A). Grazie ad un argomento diagonale, possiamo trovare una
sottosucessione di {ug; ¢ };, che indicheremo con la stessa notazione, che converge
in C(A) per ogni ¢ < §/2. Dal Lemma (2.9), ricaviamo

hmsup/ |ug; — uk/\dx <hmsup/ |[Ug; — U | + ’Ukj,,s — ukj,]dx

+ hmsup/ U e — U, el dx
7,7’ —00
<2¢ sup |Dug|(U).
keN

Cid mostra che, per arbitrarieta di ¢, la sottosuccessione {uy; }jen € di Cauchy in
L'(A) e quindi, per completezza di tale spazio, converge. O



Capitolo 3

Insiemi di perimetro finito

L'obiettivo di questo capitolo ¢ trattare una specifica classe di funzioni BV: le
funzioni caratteristiche di insiemi di perimetro finito. Innanzitutto, definiamo cos’¢
il perimetro di un insieme. Consideriamo €2 aperto di R,

3.1 Definizioni e prime proprieta

Definizione 3.1. Se E C R? ¢ un insieme misurabile secondo Lebesgue, si definisce
il perimetro di E in Q) come

P(E,Q) = sup {/ divpdz : ¢ € C(Q,RY), [|¢]le0 < 1} :
E

Diremo che E ¢ un insieme di perimetro finito in 2 se P(E,Q) < co. Se Q = R¢,
indicheremo con P(E) = P(E,R%) e diremo semplicemente che E ha perimetro
finito.

Osserviamo subito che se |[ENQY| < oo, alloral g € L(Q2) e da(2.3) otteniamo
immediatamente che P(E, ) = V(1 g, 2). Dunque, fissato un aperto €, se E ha
perimetro finito in €2, la relativa funzione indicatrice ¢ in BV (). Viceversa, se £
& un sottoinsieme di R? tale che 1 € BV (), concludiamo che il perimetro di E
¢ finito in €2. Da quanto detto ricaviamo una definizione equivalente di insieme di
perimetro finito e puo essere riassunto nella seguente proposizione.

Proposizione 3.2. Sia Q C R? aperto e E un sottoinsieme misurabile secondo
Lebesgue tale che |E N Q| < co. Allora

P(E.Q) <o <= 1g € BV(Q). 3.1
Inoltre, P(E, Q) = |D1g|(Q).

Tutto questo pud essere riformulato in un contesto piu “locale”.
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Definizione 3.3. Se E C R? ¢ un sottoinsieme L%-misurabile, diciamo che E
¢ un insieme di perimetro localmente finito in Q) se P(E,Q)) per ogni ) &
Q. Equivalentemente, per (3.2), diremo che E ha perimetro localmente finito in
QO < 1g € BV, (9).

La proposizione (3.2) stabilisce un ponte tra la teoria delle funzioni BV e
la teoria degli insiemi di perimetro finito: inevitabilmente, il perimetro eredita
molte proprieta della variazione totale. Innanzitutto, Q — P(E, () & una misura
di Radon, ristretta agli aperti di R?. Inoltre, E +— P(E,{) ¢ semicontinua
inferiormente rispetto ad una opportuna nozione di convergenza per gli insiemi, che
¢ la seguente.

Definizione 3.4. Una successione di insiemi { Ey } .cn converge in misura in Q ad
un insieme E se limy_,o |(Ex A E)N Q| = 0.

Osservazione.
(Exk AE)YNQ =0 <= |1g, — ]lE||L1(Q) — 0, perk — oo. (3.2)

Proposizione 3.5. Sia Q un aperto di misura finita e siano {Ey }ren, F tali che
E, — FE in misura, per k — oco. Allora

P(E,Q) < liminf P(E, Q).
keN
Dimostrazione. Basta osservare che, poiche [Q2] < oo, allora |[EN Q| < oo e
|Er N Q| < oo VE € N. Segue che le rispettive funzioni indicatrici sono in
BV(Q) e P(E,Q) = |D1g|(Q), P(E,Q) = |D1g,|(Q) VE € N. A questo
punto, la convergenza in misura degli insiemi e 1’osservazione (3.2) ci assicurano
che g, — 1gin L' (), per k — oco. La tesi segue dalla proposizione (2.5). [

Anche le proprieta di compattezza vengono ereditate: in particolare vale un
teorema analogo del Teorema (2.10), che ¢ il seguente.

Teorema 3.6. Sia 2 un aperto di misura finita e sia { Ey } nen una successione di
insiemi L%-misurabili tali che

sup {P(Fk,Q?) : k € N} < o0.
Allora { Ey, } ken ammette una sottosuccessione che converge in misura in €.

La nozione di convergenza in misura e le proprieta di semicontinuita inferiore
e compattezza restano valide localmente (cioé per ogni ' € (), se  ha misura
infinita.

Lemma 3.7. Siano E, F sottoinsiemi L%-misurabili tali che |2 N (E A F)| = 0.
Allora P(E,Q) = P(F,Q).
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Dimostrazione. Sia ¢ € C°(Q), ||¢|le < 1. Siha

/divcpdx:/]lEdivcpdx:/ divgpdm:/ divp dx
E Q QNE QNF

= / 1pdivpdr = / divpdr < P(F,Q).
Q F
Segue che P(FE,Q)) < P(F,2). Scambiandoiruolidi F ed F, siottiene latesi. [J
Proposizione 3.8. Siano E, F sottoinsiemi £L%-misurabili. Allora
P(E,Q) = PR\ E,Q) (3.3)
P(EUF, Q)+ P(ENF,Q) <P(E,Q)+ P(F,Q) (3.4

Dimostrazione. Consideriamo o € C2°(Q,R?), ||¢|l < 1. Si pud osservare che
anche —p € C°(Q,RY) e verifica || — ¢|oo < 1. Inoltre

divgpdac:/divgpdm—/ divgpda::/ div(—p) dx.
Q\E Q E E

Segue che P(E,Q) = P(R?\ E, Q) e questo mostra (3.3).

Mostriamo infine (3.4). Siano 1 g, 1 le funzioni indicatrici di £ ed F": per il
Teorema (2.6), possiamo ridurci a considerare due successioni di funzioni C*°(€2),
{ur}ren € {vr}ren, tali che vy, — 1g e vy — 1p in L1(). Senza perdita di
generalita, possiamo supporre che 0 < ug < 1,0 < v, <1 Vk € N. Siha

k—o0 k—o00

lim/\Vuk\d:r—P(E,Q), lim/]Vvk]dx—P(F,Q).
Q Q

. . LY(Q LY(Q
Osserviamo inoltre che ug vy —(>) 1gnr e che ug + v — upvg —>) 1rur
per k — oo e che valgono le seguenti stime per i rispettivi gradienti:

|Vugog| < |og|[Vug| + k]| Vog|
]V(uk + v — ukvk)| < |1 — UkHka:| + |1 — uk||VUk|

Mettendo insieme le due disguaglianze, per linearita dell’integrale si ottiene
/ |Vukvk|dﬂz+/ |V (ug, + v — ugvg)| de §/ |Vuk|dx+/ |Vui| dz.
Q Q Q Q

Passando al limite per £k — oo, si ha la tesi. O

3.2 Frontiera ridotta

Se nella sezione precedente abbiamo iniziato ad affrontare la teoria degli insiemi
di perimetro finito da un punto di vista variazionale, studiandone le proprieta di
compattezza e semicontinuita inferiore, ora vorremmo spostarci ad un approccio
pil geometrico, generalizzando la classica formula di Gauss-Green.
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Teorema 3.9. (Gauss-Green)
Sia E C R? un insieme con bordo di classe C*, tale che E C Qe H*1(QNIE) <
oc. Allora per ogni ¢ € C°(Q,R?) vale

/ divp dx = —/ ¢ vdH, 3.5
E QNOE

dove v e la normale unitaria interna ad E.

Notiamo che in questo caso P(E) = H?~1(OF) e che per ogni F' C R, si ha
P(E,F)=H¥Y(FNOE).

Consideriamo un insieme E di perimetro finito in 2 e tale che |[E N Q| < oc.
Dalla proposizione (3.2), sappiamo che 1p € BV (Q2), per cui D1 & una misura

vettoriale su €. Per il Corollario (1.11), possiamo scrivere D15 = vg|D1g|, per
cui in questo caso (2.2) si riscrive come
/ div o = —/ ¢ -vpd/ D1lg| Vo € CX(Q,RY). (3.6)
E Q

Alla luce della validita di (3.6), ci chiediamo se ¢ possibile definire, per gli
insiemi di perimetro finito, una nozione di bordo (d — 1)—dimensionale in modo
che valga (3.5) e la funzione vg coincida con la normale (unitaria) interna ad FE.
Si puo osservare che il bordo topologico non ¢ adatto a questo scopo: dal Lemma
(3.7), sappiamo che il perimetro non risente di modifiche effettuate su sottoinsiemi
di misura nulla; d’altra parte, si possono costruire insiemi di perimetro finito il cui
bordo abbia misura £ strettamente positiva. Vediamone un esempio.

Esempio 3.10. In R?, d > 2, consideriamo una successione di punti {qn}nen C
Q?. Dato ¢ > 0, possiamo trovare una successione {7, }neny C (0,¢) tale che
dwg Y pen 3! < 1. Poniamo poi By = UfLO B,,(qn) ed E = |Jyey By- Da
(3.4), otteniamo

N N
P(By) <Y P(Br,(qn) =dwg Y _rit < 1.
n=0 n=0

Per la Proposizione (3.5), possiamo dire che P(F) < liminfyeny P(By) < 1.
Inoltre,

|E| < Z |BN|:derg:5der§ gsdderg_l <e.

NeN neN neN neN

Siccome abbiamo scelto i centri { gy, },, razionali, F interseca ogni aperto non vuoto
dello spazio, per cui & denso in R?. Questo ci fa concludere che 0F = E \E =
R4\ E, per cui [0F| > 0 e quindi H}(OF) = .

Ogni E' C R? che differisce da E per un insieme di misura nulla ¢ tale che
P(E') = P(E) < 1, |0E'| = |0E| > 0. Cid ci dice che non possiamo trovare
“buoni rappresentanti”’ per F, ossia insiemi ad esso equivalenti ma che abbiano
bordo topologico di misura %! finita.



Capitolo 3. Insiemi di perimetro finito 17

Definizione 3.11. Dato E C R® insieme di perimetro localmente finito, la frontiera

ridotta di E (o bordo ridotto) é l'insieme 0*E dei punti x € spt|D1g| per cui il

limite D1-(B
vp(z) := lim £(B (7))

_ 3.7
r50 |D1g (B, (2)) S

esiste ed appartiene a S*'. La mappa vg : 0*E — S%1 ¢ detta normale
generalizzata interna (ad E).

Osservazione. Si verifica che vg € una funzione boreliana e che 0* E € un insieme
misurabile. Inoltre, 0*E C spt|D1g| C OF.

Esempio 3.12. Mostriamo che la frontiera ridotta ¢ strettamente contenuta nel
bordo topologico. Consideriamo il quadrato @ = [0,1] x [0,1] C R? e poi un
qualsiasi suo vertice, ad esempio (1, 1). Chiaramente, questo punto appartiene al
bordo topologico di Q; vediamo che non fa parte del bordo ridotto: il limite (3.7)
esiste e coincide con e; + eg, che perd ha norma strettamente maggiore di 1.

Dal Teorema di derivazione di Besicovitch possiamo concludere che per insiemi
di perimetro (localmente) finito, | D1 | € concentrata su 9* E. In realta, possiamo
dire di piu, grazie al Teorema di Struttura di De Giorgi (vedi Teorema 3.59, [AFP00];
Teorema 15.9 in [Mag12]), che rappresenta senz’altro uno dei pili importanti risul-
tati della Teoria degli Insiemi di Perimetro Finito e che, tra le altre cose, formalizza
la relazione intuitiva che lega la nozione di misura (d — 1)—dimensionale del bordo
di un insieme e il concetto di perimetro, estendendola ad insiemi con bordo non
regolare. Possiamo sintetizzare quanto detto come segue:

Teorema 3.13. Se E C R? ¢ un insieme di perimetro finito, allora
P(E,Q) = HTY QNI E). (3.8)

Tutti questi risultati ci permettono finalmente di rispondere alla domanda posta
ad inizio sezione e di riscrivere la (3.6) per insiemi di perimetro finito:

/diw——/ o-vpdHT Yo e C(Q,RY).
E o*E

Se E' ¢ un insieme di perimetro finito, € interessante studiare i punti dello spazio
ambiente che si trovano molto vicini al bordo ridotto di E. Introduciamo quindi i
punti di densita t.

Definizione 3.14. Dato E un insieme L%—misurabile, per ognit € [0, 1] definiamo

E(t):{xeRd:hm‘EmlW:t}
p—0  [By(z)|

Inoltre, linsieme 9°E = R4\ (E©) U EW) ¢ detto frontiera essenziale (o bordo
essenziale) di E.
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Linsieme (1) pud essere interpretato come una generalizzazione del concetto
topologico di parte interna ed di E. Analogamente, F() & I’equivalente, nel senso
delle misure, di R? \ E.

Particolare importanza riveste il caso ¢ = 1/2: questi punti sono, moralmente,
i punti di frontiera, per una opportuna definizione di frontiera, che & proprio quella
di frontiera ridotta introdotta poco sopra. Vale infatti il seguente risultato:

Proposizione 3.15. Se F ¢ un insieme di perimetro (localmente) finito e x € 0*F,
allora

o 2O Bo@)] 1
P [By@) 2

cioe O*E c E1/2),

Dimostrazione. Si veda il Corollario 15.8 in [Mag12]. ]

In realta vale un risultato piu forte, che enunceremo nella prossima sezione.

3.3 Disuguaglianze isoperimetriche

Come accennato nell’introduzione, il problema (1) siriduce al noto problema isope-
rimetrico, per N = 1. In questo caso, sappiamo che il minimo coincide con la sfera
d—dimensionale S*~!. Nonostante possa sembrare una risposta molto intuitiva, la
dimostrazione di tale risultato non ¢ banale e richiede strumenti piu sofisticati: in-
fatti, non ¢ possibile applicare immediatamente il Metodo Diretto; tuttavia, risultati
di convergenza locale ed argomenti di simmetrizzazione permettono di concludere.
Inoltre, vale il seguente:

Teorema 3.16. (Disuguaglianza isoperimetrica)
Sed>2ed E C RY ¢ un insieme di misura finita, allora

P(E) > dwl/*|E|“T (3.9)
La (3.9) puo essere anche localizzata: vale la seguente

Proposizione 3.17. Siano d > 2, A € (0,1) e Q C R un cubo d-dimensionale.
Allora esiste una costante positiva o = «(d, \) per cui si ha

d—1
P(E,Q) > alEN QT (3.10)
per ogni insieme E di perimetro localmente finito e tale che |E N Q| < A|Q).
Dimostrazione. Si veda la Proposizione 12.37 in [Magl12]. 0

Osservazione. La proposizione precedente si generalizza prendendo una palla
Br(x), per qualche 2 € R%, e R > 0 al posto di un cubo.
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Remark 3.18. Se A\ = 1/2 ed E C Bg(x) allora
. d-1
P(E; Br(r)) = a(d) min{|E N Br(x)], |Br(x) \ B} .

Concludiamo il capitolo riprendendo il concetto di punti di densita ¢, nel caso
t = 1/2. La (3.10) ¢ uno degli strumenti principali che permette di dimostrare il
seguente, importantissimo, teorema:

Teorema 3.19. (Federer)
Se E & un insieme di perimetro (localmente) finito, allora *E ¢ EX/?) C 9°E e

HITVOE\*E) =0
Dimostrazione. Si veda ancora [Magl2], Teorema 16.2. O

Il Teorema di Federer ci assicura che frontiera essenziale e frontiera ridotta
coincidono ’del—q.o. Ma allora, se E ¢ un insieme di perimetro (localmente)
finito, si ha

P(E,Q) = HY QN E) = HT (N EW/2),






Capitolo 4

Il Teorema di Compattezza
Concentrata

Nella prima parte di questo capitolo enunceremo e dimostremo il Teorema di
compattezza concentrata per insiemi di perimetro finito e lo adatteremo al caso di
N —cluster. Nella seconda parte, vedremo come puo essere applicato per dimostrare
Iesistenza di cluster isoperimetrici in R%.

4.1 Il Teorema

L’idea di base della compattezza concentrata ¢ la seguente: immaginiamo di avere
una successione di insiemi (di perimetro finito) di volume totale fissato; alcuni (ma
anche tutti) elementi potrebbero ammettere componenti che “scappano” all’infi-
nito. Il teorema ci assicura di poter tirare indietro tali componenti, da una parte
preservando il volume iniziale, dall’altra controllando il perimetro. Un modo per
visualizzare questa costruzione € immaginare un album costituito da un insieme
numerabile di fogli (tutte copie di R?; ogni copia corrisponde ad una direzione di
traslazione) e su ognuno di questi disegnare il pezzo che diverge nella direzione
corrispondente. Il volume totale si riottiene sommando i volumi su ogni foglio.

Teorema 4.1. (Compattezza concentrata)

Sia {Ex}ren C R? una successione di insiemi di perimetro finito tali che
supy, P(Er) < oo e limg_oo |Ex| = m. Allora {Ey}ren ammette una sotto-
successione per cui esistono un insieme I numerabile, una successione di insiemi
{E"}ier ed una successione {x} };cr tali che:

(i) limyg_yoo [z} — 2k | = 00 Vi # i/
(ii) limgyoo(Ey — 2t) = E* in L},

(iii) > ;er |EY| =m.
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Figura 4.1: Un’idea della compattezza concentrata: i pezzi “lontani” vengono
traslati indietro, creando numerabili copie di R?.

Dimostrazione. Possiamo assumere m < 1/2, in modo che, definitivamente rispet-
to ak, si abbia |E| < 1/2esi possa applicare (3.10) ad £}, e ad opportuni traslati
del cubo d-dimensionale [0, 1]9. Per ogni k, scegliamo {yk} jen C Z% e definiamo
QJ := [0,1]¢ + y;, in modo che la mappa j — |Ej, N QJ | sia decrescente.

Siccome sup, P(E})) < oo, possiamo applicare il Teorema (2.10) alla succes-
sione { B}, — yi} ren ed ottenere che, a meno di sottosuccessioni, questa converge
L} . ad un insieme contenuto in [0, 1]%. Dunque esiste £/ C [0, 1]¢ tale che

. . . 1 .
(Br N QL) —yl = (By —yl) N [0,1] L FI perk — oo

Per n > 1, otteniamo

d—1
d

. s I .
=n j=n j=n

a~'P(E, Q) per (3.10)

o0 1
<> |Bnail’
j=n

oo
1 .
o HELNQRTY | P(EL, Q)

Jj=n

<a (’E’“'> ZP By Q)

B\ @ P(E
- <’ ’“‘) P(Ey < DE b,
n 24d

IN

IN

Consideriamo di nuovo la successione dei vettori {yj }; ; : fissate due dire-
zioni distinte j, j € N, a meno di sottosuccessioni possiamo supporre che esista
limy o0 \yk v, ] € [0, 00]. Definiamo la seguente relazione di equivalenza su N:

diciamo che j ~ j/ <= limp_.o |yk yk | < oo e indichiamo con [ I’'insieme
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quoziente N/~, che ¢ quindi al pilt numerabile. Data una classe di equivalenza
t € I, consideriamo un qualsiasi suo elemento jg ed osserviamp che {yi - yio Fren
¢ limitata in Z¢. Possiamo quindi supporre che V_i, Vj € i, yi - yio = yj/ € 74,
con y’ # yj/ se j # j'. Definiamo infine :zc}C = yio. Analogamente a prima, esiste
E' =limy_,o0(Ex — 2}) in L},.. Se j € i, allora

loc*

|F7| < | By N QL = |Ex 0 ([0,1]% + )]

= (B, = 2i) 0 ((0,1)7 + (y], — z3,)]
= (B — 23,) N ([0, 17+ (4")] = |E 0 ([0, 1] + ()]

Percio

= lim |E)| = Fi| < EY.
m l}gll | ijl \_Zi:l |

D’altra parte, per k sufficientemente grande, se fissiamo M € Ne R > 0,
otteniamo Bg(z}), ..., Br(zM), palle a due a due disgiunte, da cui ricaviamo che

(B 0 Br(s}))| = limsup > | B N Br(a})]

lim |Ej| > limsup
k—o0 =1 k—oo 5
1= 1=

k—o00

M | M

M M
> lim inf E,LN Bgr(zi)| =) liminf|E, N Bg(x
2 limin ;l kN Br(z},)| ;ggggl k N Br(z},)|
M .
> Z |E* N Br(0)|.
=1

. . L, ; e .
siccome Ej—xy, —1%¢ [, Passando ai limiti, prima per R — oo e poi per M — oo,
otteniamo
m = lim | By | > E
i 2 3 1E

che conclude la dimostrazione. O

Teorema 4.2. (semicontinuita concentrata)

Sia {Ex}ren C R una successione di insiemi di perimetro finito tali che
supy P(E) < oo e limy_yo0 |Ex| = m. Siano poi I C N, {E*}icr e {4 }ier
come in (4.1). Allora

Y P(E') < lim inf P(E},).

icl
Dimostrazione. A meno di estrarre una sottosuccessione, possiamo supporre che
liminfy P(Ey) = limy P(FE)). Fissati M € Ne R > 0, poiché limy, |x}C — xi[ =
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oo per i # j, sappiamo che le palle Br(zti),...,Br(z) sono a due a due
disgiunte, se k ¢ sufficientemente grande. Percio

M M
lim P(E) > hg;sogp;mEk,BR(:cz)) > limint y | P(Ey, Br(x})).

Siccome il perimetro & invariante per traslazioni e £}, — i L, converge L} ad E',

per il Teorema (4.1) concludiamo che

loc

Passando prima al limite per R — oo e poi per M — 00, si ha

> P(E') < lim P(Ey).
el k—o00

4.2 Esistenza di cluster isoperimetrici

Definizione 4.3. Un N-cluster in R? ¢ una famiglia finita di insiemi di perimetro
finito E = (E(1),...,E(N)) che soddisfa le seguenti proprieta:

(i) 0 < |E(h)| < oo perogni h=1,...,N;
(ii) |[E(h)NE(R)| =0 perogni h#+h.

Le componenti E(h) sono chiamate camere del cluster. Per convenzione, si pone

N
0) =R\ | J E(h
h=1
che é chiamato camera esterna.

I1 volume di un N-cluster E non ¢& altro che il vettore dei volumi delle sue
camere. Si indica tipicamente con |[E| = (|E(1)|,...,|E(N)|).
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Figura 4.2: Esempio di un 4-cluster nel piano.

Definizione 4.4. Dato un N-cluster E = (E(1),...,E(N)), il suo perimetro é
definito come

1Y 1 (N
P(E) = 3 > P(E(h)) + 5P (U E(h)) .
h=1

h=1
Ci dedichiamo adesso allo studio del seguente problema variazionale:

Definizione4.5. Sia N > 2em = (my, ..., my) € RN unvettore con componenti
positive. Allora esiste un minimo del problema

inf {P(E) : E N-cluster, |E| = m} . 4.1)

Possiamo adattare il Teorema (4.1) al caso di una sucessione di N —cluster, per
N > 1.

Teorema 4.6. (Compattezza concentrata, N > 1)

Sia {E},}ren successione di cluster in R Allora {Ey}; ammette una sottosuc-
cessione per cui esistono un insieme I numerabile, una successione di N —cluster
{E"};c1 ed una successione {z }icy tali che:

(i) limyg oo |2k — 2k | =00 Vi# i

(ii) limg oo (Ex(h) —2t) = E'(h) in L}

loc

Vh=1,...,N

(iii) Y ;e |EY(h)] =limp—oo |Ex(R)] Vh=1,...,N.
Dimostrazione. Per ogni k € N, poniamo Ej, = Ej(1) U --- U Ej(N), in modo
da ridurci ad una successione di insiemi formati da una sola camera. Dal Teorema

(4.1), otteniamo un insieme E’ come limite L. della successione {Ej, — x4}, e
per cui vale

N
E' = lim |Eg| = li En(h 4.2
;| | kgfolo| | kg&};| % (h)] (4.2)
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dove I'ultima uguaglianza segue dal fatto che le camere dei clusters sono disgiunte.
Ora, perogni h = 1,..., N definiamo

Ei(h) = lim (By(h) —2}) in L,

ottenendo che F(h) C E'perogni h = 1,..., N eche |Ei(h) N E{(h)| = 0 per
ogni h # h/, per cui

N .
= U E(h) (4.3)

N

cioé E' & ancora un N —cluster. Fissiamo M € Ne R > 0; per k sufficientemente

grande, le palle Bg(z4), ..., Br(z!) sono a due a due disgiunte, quindi per ogni
h=1,...,Nsiha

M
lim |Ex(R)| > lim inf B
Jim |Eg(h)| > lim in L:J ) N Br(a}))

M .
Ex(h) N (U BR(x;)> ‘ = lim inf
=1

M
= h,ggggf; | Ex(h) N Br(x},)| = ; |E'(h) N BR(0)].

Passando ai limiti per R — oo e poi per M — o0, si ottiene
lim |Eg(h)| > |E'(h)|  perognih=1,...,N.
k—o0 el

D’altra parte, mettendo insieme (4.2) e (4.3), otteniamo

S35 = Y F - hmzusk

i€l h=1 i€l

per cui valgono contemporaneamente le seguenti relazioni:

N ' N
DD B = Zklggo |Ex(h)

h=1 icl
> IE(h)| < Jim |Eg(h)]
iel
Ma allora deve valere
Z]Ez )| = hm |Ex(h)| perognih=1,..., N
el
da cui la tesi. O]

Teorema 4.7. Sia {E} }rcn successione di N-cluster minimizzante per il problema
(4.1). Consideriamo il relativo insieme I e le relative successioni {z%};cr ed
{E*};c date dal Teorema (4.6). Allora E' é minimo locale sul foglio i—esimo, per
ognii € 1. Inoltre, 'insieme I ¢ costituito da un unico indice.
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Enunciamo e dimostriamo due lemmi che ci torneranno utili ai fini della di-
mostrazione. Moralmente, il Lemma di incollamento (Lemma 2.6 in [NPT25])
ci dice che, dati due insiemi “vicini”’, prendendo una palla di raggio p, possiamo
“incollare” in modo opportuno parti del primo a parti del secondo, pagando una
quantita di perimetro controllata (Figura 4.3). Il secondo lemma, Volume fixing
variations, ci assicura che possiamo modificare leggermente il volume delle camere
di un cluster in modo da poter controllare, anche in questo caso, la variazione di
perimetro (Figura 4.4).

\A\b

/x /A
2ARA

Figura 4.3: La quantita di perimetro P(G,, 0B,) aggiunto, si controllacon [EA F|.

Figura 4.4: Tramite dei diffeomorfismi locali a supporto compatto, riusciamo ad
aumentare il volume in zone mirate. La differenza di perimetro si controlla con
una costante H (che ha le dimensioni di una curvatura) che moltiplica la quantita
di volume modificato.

Lemma4.8. (di incollamento) Dati E, F C R® insiemi di perimetro finito, definiamo

Gp=(ENB,)U(F\ B)).
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Allora, per ogni 0 < r < R si ha

R R
| PG o8, do = [ 1P Br) — P(B.B,) — P(F.Ba\ B,) dp
=|(EAF)N(Br\ By)l.
In particolare, insieme dei p € (r, R) per cui vale la seguente disuguaglianza

(EAF)N(Bg\ By
R—r

P(G,,0B,) < (4.4)

ha misura positiva.

Dimostrazione. Sia p € (r, R) raggio arbitrario. Poiché il perimetro & una misura
nella seconda variabile, per come abbiamo definito G, si ha che

P(G,,0B,) = P(G,, Br) — P(E,B,) — P(F,Bg \ B,).

Inoltre, P(E,0B,) = P(F,0B,) = 0 per quasi ogni p € (r, R). Se ne deduce che
per tali p vale

P(G,,0B,) = H*" 1 (0*G, N dB,)
= HIY(EW NaB,) A (FY NaB,)) (4.5)

dove E(M ed F() sono gli insiemi dei punti di densita 1 di E ed F, rispettivamente.
Integrando in dp la (4.5), otteniamo

R R
/ P(G,,0B,)dp — / HEL(EW A9B,) A (FY 1 0B,)) dp
=|(EAF)N(Br\ By)|
dove I’ultima uguaglianza segue da (A.2). O

Corollario 4.9. Siano E ed F due N-cluster e sia G, il seguente insieme

p_<UF >U<UE 5, m)

Se esistono R > 0 ed {xy}_, percuiperogni h=1,...,N:

(i) le palle Br(x1),...,Br(zN) sono a due a due disgiunte;

(i) |(E(h) A F(R)) N (Bg(zp) \ Br(x))| < R—1/N?, con 0<r<R,
allora |{p € [r,R] : P(G,,0B,(zp)) < %} > (R—1)(1— %)

Dimostrazione. Segue dal Lemma (4.8) e dalla disuguaglianza di Chebyshev. [
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Lemma 4.10. (Volume fixing variations, o Lemma di Alimgren)
Sia F = (F(1),...,F(N)) un N-cluster. Esistono Ry > 0, H > 0 e po > 0 tali
che, dato m = (m(0),...,m(N)) € R¥*1 con

allora esiste un N-cluster F = (F(1),...,F(N)) tale che
(i) F(h) A F(h) € Bg,,
(ii) |F(h) N BRro| = |F(h) N Br| +m(h),
(iii) P(F,Br,) < P(F,Br,) + H Y ) Im(h)].

Dimostrazione. Per una dimostrazione dettagliata, si veda il Lemma 29.14 in
[Magl12]. OJ

Corollario 4.11. (Volume fixing variations sul multifoglio)

Sia I I'insieme di indici dato dal Teorema (4.1) e sia F* = (F'(1),..., F'(N))
un N-cluster. Sia poi M > 0 tale che per ognii € {1,...,M} C I, e per ogni
h=1,...,N, siabbia Zf\il P(F(h)) > 0. Allora esistono Ry > 0, H > 0 e
o > 0 tali che, dato m = (m/(0),...,m(N)) € RN*! con

N
m(O) == mh)y: S m() <po;  m(h) =0, se|F(h)=0.

h=1 h=1

Esiste un N-cluster F' = (F'(1), ..., Fi(N)) tale che
(i) F'(h) A F'(h) € Bg,,
(i) S0 | FP(h) 0 Bry| = 0L | Fi(h)| +m(h),
(iii) Yo%, P(F'(h), Bry) < Y12, P(F' (), Bry) + H X5, [m(h)].

Osservazione. La costruzione riportata nel Teorema (4.1), adattata al caso di V-
cluster, ci assicura che per ogni camera del cluster esiste un foglio su cui questa
abbia misura postiva. Per questo, I’ipotesi aggiuntiva riguardo I’esistenza di M > 0
per cui Zf\il P(F%(h)) > 0 per ogni camera, non ¢& restrittiva e ci permette di
considerare solo quei fogli su cui siamo sicuri di avere una quantita di volume da
poter modificare.

4.2.1 Dimostrazione del Teorema di Esistenza

Possiamo finalmente dimostrare il Teorema (4.7).
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Dimostrazione. Consideriamo {F'};c; N-cluster per cui .., |[F'| = >, [E'| e
Vh=1,...,N, Fi(h) A E'(h) € R% Dato £ > 0, ci basta mostrare che

D> P(E) <) P(F) +Ce.
i€l i€l

dove C' ¢ una costante positiva che dipende solo da N.

Primo passo. Fissiamo € > 0. Per prima cosa, osserviamo che per il Teorema
(4.2), esiste M > 1 taleche Y., P(E") < £.

Consideriamo le costanti Ry > 0, H > 0 e g > 0 date dal Corollario (4.11),
applicato al cluster F?, con i < M: scegliamo u < juq tale che

Hp< (4.6)
4
e scegliamo poi R > Ry tale che per ogni h = 1,..., N, valgano le seguenti
condizioni:
E'(h) A F'(h) € Bry1 4.7
E'(h) A F* B < — 4.
. . I
F* B F* - — 4.
IFi(h) 0 Brl > [F(h)] - 55 “9)
M ‘ -
> P(E'(h),R\ Bp) < . (4.10)
i=1
Sia poi k > 1 tale che
[Bx() 0 Br(ai)| — [B'(h)] < 55 (@1D)
Vi=1,....M P(E,Bry) < P(Ex, Braa(ap) + 7= (412)
le palle Bry1(z1), ..., Bre1(2i7) siano a due a due disgiunte. (4.13)

dove (4.12) deriva dal fatto che E’ & il limite Llloc di E; — w}c Osserviamo inoltre
che (4.9) e (4.11), insieme, ci dicono che

1%

M
> |E‘(h) N Bg| - |F'(h) N Bg|
=1

A questo punto, consideriamo il cluster F = (F'(1),..., F(N)) dato da

M M
F(h) = (U (F'(h) +a}) N BASU%)) U (Ek(h) U BAJJZ))

i=1 i=1

dove r € [R, R + 1] ¢ tale che valga la disuguaglianza (4.4). Osserviamo che
possiamo scegliere r indipendentemente da ¢ grazie al Corollario (4.9). Abbiamo
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ottenuto una variazione di E; a supporto compatto nella palla BT(x};) e partendo
da ci0 siamo in grado di stimare le seguenti quantita:

N
P (F,0B,(z})) <> ‘((Fi(h) +24) & Ep (1)) () (Broa () \ BR(xZ))) = ﬁ;

~ M . h M ~ . £
P (F U aBT(:g;)> < ZP (R@BAQ;@) <~
<

. 1=1 . =1
+Y P (F aBr(x;;)) +3 P(F, B,)
i=1 i=1

Otteniamo quindi

M M
P(F) < P (Ek,Rd\ U BT(Q:;;)> +Y PF,B,) + % (4.15)
i=1 =1

Cio significa che riusciamo a controllare la differenza di perimetro tra F ed Ej.

Secondo passo. Ora, per ottenere un competitore per (4.1), dobbiamo apportare
ulteriori modifiche, stavolta ai volumi: per farlo, riprendiamo il Corollario (4.11)
applicato al cluster F' e le corrispondenti costanti Ry < R, pu < pio e H: otteniamo
un N-cluster F' tale che

(i) F*(h) A Fi(h) € Bg, C Bg;
(i) SO, [F () 0 Br| = 30, |[F'(h) 0 Br| +m(h):

iy M, P(F', Bg) < M, P(F', Bg) + HYW_ | [m(h)|.
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dove m(h) == |Ex(h)| — \Ek \ UM, Br(zh)| — XM, [FP(h) N Bg| Vh =
N e m(0) := _thl m(h). Si osserva che

M

M
im(h)] = ||Bx(h)| — | Ex(h) \ | Br(z})| — > |F*(h) N Bg|
= i—1

=||Ex(h) N (U BR(x;)> } —Z |F'(h) N Bp|
y i=1 i= 1‘

=12 |Bx(h) N Br( }—Z}F%h)ﬂBRI
i=1 i=1
M

= " |E'(h) N Bg| — |F'(h) N Bg|
=1

< upo-

da (4.14), e cido mostra che abbiamo apportato una variazione di volume effettiva-
mente ammissibile.

In modo analogo a quanto gia fatto, definiamo una variazione a supporto
compatto di F?, che chiamiamo G = (G(1),...G(N)), data da

M M
G(h) = (U (F')+ai) n BR@%;)) U (F%h) U BR@%;)) .
=1 =1

E immediato verificare che |G(h)| = |Ex(h)| Yh =1,...,N e Vk € N. Per
minimalita di Ej, abbiamo

M M
P(E) <P(G) =P (G,Rd U BR(«’EZ)) +>_ P (G, Br(z}))

i=1 i=1

~ M . M ~
—p <Fi,Rd\ U BR(a:;)> +Y P (Fi,BR)
=1 =1
N

P <F R\ | Br(z},) > +) _ P(F +H Y |Im(h)|
i=1 z]\-/[l h=1 N

P<FZ Rd\UBR(:Uk> Z F Bg( wk —i—HZ]m(hﬂ
=1 i=1 h=1

M M
+HZIm <P (Ek,Rd\ UBT(az@) +)_P(F.B )+%+§

i=1
dove I’ultima disuguaglianza segue da (4.6) e (4.15).
Ora, poiché

M

M
P(Ey) = P(Eg, R\ | Bi(2})) + ) P(Ey, Br(x})),
i=1 i=1
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segue che
M ; M ; € e U ; € €
;P(Ek,B,.(x;)) < ;P(FZ,BT) + 3zt S > P(F) + Rt

Per come abbiamo scelto M inizialmente, R in (4.10) e k in (4.12), possiamo
concludere che

> P(E) =) P(E,B,)+ Y PE,R'\B,)+ > PE)

el <M <M i>M

; g
< PE.B)+;
<M

. 3
<D P(ExBr(a))) + 3¢
<M

; 9
<Y PF) + 5 +e.
el

dove C = # + 1 ¢ la costante cercata. La tesi segue per arbitrarieta di €.

Terzo passo. Per concludere la dimostrazione del Teorema, mostreremo che
su ogni foglio i, il cluster E?, essendo minimo, ¢ limitato. Questo ci permette di
concludere che possiamo ricondurci ad un unico foglio.

Fissiamo quindi un foglio ¢ e consideriamo il relativo cluster che, per non
appesantire la notazione, indicheremo semplicemente con E.

Consideriamo ora t > 0, B, := B(0,t) la palla di centro 0 e raggio ¢, e
definiamo i seguenti oggetti perogni h =1,..., N:

(1) Tinsieme E;(h) = E(h) N By,
(2) 1a funzione uy, : (0,4+00) — (0,+00), t +— |E(h) \ Byl
Osserviamo che u;, € monotona decrescente, quindi derivabile quasi ovunque
per il Teorema di Lebesgue. Si ha inoltre

|E(h)\ By| = /OO HI"YENOB,)dr. (4.16)
t

Per ogni ¢ > 0, definiamo u(t) = ZhN:1 up(t) = Zivzl |E(h)\ Bt|: weancora
una funzione monotona decrescente, quindi derivabile per quasi ogni ¢ > 0, con
ul(t) = S5l (8).

Quindi per ogni h = 1,..., N vale

P(E(h)) <P(E(h)) — P(E(h)\ By) + 2H* Y (E(h) N dBy)
<P(E(h)) = P(E(h) \ By) + 2[u/(t)].
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Se applichiamo il Lemma (4.10) ad E;, per t > R abbastanza grande affinché
u(t) < p,' otteniamo un cluster F; tale che:

i) |E()| = |EdW)] + |E() \ Bl = |E(h)
(i) P(Fy(R)) < P(E(1) + H Y0, |E(h)\ Bi| = P(E,(h)) + Hu(t).

Per minimalita di E, possiamo osservare che

=2
=z

N
" PER) <30 PFRR) < 3 PIEM) + Hult
h=1

h=1 h=1

WE

P(E(h)\ By) + 2N |u/(t)] + Hu(t).

N
hE
v

(E(h)) =

1 h

>
Il
Il
—

Ricordiamo che ' < 0, per cui, riarrangiando i termini, la precedente disequa-
zione si riscrive come

N N
N (t) < Hult ZP M\ B;) < Hu(t)— P (U (E(h) \Bt)) 4.17)
h=1 h=1

dove I’ultima disuguaglianza segue dalla proprieta (3.4). Grazie alla disuguaglianza
isoperimetrica in (3.9), sappiamo che

N
P (U (E(h) \B») >

h=1

d—1

d—1 a—2
d d

L]:J h)\ By) _a<ZyE \Bt>

dove la prima uguaglianza segue dal fatto che gli insiemi { E(h) \ B; } =1
disgiunti. Percio, (4.17) diventa

-----

/ H @ d-1
U(t)Sﬁu()—ﬁu() <.

Seu < 1, allorau < u'~4, per cui possiamo supporre che il termine QIfVu sia

d-1
trascurabile rispetto a ;3 u @ . .
Possiamo quindi ricondurci a studiare v’ < — muT da cui ricaviamo

(d Yu) < —45%. Segue che la funzione d<{/u(t) < u(to) — {3 (t — to), per un
certo o € (0, +oo) quindi esiste £ > t( tale che u( ) =0Vt > t.

Quarto passo. Abbiamo mostrato che su ogni foglio i, il cluster £° ¢ limitato.
Per ogni i € I, possiamo quindi considerare R; > 0 e B(0, R;) tale che E* C
B(0, R;) € R%. Questo ci permette, tramite un’opportuna traslazione, di collocare
tutti gli £ su uno stesso (unico) foglio. O

'R e 1 sono le costanti fornite dal lemma.



Appendice A

Formule di Coarea

In letteratura, esistono moltissime versioni della formula di coarea; tuttavia, quella
che risulta tra le piu versatili ¢ la seguente.

Teorema A.1. (Formula di Coarea)
Siano Q C R? un aperto e u : R* — R una funzione Lipschitziana. Allora, per
ognit € R, lamappat — P({u > t},Q) é boreliana e

/Vu|dx:/P(u>t,Q)dt. (A.1)
Q R

Dimostrazione. Una dimostrazione esaustiva del risultato &€ contenuta nel Teorema
13.1 in [Mag12]. O

Come conseguenza del precedente Teorema, si pud ottenere la formula che
segue:

|ENB,(z)| = / HEY(E N By(x)) dt. (A.2)
0

Grazie alla teoria delle funzioni BV e a quanto mostrato nel Capitolo 2, siamo
in grado di enunciare una versione di (A.1) in tale contesto

Teorema A.2. (Formula di Coarea in BV')
Per ogni Q C R aperto e per ogniu € L} () vale

loc
V(u,Q) = /R P({u > t},0) dt. (A3)

In particolare, se u € BV (), Uinsieme {u > t} ha perimetro finito in Q per
L' —q.o. t reale, e vale

\Du|(B) = /R Dlgey|(B)dt VB CB(Q). (A4)
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Infine, il Teorema (3.19) enunciato alla fine del Capitolo 3, ci assicura che (A.4)
si puo riscrivere anche come

\Dul(B) = /RHd_l(B N {u>tidt VB C B,

il che sottolinea ancora una volta lo stretto legame esistente tra la teoria delle
funzioni a variazione limitata e quella degli insiemi di perimetro finito.
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