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Abstract. This work is concerned with the numerical solution of large-scale symmetric positive
definite matrix equations of the form A1XB\top 

1 + A2XB\top 
2 + \cdot \cdot \cdot + A\ell XB\top 

\ell = F , as they arise from
discretized partial differential equations and control problems. One often finds that X admits good
low-rank approximations, in particular when the right-hand-side matrix F has low rank. For \ell \leq 2
terms, the solution of such equations is well studied, and effective low-rank solvers have been pro-
posed, including alternating direction implicit (ADI) methods for Lyapunov and Sylvester equations.
For \ell > 2, several existing methods try to approach X through combining a classical iterative method,
such as the conjugate gradient (CG) method, with low-rank truncation. In this work, we consider a
more direct approach that approximates X on manifolds of fixed-rank matrices through Riemannian
CG. One particular challenge is the incorporation of effective preconditioners into such a first-order
Riemannian optimization method. We propose several novel preconditioning strategies, including a
change of metric in the ambient space, preconditioning the Riemannian gradient, and a variant of
ADI on the tangent space. Combined with a strategy for adapting the rank of the approximation,
the resulting method is demonstrated to be competitive for a number of examples representative for
typical applications.
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1. Introduction. This paper is concerned with the numerical solution of mul-
titerm matrix equations of the form

A1XB
\top 
1 +A2XB

\top 
2 + \cdot \cdot \cdot +A\ell XB

\top 
\ell = F,(1.1)

where Ai \in \BbbR m\times m, Bi \in \BbbR n\times n are known coefficient matrices, and F \in \BbbR m\times n is a
known right-hand side. This equation is equivalent to the linear system

(B1 \otimes A1 +B2 \otimes A2 + \cdot \cdot \cdot +B\ell \otimes A\ell )vec(X) = vec(F ),(1.2)

where vec : \BbbR m\times n \rightarrow \BbbR mn stacks the columns of a matrix into a long vector and \otimes 
denotes the usual Kronecker product. Such matrix equations appear in the context
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A1092 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

of discretized partial differential equations (PDEs) on tensorized domains, parametric
and stochastic PDEs, and bilinear and stochastic control; see [7, 8, 28, 37, 39, 58] and
the references therein.

For \ell = 2, the matrix equation (1.1) becomes a (generalized) Sylvester equation
and many specialized solvers have been developed for this case; see [47] for an over-
view. This includes the Bartels--Stewart method [5, 20], which is suitable for dense
coefficients and requires only \scrO (m3 + n3) operations. For \ell > 2, the development
of such solvers is significantly more challenging. For example, there is no meaning-
ful extension of the Bartels--Stewart method, unless rather strong conditions are met
[17]. Hence, under no additional assumptions on the data, to this date the only viable
approach for solving (1.1) is to apply a standard linear systems solver to (1.2), which
requires \scrO (m3 \cdot n3) operations.

To address the case \ell > 2 efficiently, additional assumptions on the data need
to be imposed. In particular, in the applications mentioned above it is frequently
the case that the right-hand-side F has low-rank. Although there is only limited
theoretical insight on this matter [7, 22, 29], this often implies that X can be well
approximated by a low-rank matrix. By directly aiming at an approximate low-rank
solution to (1.1), without computing the exact solution first, one hopes to obtain an
efficient and reasonably accurate solver. One possible approach is to apply a standard
Krylov subspace method (like CG, GMRES, or BiCGSTAB) to the linear system (1.2),
rephrase the method in terms of a matrix iteration, and apply low-rank truncation to
the iterates; see [4, 7, 28] for examples. Based on (block) matrix-vector products, these
methods directly benefit from sparse or low-rank coefficient matrices, allowing one to
address very-large-scale equations for which the full matrixX could not even be stored
in memory. Their nonstationary nature complicates the analysis of such truncated
Krylov subspace methods; see [38, 48] for recent progress. All methods benefit from
the availability of a preconditioner for which the inverse can be cheaply applied to
a low-rank matrix. In particular, this is the case for preconditioners of the form
D\otimes E; applying its inverse D - 1 \otimes E - 1 preserves the rank. Such Kronecker product
preconditioners are often constructed by averaging the terms in (1.2) or solving an
approximation problem; see, e.g., [50]. A more elaborate choice of preconditioner
takes the form D \otimes A + B \otimes E, which can be constructed by, e.g., choosing the
first two terms in (1.2). Applying its inverse corresponds to solving a generalized
Sylvester equation, which is usually executed inexactly, for example, by a few steps
of the alternating direction implicit (ADI) iteration; see, e.g., [7]. For a sufficiently
good preconditioner, one can also combine a fixed point iteration (instead of a Krylov
subspace method) with low-rank truncation to arrive at a competitive method; see
[18, 45] for examples. With stronger assumptions on the data (such as low-rank
commutators), more effective solution strategies can be developed; see [7, 22, 42] for
examples.

In the following, we restrict ourselves to the symmetric positive definite (SPD)
case, that is, the system matrix in (1.2) is SPD or, equivalently, the linear operator

\scrA :\BbbR m\times n\rightarrow \BbbR m\times n, \scrA X =A1XB
\top 
1 +A2XB

\top 
2 + \cdot \cdot \cdot +A\ell XB

\top 
\ell (1.3)

is SPD. In this case, it is well known that (1.1) is equivalent to minimizing 1
2 \langle \scrA X,X\rangle  - 

\langle X,F \rangle , where \langle \cdot , \cdot \rangle denotes the standard matrix inner product. One then obtains a
low-rank approximation to X by restricting the minimization to

\scrM r =
\bigl\{ 
X \in \BbbR m\times n : rank(X) = r

\bigr\} 
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1093

for some fixed choice of r \ll m,n. Noting that \scrM r is an embedded submanifold of
\BbbR m\times n, this leads to the Riemannian optimization [13] problem

min
X\in \scrM r

f(X) :=
1

2
\langle \scrA X,X\rangle  - \langle X,F \rangle .(1.4)

For Lyapunov equations (\ell = 2), Vandereycken and Vandewalle [55] have developed
a Riemannian trust-region (RTR) approach for addressing (1.4). They also have
constructed a highly efficient preconditioner for iteratively solving the second-order
model in every step of RTR. For \ell > 2, alternating optimization and greedy rank-one
strategies have been discussed in [16, 26], which allow the incorporation of precondi-
tioners indirectly through a preconditioned residual. In [49], combinations of multi-
grid/multilevel methods with Riemannian optimizations are proposed. The direct
incorporation of preconditioners into first-order Riemannian optimization methods
on low-rank tensor manifolds has been discussed for higher-dimensional generaliza-
tion of the Lyapunov case in [27].

The goal of this work is to develop a suitably preconditioned first-order Rie-
mannian optimization method for solving SPD multiterm matrix equations (1.1). We
address the optimization problem (1.4) using the Riemannian nonlinear conjugate
gradient (R-NLCG) method [44]. This approach inherently prevents the rank growth
often observed in truncated CG methods [26, 28], although it complicates the efficient
incorporation of preconditioners. We interpret preconditioning as a modification of
the Riemannian metric on \scrM r, achievable through two strategies: (1) altering the
inner product of the embedding space, or (2) implicitly, by preconditioning the Rie-
mannian gradient. We show feasibility of both alternatives for simpler preconditioners
of the form D\otimes E. Additionally, the combined use of these two preconditioning strate-
gies allows us to extend the Lyapunov-like preconditioners developed in [55, 27] to
generalized Sylvester preconditioners of the form D \otimes A+B \otimes E. For the latter, we
also introduce an approximate preconditioner based on a variant of the ADI method
applied on the tangent space. Finally, we develop a rank-adaptive algorithm [19, 51]
by alternating between fixed-rank Riemannian optimization and rank updates.

The rest of this paper is organized as follows. In section 2, we briefly review the
structure of the manifold of fixed-rank matrices and the (preconditioned) R-NLCG
method. Section 3 is dedicated to discussing the efficient application of Riemannian
preconditioners for SPD linear matrix equations. The rank-adaptive algorithm is
introduced in section 4. Finally, section 5 presents numerical experiments comparing
the performance of the proposed algorithms against existing methods.

2. Brief overview of low-rank Riemannian optimization. In this section,
we give a brief tour of the tools needed for Riemannian optimization on\scrM r; see, e.g.,
[13] for more details. These tools depend on the choice of inner product on \BbbR m\times n. We
provide the well-known explicit expressions for the case of the standard inner product
\langle \cdot , \cdot \rangle in the following and extend them to a more general setting in subsection 3.1.

By the singular value decomposition (SVD), any matrix X \in \scrM r can be written
as X =U\Sigma V \top , where U \in \BbbR m\times r, V \in \BbbR n\times r have orthonormal columns and \Sigma \in \BbbR r\times r

is diagonal with positive diagonal entries. The tangent space at X takes the form

TX\scrM r =
\Bigl\{ 
UMV \top +UpV

\top +UV \top p :(2.1)

M \in \BbbR r\times r,Up \in \BbbR m\times r, Vp \in \BbbR n\times r,U\top Up = 0, V \top Vp = 0
\Bigr\} 
.

This allows one to store X efficiently in terms of its factors (U,\Sigma , V ) as well as a
tangent vector \xi \in TX\scrM r in terms of the coefficients (M,Up, Vp).
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A1094 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

2.1. Embedded geometry of fixed-rank matrices.
Tangent space projection. Given an arbitrary matrix Z \in \BbbR m\times n, the tangent space

projection ProjX maps Z orthogonally, with respect to the choice of inner product on
\BbbR m\times n, to TX\scrM r.

In the standard inner product, an explicit expression for ProjX(Z) is given by

ProjX(Z) =Z  - P\bot UZP
\bot 
V =UMV \top +UpV

\top +UV \top p ,(2.2)

with M =U\top ZV, Up =ZV  - UM, Vp =Z\top U  - VM\top ,

where P\bot U = I  - UU\top and P\bot V = I  - V V \top .
Transporter. To map (transport) an element from one tangent space to another,

we use orthogonal projection:

TY\leftarrow X = ProjY | TX\scrM r
: TX\scrM r\rightarrow TY\scrM r \forall X,Y \in \scrM r.

Based on (2.2), an efficient implementation, using \scrO ((m+n)r2) flops, is described in
[54, Algorithm 6].

Retraction induced by the standard inner product is the Frobenius norm. To map
an element X + \xi for \xi \in TX\scrM r back to the manifold, we make use of the metric
projection retraction

RX(\xi ) = argmin
Y \in \scrM r

\| X + \xi  - Y \| ,(2.3)

where \| \cdot \| denotes the norm induced by the inner product on \BbbR m\times n.
The norm induced by the standard inner product is the Frobenius norm \| \cdot \| F,

which allows one to compute (2.3) by performing a truncated SVD of X + \xi . Using
that X + \xi has rank at most 2r [13, section 7.5], this computation can be carried out
in \scrO ((m+ n)r2) operations.

Riemannian gradient and Hessian. Because\scrM r is embedded in \BbbR m\times n, the Rie-
mannian gradient of a smooth map f : \scrM r \rightarrow \BbbR is obtained from projecting the
Euclidean gradient of any smooth extension f : gradf(X) = ProjX(\nabla f(X))\in TX\scrM r.
Similarly, the Riemannian Hessian Hessf(X)[\xi ] : TX\scrM r\rightarrow TX\scrM r takes the form

Hessf(X)[\xi ] = ProjX
\bigl( 
Hessf(X)[\xi ]

\bigr) 
+\scrD \xi 

\bigl( 
Proj\bot X(\nabla f(X))

\bigr) 
,(2.4)

where Hessf denotes the Euclidean Hessian of f and \scrD \xi is the differential of X \mapsto \rightarrow 
ProjX at X along \xi [13, Corollary 5.47]. The second term \scrD \xi (Proj

\bot 
X(\nabla f(X))) is

called the curvature term, as it can be related to the curvature of the manifold [2,
section 6]. The presence of this term may render the Riemannian Hessian indefinite
even when the Euclidean Hessian is positive definite.

2.2. Riemannian nonlinear conjugate gradient (R-NLCG). Given the in-
gredients defined above, a general line-search Riemannian optimization method [13]
takes the form

Xk+1 =RXk
(\alpha k\xi k)

for a search direction \xi k \in TXk
\scrM r and a suitable step size \alpha k > 0. We specifi-

cally consider the R-NLCG, which extends the (Euclidean) nonlinear conjugate gra-
dient method to Riemannian manifolds. R-NLCG determines the search direction
by combining the negative Riemannian gradient with the previous search direction
\xi k - 1 \in TXk - 1

\scrM :

\xi k = - gradf(Xk) + \beta kTXk\leftarrow Xk - 1
(\xi k - 1)(2.5)
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1095

for some \beta k \in \BbbR . A reasonable search direction should satisfy \langle gradf(Xk), \xi k\rangle Xk
< 0;

we simply set \xi k =  - gradf(Xk) if this condition is violated by (2.5). For choosing
the step size \alpha k, we use Armijo's backtracking procedure adapted to Riemannian
optimization, as described in [1, Definition 4.2.2].

A comprehensive survey of methods for choosing \beta k in (2.5) is provided in [44]. For
example, \beta k = 0 yields the Riemannian gradient descent (R-GD) method. Based on
preliminary numerical experiments, we have selected the modified Hestenes--Stiefel
rule [44, section 6.2.2]; comparable performance was observed when employing the
modified Polak--Ribiere rule [44, section 6.2.1], or the modified Liu--Storey rule [44,
section 6.2.3]. Denoting gk := gradf(Xk), one chooses \beta k = max(0,min(\beta HS

k , \beta DY
k ))

with

\beta HS
k =

\| gk\| 2  - \langle gk,TXk\leftarrow Xk - 1
(gk - 1)\rangle 

\langle gk,TXk\leftarrow Xk - 1
(\xi k - 1)\rangle  - \langle gk - 1, \xi k - 1\rangle 

,

\beta DY
k =

\| gk\| 2

\langle gk,TXk\leftarrow Xk - 1
(\xi k - 1)\rangle  - \langle gk - 1, \xi k - 1\rangle 

when using the standard inner product.

2.3. Preconditioned Riemannian optimization. First-order line-search
methods exhibit slow convergence if the (Riemannian) Hessian at the solution is ill-
conditioned. As observed in [27, 55], an ill-conditioned operator \scrA in (1.3) can be
expected to lead to such a situation. In these cases, it is crucial to employ a precon-
ditioner. In principle, for the purpose of Riemannian optimization it suffices to define
the preconditioner as an SPD operator \scrP X on the tangent space TX\scrM . However, in
the context of matrix equations, it is most natural to search for an SPD preconditioner
\scrP :\BbbR m\times n\rightarrow \BbbR m\times n on the ambient space and let

\scrP X =ProjX \circ \scrP \circ ProjX .(2.6)

It can be easily verified that \langle \xi , \eta \rangle \scrP X
= \langle \xi , \eta \rangle \scrP for all \xi , \eta \in TX\scrM r, that is, \scrP and

\scrP X induce the same metric on TX\scrM r.
We will consider two different ways of incorporating preconditioners into R-

NLCG:
(i) Given a (simple) preconditioner \scrB on the ambient space, one possibility is to

replace the standard inner product on \BbbR m\times n by the one induced by \scrB ; see [23, 35, 36]
for examples in the context of low-rank optimization. This effects the following change
of Riemannian gradient:

grad\scrB f(X) := Proj\scrB X\nabla \scrB f(X) = Proj\scrB X\scrB  - 1\nabla f(X),(2.7)

where Proj\scrB X denotes the \scrB -orthogonal projection onto TX . While conceptually sim-
ple, this approach may bear practical difficulties. Unless \scrB has Kronecker product
structure (see subsection 3.1 below), there are no simple formulas for the tools from
subsection 2.1. In particular, it is difficult to carry out the \scrB -orthogonal projection
onto the tangent space efficiently for general \scrB .

(ii) Another way to use a preconditioner \scrP is to replace the Riemannian gradient
of f with respect to the standard inner product by the one with respect to \langle \cdot , \cdot \rangle \scrP X

:

\scrP  - 1X gradf(X).(2.8)

Such an approach can be viewed as a quasi-Newton method when deriving \scrP X from
an approximation of the Riemannian Hessian; see [14, 27, 55] for examples.
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A1096 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

As we will see below, it can sometimes be beneficial to combine both approaches:
Use a simple but less effective Kronecker product preconditioner \scrB to change the
metric of the ambient space and, additionally, use a more effective (and more compli-
cated) preconditioner \scrP X to modify the Riemannian gradient. The search direction
for the correspondingly preconditioned R-NLCG then takes the form

\xi k = - \scrP  - 1Xk
grad\scrB f(Xk) + \beta kTXk\leftarrow Xk - 1

(\xi k - 1),

where \beta k =max(0,min(\beta HS
k , \beta DY

k )) with

\beta HS
k =

\bigl\langle 
gk,\scrP  - 1Xk

gk
\bigr\rangle 
\scrB  - 

\Bigl\langle 
gk,TXk\leftarrow Xk - 1

(\scrP  - 1Xk - 1
gk - 1)

\Bigr\rangle 
\scrB \bigl\langle 

gk,TXk\leftarrow Xk - 1
(\xi k - 1)

\bigr\rangle 
\scrB  - \langle gk - 1, \xi k - 1\rangle \scrB 

,(2.9)

\beta DY
k =

\bigl\langle 
gk,\scrP  - 1Xk

gk
\bigr\rangle 
\scrB \bigl\langle 

gk,TXk\leftarrow Xk - 1
(\xi k - 1)

\bigr\rangle 
\scrB  - \langle gk - 1, \xi k - 1\rangle \scrB 

,

and gk := grad\scrB f(Xk). Note that one needs to apply \scrP  - 1Xk
to gradf(Xk) only once

per iteration.
Observe that if X \star is a nondegenerate minimizer, then the Riemannian Hessian

at X \star with respect to the metric \langle \cdot , \cdot \rangle \scrP X
is given by Hess\scrP X

f(X \star ) = Hess\scrP X
(f \circ 

RX \star 
)(0) =\scrP  - 1X \star 

Hessf(X \star ) [13, Proposition 5.45] when \scrB is identity. Therefore, when

\scrP X \star 
captures dominant parts of Hessf(X \star ) then one can expect that \scrP  - 1X \star 

Hessf(X \star )
is well-conditioned, leading to rapid local convergence of R-NLCG.

3. Riemannian preconditioning for multiterm matrix equations. This
section discusses different choices of (Riemannian) preconditioners for SPD multiterm
matrix equations. Using (2.4), it follows that the Riemannian Hessian of f(X) =
1
2 \langle \scrA X,X\rangle  - \langle X,F \rangle is given by

Hessf(X)[\xi ] = ProjX(\scrA \xi ) +\scrD \xi 

\bigl( 
Proj\bot X(\scrA X  - F )

\bigr) 
.

Ignoring the second term, which becomes negligible close to a good approximation of
the solution, it appears reasonable to build the preconditioner \scrP (defining \scrP X as in
(2.6)) from identifying 1--2 dominant terms or combining terms of \scrA . Depending on
the application (see the experiments in section 5), this may take the form EXD, AX+
XB, or AXD+EXB. In the following sections, we will discuss the implementation of
\scrP in increasing order of difficulty. Finally, in subsection 3.5, we will develop a variant
of ADI that leads to a cheaper (but still effective) alternative to the exact application
of preconditioners of the form AX +XB or AXD+EXB.

3.1. Preconditioned inner product with \bfscrB \bfitX =\bfitE \bfitX \bfitD . We first consider
preconditioning by replacing the standard inner product with the one induced by
\scrB X = EXD for SPD matrices D,E. Letting D = C\top DCD and E = C\top ECE denote
Cholesky decompositions, the Cholesky decomposition of the matrix representation
of \scrB is obtained:

D\otimes E = (CD \otimes CE)
\top (CD \otimes CE).(3.1)

Although the change of inner product does not affect which elements are contained in
the manifold\scrM or tangent spaces, it is computationally beneficial to choose different
representations for these elements. The following weighted SVD [52] is an important
tool for this purpose; we include its proof for the sake of illustration.
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1097

Proposition 3.1. Let E \in \BbbR m\times m, D \in \BbbR n\times n be SPD. Given Z \in \BbbR m\times n there
exists a decomposition Z = \~U \~\Sigma \~V \top called weighted SVD such that \~U \in \BbbR m\times m is E-
orthogonal ( \~U\top E \~U = I), \~V \in \BbbR n\times n is D-orthogonal ( \~V \top D \~V = I), and \~\Sigma \in \BbbR m\times n

is diagonal with the diagonal entries \~\sigma 1 \geq \~\sigma 2 \geq \cdot \cdot \cdot \geq \~\sigma min\{ m,n\} \geq 0 called weighted
singular values.

Proof. Considering the Cholesky decompositions introduced above, let \~Z =U \~\Sigma V \top 

be the SVD of \~Z :=CEZC
\top 
D . Then Z = \~U \~\Sigma \~V \top , where \~U =C - 1E U and \~V =C - 1D V are

E-orthogonal and D-orthogonal, respectively.

For X \in \scrM r, only the first r weighted singular values are positive and we can
instead consider a thin weighted SVD of the form

X = \~U \~\Sigma \~V \top , \~U \in \BbbR m\times r, \~V \in \BbbR n\times r, \~U\top E \~U = \~V \top D \~V = Ir, \~\Sigma \in \BbbR r\times r.(3.2)

In the following, we represent X \in \scrM r by the triple ( \~U, \~\Sigma , \~V ).
Using QR decompositions \~U = URU , \~V = V RV with invertible RU ,RV \in \BbbR r\times r,

we can insert the substitutions \~M =R - 1U MR - \top V , \~Up =E - 1Up, \~Vp =D - 1Vp into (2.1)
to derive the modified tangent space representation

TX\scrM r =
\bigl\{ 
\~U \~M \~V \top + \~Up

\~V \top + \~U \~V \top p :(3.3)

\~M \in \BbbR r\times r, \~Up \in \BbbR m\times r, \~Vp \in \BbbR n\times r, \~U\top E \~Up = 0, \~V \top D \~Vp = 0
\bigr\} 
.

In the following, a tangent vector \xi \in TX\scrM r is represented as \xi 
.
= ( \~M, \~Up, \~Vp).

To determine the coefficients (2.9) of R-NLCG, one needs to compute the (pre-
conditioned) inner product of two tangent space elements \xi 

.
= ( \~M, \~Up, \~Vp) and \xi \prime 

.
=

( \~M \prime , \~U \prime p, \~V
\prime 
p):

\langle \xi , \xi \prime \rangle \scrB =
\Bigl\langle 
E
\bigl( 
\~U \~M \~V \top + \~Up

\~V \top + \~U \~V \top p
\bigr) 
D, \~U \~M \prime \~V \top + \~U \prime p

\~V \top + \~U \~V \prime \top p

\Bigr\rangle 
(3.4)

= \langle \~M, \~M \prime \rangle + \langle E \~Up, \~U
\prime 
p\rangle + \langle D \~Vp, \~V

\prime 
p\rangle .

We now derive extensions of the explicit formulas discussed in subsection 2.1 for
the inner product induced by \scrB .

Tangent space projection. Given X \in \scrM r in the representation ( \~U, \~\Sigma , \~V ) ex-
plained above, we define for arbitrary Z \in \BbbR m\times n---in analogy to (2.2)---the element

\xi =Z  - (I  - \~U \~U\top E)Z(I  - D \~V \~V \top ) = \~U \~M \~V \top + \~Up
\~V \top + \~U \~V \top p(3.5)

with \~M = \~U\top EZD \~V , \~Up =ZD \~V  - \~U \~M, \~Vp =Z\top E \~U  - \~V \~M\top .

The first expression implies that Z  - \xi is \scrB -orthogonal to the tangent space TX\scrM r

because its range is E-orthogonal to \~U and its co-range is D-orthogonal to \~V . The
second expression matches (3.3). Noting that \~UTE \~Up = \~UTEZD \~V  - \~UTE \~U \~M = \~M - 
\~M = 0 and, analogously, \~V TD \~Vp = 0, this implies \xi \in TX\scrM r with the representation
\xi 
.
= ( \~M, \~Up, \~Vp).

In summary, we have verified that (3.5) gives \xi =Proj\scrB X(Z).
Retraction. For defining a suitable retraction, we use the following straightfor-

ward extension of the Eckart--Young theorem.

Proposition 3.2. For Z \in \BbbR m\times n let Z = \~U \~\Sigma \~V \top be the weighted SVD from
Proposition 3.1. For r\leq min\{ m,n\} , let \~Ur, \~Vr denote the first r columns of \~U, \~V and
let \Sigma r = diag(\~\sigma 1, . . . , \~\sigma r). Then

P\scrB \scrM r
(Z) := \~Ur

\~\Sigma r
\~V \top r(3.6)

solves the minimization problem min\{ \| Z  - Y \| \scrB : Y \in \scrM r\} .
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A1098 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Proof. Using the Cholesky decomposition (3.1), it holds that \| Z - Y \| \scrB = \| \~Z  - \~Y \| F
with \~Z =CEZC

\top 
D and \~Y =CEZC

\top 
D . Because of the equivalence between the weighted

SVD of Z and the usual SVD of \~Z (see the proof of Proposition 3.1), the result follows
from the Eckart--Young theorem.

The metric projection retraction with respect to the inner product induced by \scrB 
is given by

R\scrP X(\xi ) := P\scrB \scrM r
(X + \xi ), X \in \scrM r, \xi \in TX\scrM r.(3.7)

Given representations X = \~U \~\Sigma \~V \top and \xi 
.
= ( \~M, \~Up, \~Vp), one computes X + \xi =

[ \~U \~Up ][
\~\Sigma + \~M Ir
Ir 0

][ \~V \~Vp ]
\top 
, confirming that this matrix has rank at most 2r. This can be

exploited to compute (3.7) efficiently. Assuming 2r \leq min(m,n), one first computes
weighted QR decompositions\bigl[ 

\~U \~Up

\bigr] 
=QURU ,

\bigl[ 
\~V \~Vp

\bigr] 
=QVRV , Q\top UDQU =Q\top V EQV = I2r.

For simplicity, we compute these two decompositions from the standard QR decompo-
sitions of CE

\bigl[ 
\~U \~Up

\bigr] 
and CD

\bigl[ 
\~V \~Vp

\bigr] 
, respectively. Alternatively, a weighted Gram--

Schmidt procedure [31] or a weighted Householder-QR decomposition [46] can be used,
which directly use D,E and do not require the availability of the Cholesky factors
CD,CE . Using the (standard) SVD of the 2r \times 2r matrix RU [

\~\Sigma +t \~M tIr
tIr 0r

]RV = \=U \=\Sigma \=V
gives the weighted (thin) SVD

X + \xi =
\bigl( 
QU

\=U
\bigr) 
\=\Sigma 
\bigl( 
QV

\=V
\bigr) \top 
.

Finally, truncation in the sense of Proposition 3.2 yields (3.7).
Note that when computing R\scrP X(t \xi ) for multiple values of t (e.g., in a line-search

procedure) the weighted QR decompositions need to be computed only once.
Transporter. The transporter is defined in terms of \scrB -orthogonal tangent space

projections as explained in subsection 2.1.
Riemannian gradient. Given the gradient Z = grad \=f(X), the Riemannian gradi-

ent is given by grad\scrB f(X) = Proj\scrB X
\bigl( 
\scrB  - 1Z

\bigr) 
; see (2.7). Using \scrB  - 1Z = E - 1ZD - 1

and the expression (3.5) for the tangent space projection Proj\scrB X , we obtain that
grad\scrB f(X)\in TX\scrM r is represented by the triplet

\~M = \~U\top Z \~V , \~Up =E - 1(Z \~V  - E \~U \~M), \~Vp =D - 1
\bigl( 
Z\top \~U  - D \~V \~M\top 

\bigr) 
.(3.8)

Observe that the matrices E \~Up and D \~Vp, needed for determining inner products (3.4),
are available for free when computing \~Up and \~Vp.

3.2. Preconditioned gradient with \bfscrP \bfitX =\bfitE \bfitX \bfitD . Instead of changing the
inner product, one can use the preconditioned gradient (2.8) to improve the con-
vergence of R-NLCG. This requires solving a linear operator equation of the form
\scrP X(\xi ) = \eta , with \eta = gradf(X) \in TX\scrM r, in every iteration. For \scrP X = EXD, this
amounts to solving

ProjX(E\xi D) = \eta , \xi \in TX\scrM r.(3.9)

Considering the parametrizations for the known X = U\Sigma V \top and \eta 
.
= (M\eta ,U\eta , V\eta ),

and for the unknown \xi 
.
= (M\xi ,U\xi , V\xi ), (3.9) is equivalent to
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1099

(EU)M\xi (V
\top DV ) +EU\xi (V

\top DV ) + (EU)V \top \xi (DV ) =U\eta +UM\eta ,(3.10a)

(DV )M\top \xi (U\top EU) +DV\xi (U
\top EU) + (DV )U\top \xi (EU) = V\eta + VM\top \eta ,(3.10b)

(U\top E)U\xi (V
\top DV ) + (U\top EU)V \top \xi (V \top D)\top + (U\top EU)M\xi (V

\top DV ) =M\eta .(3.10c)

From (3.10a) and (3.10b) one obtains

U
\bigl[ 
M\xi (V

\top DV ) + V \top \xi DV
\bigr] 
+U\xi (V

\top DV ) =E - 1(U\eta +UM\eta ),

V
\bigl[ 
M\top \xi (U\top EU) +U\top \xi EU

\bigr] 
+ V\xi (U

\top EU) =D - 1(V\eta + VM\top \eta ).

Exploiting that U\xi , V\xi are orthogonal to U,V , it follows that these matrices are com-
puted as

U\xi =P\bot UE
 - 1(U\eta +UM\eta )(V

\top DV ) - 1, V\xi =P\bot VD
 - 1(V\eta + VM\top \eta )(U\top EU) - 1.

Plugging these solutions into (3.10c) yields

M\xi = (U\top EU) - 1
\bigl[ 
M\eta  - (U\top E)U\xi (V

\top DV ) - (U\top EU)V \top \xi (V \top D)\top 
\bigr] 
(V \top DV ) - 1.

Implementation aspects and complexity. The evaluation of (M\xi ,U\xi , V\xi ) using the
expressions derived above requires the solution of r linear systems with the matrices
E and D. Assuming E and D to be sparse, this benefits from precomputing sparse
Cholesky factorizations of E and D. Additionally, m linear systems with U\top EU and
n linear systems with V \top DV need to be solved. Using Cholesky factorizations of
these two dense matrices, this requires \scrO (r2(m+ n)) operations, which matches the
asymptotic complexity of carrying out a retraction or a vector transport.

Remark 3.3. Preconditioning the inner product as described in subsection 3.1
or preconditioning the gradient as described above lead to the same preconditioned
Riemannian gradient, but not to the same R-NLCG iterations due to the different
metrics used in the retraction.

3.3. Preconditioned gradient with \bfscrP \bfitX =\bfitA \bfitX +\bfitX \bfitB . We now consider
preconditioned gradients with the Sylvester operator \scrP X =AX +XB for SPD A,B.
This requires applying \scrP  - 1X to a tangent vector \eta \in TX\scrM , which amounts to solving
the projected Sylvester equation

ProjX(A\xi + \xi B) = \eta , \xi \in TX\scrM r.(3.11)

This equation has been addressed in [55, section 7.2] for Lyapunov operators (B =A)
and the manifold of SPD fixed-rank matrices. A more general scenario involving
tensors of fixed multilinear rank was considered in [27, section 4.2]. Paralleling the
developments in [55], we outline the solution of (3.11).

Considering again the parametrizations \eta 
.
= (M\eta ,U\eta , V\eta ), \xi 

.
= (M\xi ,U\xi , V\xi ), the

linear operator equation (3.11) is equivalent to solving the system of matrix equations

(P\bot UA)U\xi +U\xi (V
\top BV ) =U\eta  - (P\bot UAU)M\xi ,(3.12)

(P\bot VB)V\xi + V\xi (U
\top AU) = V\eta  - (P\bot VBV )M\top \xi ,

(U\top AU)M\xi +M\xi (V
\top BV ) =M\eta  - (U\top A)U\xi  - ((V \top B)V\xi )

\top .

Each individual matrix equation can be decoupled by performing the spectral decom-
positions

U\top AU =QA\Lambda AQ
\top 
A, V \top BV =QB\Lambda BQ

\top 
B(3.13)

with \Lambda A =diag(\lambda 
(A)
1 , . . . , \lambda 

(A)
r ), \Lambda B =diag(\lambda 

(B)
1 , . . . , \lambda 

(B)
r ).
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A1100 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

After the change of coordinates \=U\alpha = U\alpha QB , \=V\alpha = V\alpha QA, \=M\alpha = Q\top AM\alpha QB for
\alpha \in \{ \xi , \eta \} and \=U =UQA, \=V = V QB , the system (3.12) becomes equivalent to

(P\bot \=UA)
\=U\xi + \=U\xi \Lambda B = \=U\eta  - (A \=U  - \=U\Lambda A) \=M\xi ,(3.14a)

(P\bot \=VB) \=V\xi + \=V\xi \Lambda A = \=V\eta  - (B \=V  - \=V \Lambda B) \=M\top \xi ,(3.14b)

\Lambda A
\=M\xi + \=M\xi \Lambda B = \=M\eta  - ( \=U\top A) \=U\xi  - (( \=V \top B) \=V\xi )

\top ,(3.14c)

together with the orthogonality constraints \=U\top \=U\xi = \=V \top \=V\xi = 0. Evaluating the ith
column of (3.14a) yields

(P\bot \=UA)
\=U\xi (:, i) + \lambda 

(B)
i

\=U\xi (:, i) = \=U\eta (:, i) - (A \=U  - \=U\Lambda A) \=M\xi (:, i).

Multiplying both sides of this equation with the matrix

L(i)
u :=

\bigl( 
Im + (A+ \lambda 

(B)
i Im) - 1 \=U

\bigl( 
S(i)
u

\bigr)  - 1 \=U\top \bigr) (A+ \lambda 
(B)
i Im) - 1,

where S
(i)
u :=  - \=U\top (A + \lambda 

(B)
i Im) - 1 \=U \in \BbbR r\times r, and exploiting \=U\top \=U\xi (:, i) = 0, one

obtains that

\=U\xi (:, i) =L(i)
u

\=U\eta (:, i) - L(i)
u (A \=U  - \=U\Lambda A) \=M\xi (:, i).(3.15)

Similarly, the ith column of the relation (3.14b) gives

\=V\xi (:, i) =L(i)
v

\=V\eta (:, i) - L(i)
v (B \=V  - \=V \Lambda B) \=M\xi (i, :)

\top (3.16)

with an analogous expression for L
(i)
v . Note that the formulas (3.15) and (3.16) still

depend on the unknown ith column and row of \=M\xi . Substituting these formulas into
(3.14c) results in the equation\left[    

M\xi (1, :)(\Lambda 
(A)
1 )\top 

...

M\xi (r, :)(\Lambda 
(A)
r )\top 

\right]    +
\bigl[ 
\Lambda 
(B)
1 M\xi (:,1) \cdot \cdot \cdot \Lambda 

(B)
r M\xi (:, r)

\bigr] 
=R(3.17)

with the coefficient matrices

\Lambda 
(A)
i = \lambda 

(A)
i Ir  - ( \=V \top B)L(i)

v (B \=V  - \=V \Lambda B), \Lambda 
(B)
i = \lambda 

(B)
i Ir  - ( \=U\top A)L(i)

u (A \=U  - \=U\Lambda A)

and the right-hand side

R= \=M\eta  - ( \=U\top A)Wu  - (( \=V \top B)Wv)
\top ,

where the ith columns of Wu and Wv are given by L
(i)
u

\=U\eta (:, i) and L
(i)
v

\=V\eta (:, i), respec-
tively.

Clearly, the system (3.17) is linear in M\xi and can thus be reformulated as an
r2 \times r2 linear system in vec(M\xi ). Solving this linear system determines M\xi , which
can be inserted into (3.15) and (3.16) to determine \=U\xi and \=V\xi , respectively. Finally,
reverting the change of coordinates yields U\xi = \=UQ\top B , V\xi =

\=V Q\top A, andM\xi =QA
\=M\xi Q

\top 
B .

Implementation aspects and complexity. The cost of computing \xi 
.
= (M\xi ,U\xi , V\xi )

using the procedure described above is dominated by setting up and solving the lin-
ear system (3.17) as well as the subsequent computation of \=U\xi and \=V\xi according
to (3.15) and (3.16). Let cA(m,r) denote the cost of solving r linear systems with
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1101

A + \lambda 
(B)
i Im by, e.g., precomputing a sparse Cholesky factorization of the matrix once

and performing backward/forward substitution with the triangular factor r times.

Then a total of \scrO (cA(m,r)r) flops are needed in order to apply (A+ \lambda 
(B)
i Im) - 1 to

\=U , (A \=U  - \=UK) and \=U\eta (:, i) for all i. Additionally, the application of L
(i)
u requires

the solution of \scrO (r) linear systems with the dense r \times r matrix S
(i)
u , which requires

another \scrO (r4) flops in total. The other operations, like applying A to \=U , can be

expected to remain negligible in cost. Analogously, for applying (B + \lambda 
(A)
i Im) - 1 and

L
(i)
v , a total of \scrO (cB(n, r)r+r4) flops are needed. Assuming linear complexity for the

sparse direct solvers, cA(m,r) =\scrO (mr) and cB(n, r) =\scrO (nr), this amounts to a cost
of \scrO (mr2 + nr2 + r4) operations, which is on the level of computing a retraction or
a transporter as long as r =\scrO (

\surd 
m+ n). However, solving the r2 \times r2 linear system

equivalent to (3.17) with a direct dense method takes another \scrO (r6) flops, which is
feasible only for relatively small ranks. For larger ranks, an iterative method might
be preferable, as it requires \scrO (r3) flops per iteration to apply the operator on the
left-hand side of (3.17).

3.4. Preconditioning with \bfscrP \bfitX =\bfitA \bfitX \bfitD +\bfitE \bfitX \bfitB . We now aim at utilizing
a preconditioner of the form \scrP X = AXD + EXB for SPD A,B,D,E. When at-
tempting to directly use this preconditioner to precondition the Riemannian gradient,
it turns out that the presence of the matrices D,E makes the involved linear system
ProjX(A\xi D+E\xi B) = \eta significantly more expensive to solve. In particular, the tech-
nique of subsection 3.3 to decouple equations for the columns of U\xi and V\xi cannot be
applied directly. To avoid this problem, we incorporate D,E by adjusting the inner
product, as in subsection 3.1, which will then allow us to resort to the Sylvester case
from subsection 3.3.

Specifically, we decompose \scrP as follows:

\scrP =\scrB \~\scrP where \scrB X =EXD, \~\scrP X =\scrB  - 1\scrP X =E - 1AX +XBD - 1.

Note that \~\scrP remains an SPD linear operator in the inner product induced by \scrB .
Together with the identity \langle X,Y \rangle \scrP = \langle X, \~\scrP Y \rangle \scrB , this suggests using \scrB for the inner
product and \~\scrP for preconditioning the Riemannian gradient. In other words, the Rie-
mannian optimization tools from subsection 3.1 are used, except that the Riemannian
gradient is replaced by

\~\scrP  - 1X grad\scrB f(X) = \~\scrP  - 1X Proj\scrB X\scrB  - 1\nabla f(X)

with \~\scrP X = Proj\scrB X \circ \~\scrP \circ Proj\scrB X . Setting \eta = Proj\scrB X\scrB  - 1\nabla f(X) \in TX\scrM r, this requires
determining \xi \in TX\scrM r such that the linear operator equation

Proj\scrB X(E - 1A\xi + \xi BD - 1) = \eta (3.18)

holds, which is structurally close to the projected Sylvester equation (3.11).
Paralleling the developments from the previous section, we now discuss a proce-

dure for solving (3.18) that avoids forming the matrices E - 1A and BD - 1 explicitly.
Using the parametrizations \eta 

.
= ( \~M\eta , \~U\eta , \~V\eta ) and \xi 

.
= ( \~M\xi , \~U\xi , \~V\xi ) from subsection 3.1,

(3.18) can be rearranged as

(Im  - E \~U \~U\top )A \~U\xi +E \~U\xi ( \~V
\top B \~V ) =E \~U\eta  - (A \~U  - E \~U( \~U\top A \~U)) \~M\xi ,(3.19)

(Im  - D \~V \~V \top )B \~V\xi +D \~V\xi ( \~U
\top A \~U) =D \~V\eta  - (B \~V  - D \~V ( \~V \top B \~V )) \~M\top \xi ,

( \~U\top A \~U) \~M\xi + \~M\xi ( \~V
\top B \~V ) = \~M\eta  - ( \~U\top A) \~U\xi  - (( \~V \top B) \~V\xi )

\top ,
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A1102 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

together with the orthogonality constraints \~U\top E \~U\xi = \~V \top D \~V\xi = 0r. At this point,
one can essentially follow the procedure discussed in subsection 3.3. Performing spec-
tral decompositions (3.13) of \~U\top A \~U , \~V \top B \~V and performing an analogous change of
variables decouples the columns of the first two equations in (3.19). In particular, the
ith column of the transformed first equation reads as

(Im  - E \~U \~U\top )A \=U\xi (:, i) + \lambda 
(B)
i E \=U\xi (:, i) =E \=U\eta (:, i) - (A \=U  - E \=U\Lambda A) \=M\xi (:, i).

Multiplying both sides of this equation with the matrix

L(i)
u :=

\bigl( 
Im + (A+ \lambda 

(B)
i E) - 1(E \=U)

\bigl( 
S(i)
u

\bigr)  - 1
(E \=U)\top 

\bigr) 
(A+ \lambda iE) - 1,

where S
(i)
u :=  - (E \=U)\top (A + \lambda 

(B)
i E) - 1(E \=U) \in \BbbR r\times r, and exploiting \=U\top E \=U\xi (:, i) = 0

again gives

\=U\xi (:, i) =L(i)
u

\=U\eta (:, i) - L(i)
u (A \=U  - \=U\Lambda A) \=M\xi (:, i).

Similarly, the expression (3.16) for \=V\xi (:, i) and the equation (3.17) for \=M\xi are extended.
Note that there is no need to explicitly compute E - 1A and D - 1B; instead, pencils
of the form A+ \lambda E and B + \lambda D are used.

Implementation aspects and complexity. The analysis of computational cost is
completely analogous to the one in subsection 3.3; one only needs to replace cA(m,r)
and cB(n, r) by the cost for solving r linear systems with the (sparse) SPD matrices

A+ \lambda 
(B)
i E and B + \lambda 

(A)
i D, respectively.

3.5. tangADI: ADI on the tangent space. If the preconditioner takes the
form \scrP X =AXD+EXB the application of \scrP  - 1 entails the solution of a generalized
Sylvester equation. ADI [57] is a popular strategy for iteratively solving such equa-
tions, which has been adapted to produce low-rank approximations in, e.g., [9, 32].
The goal of this section is to develop an ADI-like iteration on the tangent space to
approximate the inverse of \scrP X = ProjX \circ \scrP \circ ProjX , as a cheaper alternative to the
procedures described in subsections 3.3 and 3.4 for the exact inversion of \scrP X .

3.5.1. Classical ADI. Classical ADI [57] can be derived from the observation
that the Sylvester operator \scrP X =AX +XB is a sum of two commuting linear oper-
ators, X \mapsto \rightarrow AX and X \mapsto \rightarrow XB, and that applying (shifted) inverses of the individual
summands is much simpler than applying \scrP  - 1 as a whole. ADI extends to the solu-
tion of a generalized Sylvester equations AXD + EXB = F by (formally) rewriting
it as the standard Sylvester equation E - 1AX +XBD - 1 =E - 1FD - 1. The resulting
iteration can be rephrased such that explicit inverses of D,E are avoided. Given the
current iterate X(j - 1) \in \BbbR m\times n the next iterate X(j) of ADI is determined by solving
the matrix equation

(A - qjE)X(j)(B + pjD) = (pj  - qj)F + (A - pjE)X(j - 1)(B + qjD),(3.20)

which amounts to multiplying both sides of the equation with (A - qjE) - 1 and (B+
pjD) - 1. The scalars pj , qj are called shift parameters and their choice significantly
influences convergence. Although it is common to employ different shifts at each
iteration to attain fast convergence, it is worth noting that (3.20) can be viewed as a
fixed point iteration for constant shifts (pj , qj) \equiv (p, q). This fixed point iteration is
derived from the operator splitting

\scrP X =
1

p - q

\left(   (A - qE)X(B + pD)\underbrace{}  \underbrace{}  
\scrG (X)

 - (A - pE)X(B + qD)\underbrace{}  \underbrace{}  
\scrN (X)

\right)   (3.21)
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1103

and converges linearly provided that \rho 
\bigl( 
\scrG  - 1\scrN 

\bigr) 
< 1, where \rho (\cdot ) denotes the spectral

radius. Provided that the pencils A - \lambda E, B - \lambda D are diagonalizable, the convergence
rate is determined by their spectra \Lambda (A,E), \Lambda (B,D):

\rho 
\bigl( 
\scrG  - 1\scrN 

\bigr) 
= max

\lambda \in \Lambda (A,E)
\mu \in \Lambda (B,D)

\bigm| \bigm| \bigm| \bigm| (\lambda  - p)(\mu + q)

(\lambda  - q)(\mu + p)

\bigm| \bigm| \bigm| \bigm| .
3.5.2. Basic form of tangADI. In this section, we derive an ADI-like iteration

for solving the projected generalized Sylvester equation

\scrP X(\xi ) = ProjX(A\xi D+E\xi B) = \eta , \xi \in TX\scrM r,

for given \eta \in TX\scrM r and SPD matrices A,B,D,E. Considering the decomposition
\scrP X(\xi ) = ProjX(A\xi ) + ProjX(\xi B) for E = Im and D= In, the presence of the projec-
tion ProjX implies that the operators defining the two summands do not commute
and, in turn, the usual arguments for deriving ADI do not apply.

On the other hand, we can still extend the splitting (3.21),

\scrP X(\xi ) =
1

p - q

\left(   ProjX
\bigl( 
(A - qE)\xi (B + pD)

\bigr) \underbrace{}  \underbrace{}  
\scrG X(\xi )

 - ProjX
\bigl( 
(A - pE)\xi (B + qD)

\bigr) \underbrace{}  \underbrace{}  
\scrN X(\xi )

\right)   ,

resulting in the fixed point iteration \xi (j) = \scrG  - 1X

\bigl( 
\scrN X(\xi (j - 1))+(p - q)\eta 

\bigr) 
on the tangent

space TX\scrM r. The convergence of this iteration is determined by \rho 
\bigl( 
\scrG  - 1X \scrN X

\bigr) 
and

interlacing properties for eigenvalues of definite matrix pencils [30] imply

\rho 
\Bigl( 
\scrG  - 1X \scrN X

\Bigr) 
\leq \rho 

\bigl( 
\scrG  - 1\scrN 

\bigr) 
(3.22)

with \scrG ,\scrN defined as in (3.21). In other words, the convergence rate of this fixed point
iteration is not worse than the convergence rate of ADI (3.20) with constant shifts.

In practice, one observes that allowing for nonconstant shifts pj , qj benefits the
convergence of the fixed point iteration on the tangent space as well, leading to the
tangADI iteration:

ProjX
\bigl( 
(A - qjE)\xi (j)(B + pjD)

\bigr) 
(3.23)

= ProjX
\bigl( 
(A - pjE)\xi (j - 1)(B + qjD)

\bigr) 
+ (pj  - qj)\eta .

Due to the lack of commutativity mentioned above, the usual arguments [6] for
analyzing the convergence of ADI do not apply to (3.23) and therefore there is no
rigorous theoretical basis for choosing (nonconstant) shifts. Still, the inequality (3.22)
suggests that the shifts used for classical ADI are a good choice for tangADI as well.
In our experiments, we employ the elliptic integral based (sub)optimal Wachspress
ADI shifts [56]. Such a choice of shifts also has the advantage that it does not depend
on the tangent space and, hence, the shifts can be reused across different iterations
of R-NLCG.

3.5.3. Implementation aspects and complexity. The implementation of
tangADI requires the solution of (3.23). For this purpose, we consider the usual
parametrizations for the known quantities X = U\Sigma V \top , \eta 

.
= (M\eta ,U\eta , V\eta ) and for the

unknown quantity \xi (j)
.
= (Mj ,Uj , Vj). Defining Zj := (A - pjE)\xi (j - 1)(B + qjD), the

techniques discussed in subsection 3.2 yield
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A1104 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Uj+1 =P\bot U (A - qjE) - 1(ZjV +U\eta +UM\eta )(V
\top BV + pjV

\top DV ) - 1,

Vj+1 =P\bot V (B + pjD) - 1(Z\top j U + V\eta + VM\top \eta )(U\top AU  - qjU\top EU) - 1,

Mj+1 = (U\top AU  - qjU\top EU) - 1
\bigl[ 
U\top ZjV +M\eta  - U\top AUj+1(V

\top BV + pjV
\top DV )

+ (U\top AU  - qjU\top EU)V \top j+1BV
\bigr] 
(V \top BV + pjV

\top DV ) - 1.

Note that the matrix Zj is not explicitly formed; instead the quantities ZjV and
Z\top j U appearing in these expressions are evaluated by setting \xi (j) = [ U Uj ]
[ VMj + Vj V ]\top =: YjW

\top 
j and computing

ZjV =
\bigl[ 
(A+ pjE)Yj

\bigr] \bigl[ 
(B + qjD)Wj

\bigr] \top 
V, Z\top j U =

\bigl[ 
(B + qjD)Wj

\bigr] \bigl[ 
(A+ pjE)Yj

\bigr] \top 
U.

Using the formulas derived above, the two dominant costs of the jth iteration of
tangADI are

\bullet the solution of r sparse linear systems with matrices (A - qjE) and (B+ pjD)
with a complexity of \scrO (c(A,E)(m,r) + c(B,D)(n, r)),

\bullet the solution of m linear systems with the dense matrix (U\top AU  - qjU\top EU)
and n linear systems with the dense matrix (V \top BV  - pjV \top DV ), which (us-
ing, e.g., Cholesky factorizations) requires \scrO (r3) +\scrO (r2(m+n)) =\scrO (r2(m+
n)) flops.

When c(A,E)(m,r), c(B,D)(n, r) are linear in m,n, we thus arrive at a total complexity
of \scrO (r2(m+ n)).

Remark 3.4. Similar ideas to the ones in this section can be found in [27], which
presents a (Riemannian) truncated preconditioned Richardson iteration. In that work,
the preconditioner is applied to the Euclidean gradient. Instead of applying tan-
gADI to the Riemannian gradient, this strategy requires the application of factored
ADI (fADI) [6] to the Euclidean gradient. This comes with two disadvantages: (1)
the Euclidean gradient has significantly higher rank (\ell r + rF instead of 2r) and
(2) the rank of the approximation returned by fADI grows with the number of it-
erations. These disadvantages can be countered with low-rank truncation, which,
however, comes with additional cost not needed when using tangADI. Further numer-
ical experiments are reported in [12] and demonstrate the advantages of the method
presented here.

4. Preconditioned R-NLCG with rank adaptivity. Algorithm 4.1 summa-
rizes our developments. It applies R-NLCG with a preconditioner \scrP decomposed as
\~\scrP \scrB , where \scrB X =EXD with SPD E,D is used to define the inner product, consider-
ing\scrM r as a Riemannian submanifold of (\BbbR m\times n, \langle \cdot , \cdot \rangle \scrB ), and \~\scrP is used to precondition
the Riemannian gradient through the action of \~\scrP  - 1X . For \scrP X =EXD, we can choose
either \scrB = \scrP , \~\scrP = id, or \scrB = id, \~\scrP = \scrP ; the two choices lead to different algorithms.
For \scrP X = AXD +EXB, we can set \scrB = EXD and \~\scrP = E - 1AX +XBD - 1, or use
\scrB = id, \~\scrP =\scrP and approximate the action of \~\scrP  - 1X using tangADI.

At each iteration, Algorithm 4.1 commences by computing the preconditioned
Riemannian gradient (line 2): notably, this is the only step where \~\scrP  - 1X is applied.
Subsequently, the R-NLCG search direction \xi k is computed, and if it is not a descent
direction, we reset it to the negative preconditioned gradient (lines 4 to 7). Following
[54, 27], the initial step size \=\alpha k for Armijo backtracking is obtained by conducting an
exact line search on the tangent space, neglecting the retraction (line 9). This initial
estimate turned out to be highly effective, rarely necessitating backtracking. Utilizing
the metric projection with respect to \scrB as a retraction (see Proposition 3.2), starting
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1105

Algorithm 4.1. Preconditioned R-NLCG for multiterm linear matrix equations.

Require: \scrA X =
\sum \ell 

i=1AiXB
\top 
i with SPD \scrA , right-hand-side F = FLF

\top 
R

Input: Rank r, initial guess X0 = \~U \~\Sigma \~V \top \in \scrM r (zero by default), inner product
\scrB X =EXD with SPD E,D, Riemannian preconditioner \~\scrP X , backtracking
parameters r, \tau \in (0,1) (r= 10 - 4, \tau = 0.5 by default)

1: for k= 0,1,2, . . . do
2: Compute grad\scrB f(Xk) (using (3.8) with Z =\scrA Xk  - F )
3: Compute \~\scrP  - 1Xk

grad\scrB f(Xk)  \triangleleft Preconditioned gradient
4: Compute \beta k =max(0,min(\beta HS

k , \beta DY
k )) according to (2.9)

5: \xi k = - \~\scrP  - 1Xk
grad\scrB f(Xk) + \beta kTXk\leftarrow Xk - 1

(\xi k - 1)

6: if \langle \~\scrP  - 1Xk
grad\scrB f(Xk), \xi k\rangle \scrB \geq 0 then  \triangleleft If \xi k is not a descent direction

7: \xi k = - \~\scrP  - 1Xk
grad\scrB f(Xk)  \triangleleft Resort to R-GD

8: end if

9: Compute \=\alpha k = - \langle grad\scrB f(Xk),\xi k\rangle \scrB 
\langle Proj\scrB Xk

(\scrB  - 1\scrA \xi k),\xi k\rangle \scrB 
 \triangleleft Initial step size for backtracking

10: Set \alpha k = \=\alpha k

11: while f(P\scrB \scrM r
(Xk + \alpha k\xi k))> f(Xk) + r \cdot \alpha k \langle grad\scrB f(Xk), \xi k\rangle \scrB do

12: \alpha k\leftarrow \tau \cdot \alpha k  \triangleleft Backtracking
13: end while
14: Xk+1 =P\scrB \scrM r

(Xk + \alpha k\xi k)  \triangleleft Rank-r truncation in \scrB -inner product
15: end for

from \=\alpha k, we utilize Armijo backtracking to compute the step size \alpha k (lines 10 to 12),
and finally execute the step (line 14).

Complexity. To simplify the complexity analysis, we assume that the coefficients
of \scrA ,\scrB , \~\scrP are sparse and that the cost of matrix-vector multiplication or solving a
sparse linear system is linear with respect to the size of the sparse matrix involved.
Let X = \~U \~\Sigma \~V \top . Writing

\scrA X  - F =RLR
\top 
R :=

\bigl[ 
A1

\~U \~\Sigma \cdot \cdot \cdot A\ell 
\~U \~\Sigma  - FL

\bigr] \bigl[ 
B1

\~V \cdot \cdot \cdot B\ell 
\~V FR

\bigr] \top 
,(4.1)

we obtain that the cost of computing f(X) and grad\scrB f(X) is \scrO (r(\ell r+ rF )(n+m)).
Note that most of the operations needed to calculate the gradient are already per-
formed when f(X) is computed and can therefore be reused; we refer to [12] for
details. Thus, lines 2 and 11 have cost \scrO (r(\ell r+ rF )(n+m)). Making simplifications
similar to (3.8), the cost of calculating \=\alpha k is \scrO 

\bigl( 
r2(n+m)

\bigr) 
. Lines 4 and 14 have

cost \scrO (r2(m+ n)). Therefore, assuming rF =\scrO (r), the total cost of one iteration of
R-NLCG is \scrO 

\bigl( 
r2(n+m)

\bigr) 
plus the cost of applying \~\scrP  - 1Xk

. In the case of a constant

number of tangADI iterations, the latter has complexity \scrO 
\bigl( 
r2(n+m)

\bigr) 
as well.

4.1. Rank adaptivity. Until now, we have assumed that the rank r is constant
and known. However, in practical applications, a good choice of r is rarely known a
priori, and determining it can be challenging. This has motivated the development
of rank-adaptive techniques (see, e.g., [19, 51]), which we have extended to precondi-
tioned R-NLCG for multiterm matrix equations.

Our Riemannian rank-adaptive method (RRAM) is summarized in Algorithm
4.2. It alternates between fixed-rank optimization and updates that increase the
rank. Beginning with an initial guess X0 of rank r = r0, we execute one step of R-
NLCG on\scrM r. If the current iterate becomes numerically rank-deficient (that is, the
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A1106 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Algorithm 4.2. Riemannian rank-adaptive method.

Parameters: Tolerance for truncation \varepsilon \sigma \in ]0,1[, update rank rup
Input: Initial guess X0 \in \scrM r0 , \scrB X =EXD with SPD E,D, tolerance \ttt \tto \ttl > 0 on

relative residual in \scrB -norm
1: Initialize r= r0, res = \| \scrA X0  - F\| F/\| F\| F, k= 0
2: while res> \ttt \tto \ttl do
3: while fixed-rank optimization does not converge do

4: One step of (preconditioned) R-NLCG, obtaining Xk+1 = \~U \~\Sigma \~V \top \in \scrM r

5: if (fixed-rank optim. did not converge) and (\~\sigma 2
r/

\sum r
i=1 \~\sigma 

2
i < \varepsilon 

2
\sigma ) then

6: r\leftarrow r - =max\{ k :
\sum r

i=k+1 \~\sigma 
2
i /

\sum r
i=1 \~\sigma 

2
i \geq \varepsilon 2\sigma \}  \triangleleft rank decrease

7: Xk+1\leftarrow \~U(:,1 : r)\~\Sigma (1 : r,1 : r) \~V (:,1 : r)\top 

8: end if
9: k\leftarrow k+ 1
10: end while
11: res = \| \scrA Xk  - F\| F/\| F\| F
12: if res> \ttt \tto \ttl then
13: Xk\leftarrow Xk + \alpha \ast Y\ast , where Y \star , \alpha \ast are computed as in (4.2)
14: r\leftarrow r+ = r+ rup
15: end if
16: end while

rth weighted singular value becomes small), the iterate is truncated to the largest
rank r - for which the r - th weighted singular value is not small, and the optimization
restarts with rank r - (lines 6 and 7). Upon convergence of the fixed-rank optimization,
we compute the norm of the residual (line 11). If this norm is above the tolerance, we
increment the rank for Riemannian optimization to r+ = r+ rup. Following [19, 51],
we construct a warm start for Riemannian optimization on\scrM r+ by adding a normal
correction to the previous solution Xk \in \scrM r (lines 13 and 14). For this purpose, we
conduct a line search along the rank-rup truncation of the normal component of the
negative Euclidean gradient  - grad\scrB \=f(Xk) =\scrB  - 1(F - \scrA Xk). Using the same notation
as in (4.1), this yields the update Xk\leftarrow Xk + \alpha \ast Y\ast with

Y\ast =P\scrB \scrM r\mathrm{u}\mathrm{p}

\Bigl( \bigl( 
(E - 1  - \~U \~U\top )RL

\bigr) \bigl( 
(D - 1 \~V \~V \top )RR

\bigr) \top \Bigr) 
,

\alpha \ast = - 
\langle grad\scrB f(Xk), Y\ast \rangle \scrB 
\langle \scrB  - 1\scrA Y\ast , Y\ast \rangle \scrB 

=
\| Y\ast \| 2\scrB 
\langle \scrA Y\ast , Y\ast \rangle 

.
(4.2)

Note that the matrix Y\ast in (4.2) is only well-defined if Proj\bot ,\scrB X (\scrB  - 1(F  - \scrA X)) has
rank at least rup. If this is not the case, we add random components, \scrB -orthogonal
to the tangent space, until reaching rank rup.

We employ a heuristic strategy for halting fixed-rank Riemannian optimization
by detecting a plateau in the residual norm. For this purpose, we compute the slope
of the logarithm of an estimate of the residual norm over a backward window of \ttw \ttl \tte \ttn 

iterations and compare it to a factor \ttf \tta \ttc \ttt < 1 times the mean slope over all previous
iterations with the same rank. If the minimum slope over the last few iterations is
less than this factor times the mean slope, fixed-rank optimization continues; oth-
erwise, it halts. In our experiments, we employ Hutch++ [34] with 5 matrix-vector
multiplication to estimate the residual norm and set \ttw \ttl \tte \ttn = 3,\ttf \tta \ttc \ttt = 0.75.
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RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1107

Complexity. In addition to the cost of R-NLCG, the largest cost of RRAM occurs
in the rank-increase steps when the residual norm and the truncated weighted SVD
of  - grad\scrB \=f(Xk) = \scrB  - 1(F  - \scrA Xk) are computed. Computing them using standard
QR and SVD decomposition would involve a cost of \scrO ((m+n)(\ell r)2) flops, quadratic
in \ell r, where \ell is the number of terms in the equation. To obtain a cost linear in
\ell r, one estimates the residual norm using Hutch++ [34] and could use a random-
ized (weighted) SVD [21]. Nevertheless, for the sake of a simpler implementation,
we employed a combination of QR decompositions and SVD instead of utilizing a
randomized SVD.

Convergence. Some convergence results for the fixed-rank variant of the algorithm
have been established in [12, section 4.3]. Local convergence to the solution X \star =
\scrA  - 1F is ensured under the condition that X \star \in \scrM r. Global convergence can be
guaranteed using a regularized cost function, employing techniques similar to those
in [54, section 4]. Analyzing the convergence of the rank-adaptive version is more
challenging due to the additional complexity introduced by the rank update heuristics.

5. Numerical tests. We implemented all algorithms presented in this work in
MATLAB R2024a. The preconditioned Riemannian methods are implemented us-
ing Manopt [15]. For R-NLCG, we used Manopt's \ttc \tto \ttn \ttj \ttu \ttg \tta \ttt \tte \ttg \ttr \tta \ttd \tti \tte \ttn \ttt solver, but
we modified the Hestenes--Stiefel rule according to (2.9) in the preconditioned case.
Unless otherwise stated, we have always used an initial guess X0 that is randomly
chosen to have suitable rank and Frobenius norm of 1. We implemented the trun-
cated CG method as outlined in [28, Algorithm 2]. For low-rank truncation, the
following setup was found to be effective in our experiments. Given a target rela-
tive tolerance \ttt \tto \ttl for the residual, we employed a relative truncation tolerance of
\epsilon rel = 0.0025 \cdot \ttt \tto \ttl for the truncation of the iterates. To prevent unnecessarily high
ranks in the final CG steps, as suggested in [25], we employed a mixed absolute-
relative criterion for residual truncation with \epsilon rel = 0.1 \cdot \ttt \tto \ttl and \epsilon abs = 0.001 \cdot \ttt \tto \ttl .
Using the notation from [28, Algorithm 2], the same mixed criterion was applied
to truncate Pk, while Qk was not truncated. All numerical experiments were car-
ried out on an Intel Core i7-9750H 2.6 GHz CPU, featuring 6 cores, operating on a
MacOS Sonoma machine with 16 GB RAM. The implementation is publicly available
at https://github.com/IvanBioli/riemannian-spdmatrixeq.git.

Additional numerical experiments are reported in [12]. In particular, we have also
developed and tested a Riemannian trust-region approach and observed it to be not
competitive with R-NLCG.

In the following, we consider three problem classes representative for applications
of multiterm matrix equations: PDEs on separable domains, stochastic/parametric
PDEs, and control problems.

5.1. Finite difference discretization of two-dimensional PDEs on square
domain. As a first test problem, we consider a stationary diffusion equation on a
square domain with Dirichlet boundary conditions\Biggl\{ 

 - \nabla \cdot (k\nabla u) = 0 in \Omega = [0,1]\times [0,1],

u= g on \partial \Omega ,
(5.1)

where the diffusion coefficient k is semiseparable:

k(x, y) = \alpha 1k1,x(x)k1,y(y) + \cdot \cdot \cdot + \alpha \ell kk\ell k,x(x)k\ell k,y(y).

When using a standard finite difference discretization on a uniform mesh with mesh
size h = 1/(n + 1) and arranging the unknowns as a matrix U \in \BbbR n\times n such that
Us,k \approx u(xs, xk) with xi = ih, one obtains the matrix equation
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\ell k\sum 
j=1

\alpha i

\bigl( 
Ak

j,xU(Dk
j,y)
\top +Dk

j,xU(Ak
j,y)
\top \bigr) = F,(5.2)

where (using MATLAB-like notation)

Ak
j,z =

1

h2
tridiag

\bigl( \bigl[ 
 - kj,z(xi - 1

2
), kj,z(xi+ 1

2
) + kj,z(xi - 1

2
),  - kj,z(xi+ 1

2
)
\bigr] 
,  - 1 : 1

\bigr) 
,

Dk
j,z =diag (kj,z(x1), kj,z(x2), . . . , kj,z(xn)) ,

with z \in \{ x, y\} . The right-hand-side matrix F is given by

F =

p\sum 
j=1

e1b
\top 
l + enb

\top 
r + bde

\top 
1 + bue

\top 
n ,

[bu]i = k(xi,1 - h/2)g(xi,1), [bd]i = k(xi, h/2)g(xi,0),

[br]j = k(1 - h/2, xj)g(1, xj), [bl]j = k(h/2, xj)g(0, xj).

Assuming k > 0 in \Omega , the linear operator defined by (5.2) is SPD. Moreover, all the
matrices Ak

j,z and Dk
j,z are symmetric and, when additionally assuming kj,z > 0, also

SPD.
For our numerical experiments we consider k(x, y) = 1+

\sum \ell k
i=1

\alpha i

i! x
i yi, f(x, y) = 0,

and g(x, y) = exp( - \alpha (x + 1)y) with \alpha = 10, \ell k = 3, and n = 10000. The resulting
multiterm matrix equation (5.2) has \ell = 8 terms and F has rank rF = 4.

Preconditioning. A suitable preconditioner for (5.2) is derived by approximating
the diffusion coefficient k by separable function k0(x, y)> 0. For the example above,
we choose k0(x, y) = (1 + (

\surd 
\alpha x)\ell k/

\surd 
\ell k!)(1 + (

\surd 
\alpha y)\ell k/

\surd 
\ell k!), as this form preserves

both the lowest and highest degree terms in k. Discretizing (5.1) with k replaced by k0
yields a preconditioner of the form \scrP (2)X =Ak0

j,xUD
k0
j,y +D

k0
j,xUA

k0
j,y =:AXD+EXB.

Following [53, section 4.6.2], a Lyapunov preconditioner can be obtained by simply
dropping E,D, resulting in \scrP (1)X =AX +XB.

Numerical results. In Figure 1, we compare different approaches for solving (5.2).
We used R-NLCG with rank r = 12 employing one of the two preconditioners \scrP (1)

and \scrP (2), implemented as described in subsections 3.3 and 3.4, respectively. It can be
seen that \scrP (1) does not lead to competitive performance relative to using \scrP (2). Using
tangADI with 8 shifts instead of \scrP (2) results in slightly slower convergence but, due to
its lower cost, the execution time required to reach a small residual norm is lower. A
further speedup is obtained when using rank adaptivity (RRAM), which constitutes
the best choice for this example. In RRAM the initial and update ranks are set to
r0 = rup = 3 and \scrP (2) is employed as a preconditioner. Note that the red dots in the
curves of Figure 1 indicate rank increases of RRAM.

We have tested CG with truncation, using fADI with the same 8 shifts used for
tangADI as a preconditioner and two different ways of low-rank truncation: (1) When
choosing a low-rank truncation tolerance based on a mixed relative-absolute criterion,
as described at the beginning of the section, one obtains a convergence rate similar to
fixed-rank R-NLCG, confirming that its weaker theoretical foundations do not seem to
impede the effectiveness of tangADI. At the same time, the ranks of the CG iterates
grow quickly, leading to noncompetitive time performance. (2) When capping the
rank at 12, CG is initially faster but its convergence significantly suffers from the
error introduced by rank-12 truncations, to the extent that the method stagnates at
a residual norm of 10 - 4, far above what R-NLCG can attain with the same rank.
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Fig. 1. Discretized two-dimensional PDE from subsection 5.1 with m= n= 10000. Comparison
of R-NLCG with fixed rank r= 12 and with rank adaptivity (RRAM) as well as truncated CG with
two different low-rank truncation strategies. From left to right: relative residual versus iterations,
relative residual versus time, and rank of approximate solution versus iterations. (Color figures are
available online.)

5.2. Stochastic Galerkin matrix equations. We now consider a parameter-
ized diffusion equation given by\Biggl\{ 

 - \nabla \cdot (a(x, y)\nabla u(x, y)) = f(x) in \Omega \times \Gamma ,

u(x, y) = 0 on \partial \Omega 
(5.3)

for some spatial domain \Omega and the parametric domain \Gamma = [ - 1,1]q, q \in \BbbN . The
parameter a : \Omega \times \Gamma \rightarrow \BbbR determining the diffusion coefficient takes the form a(x, y) =
a0+

\sum q
k=1 ak(x)yk with a0 > 0 and

\sum q
k=1 \| ak\| \infty <a0. Typically, such parameterized

PDEs arise from a truncated Karhunen--Lo\`eve (KL) expansion of the random field in
a stochastic elliptic PDE; see, e.g., [33].

To solve (5.3) we use stochastic Galerkin [3, 33], that is, we use the Galerkin
method to discretize the weak formulation of (5.3) on V h \otimes Sp, where V h is spanned
by a finite element basis \{ \varphi i(x)\} mi=1 and Sp contains all multivariate polynomials in y
of a maximal (total) degree p, with an L2-orthonormal basis \{ \psi j(y)\} nj=1. This yields
the multiterm matrix equation

K0X +

q\sum 
k=1

KkXG
\top 
k = f0g

\top 
0(5.4)

with the matrix entries [Kk]s,t =
\int 
\Omega 
ak\nabla \varphi s\cdot \nabla \varphi t for k= 0, . . . , q and [Gk]s,t = \langle yk\psi s,\psi t\rangle 

for k = 1, . . . , q. The entries of the right-hand side are determined by [f0]s =
\int 
\Omega 
f0\varphi s

and [g0]s = \langle \psi s,1\rangle . The locality of the finite element basis implies that the matrices
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A1110 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Kk are sparse, and when choosing a Legendre basis for Sp, the matrices Gk are also
sparse.

Preconditioning. The ill-conditioning of (5.4) is primarily caused by the stiffness
matrices Kk and, in turn, a simple but often effective preconditioner is obtained by
simply using a constant approximation for the diffusion coefficient: a(x, y) \approx a0, re-
sulting in \scrP (1)X = K0X. As the effectiveness of this preconditioner diminishes as
the variance of a increases [40, Theorem 3.8], it can be beneficial to take more infor-
mation into account. One possibility [24] is to average the other terms contributing
to a, a(x, y) \approx a0 +

\sum q
k=1 \=akyk with \=aj =

\int 
\Omega 
aj(x), which yields the preconditioner

\scrP (2)X = K0XG
\top with G = I +

\sum q
k=1

\=ak

a0
Gk. In our preliminary experiments, this

preconditioner performed very similarly to the one proposed in [50]. Both \scrP (1) and
\scrP (2) are incorporated into R-NLCG according to subsection 3.2.

5.2.1. Numerical results. We consider Examples 5.1 and 5.2 from [41], corre-
sponding to test problems 5 (TP5) and 2 (TP2) of S-IFISS [11]. For both problems, the
spatial domain \Omega is a square and V h contains all piecewise bilinear functions on a uni-
form finite element mesh with m= 16129 degrees of freedom (grid-level 7 of S-IFISS).
We choose p = 5 for Sp and obtain an orthonormal basis from tensorized Legendre
polynomials in y1, . . . , yq. We include the MultiRB solver from [41, Algorithm 4.1] in
our comparison, using the implementation available at https://www.dm.unibo.it/\sim 
simoncin/software.html. For TP5 the KL expansion is truncated after q = 9 terms,
leading to \ell = 10 terms in the matrix equation (5.4), while for TP2 we set q = 8 and
\ell = 9.

Figure 2 shows the results obtained for TP5, with target relative residual \ttt \tto \ttl =
10 - 6. Due to the rapid decay of the KL expansion, it suffices to consider the simple

0 20 40

Iteration number k

10!8

10!6

10!4

10!2

100

102

R
el
at

iv
e

re
si
d
u
al

0 10 20

Time [s]

10!8

10!6

10!4

10!2

100

102

R-NLCG + P (1)X = K0X, r = 55

CG trunc. + P (1)X = K0X

MultiRB parameter-dependent

RRAM + R-NLCG + P (1)X = K0X

0 20 40

Iteration number k

0

20

40

60

80

100

R
an

k
r r = 55

Fig. 2. Stochastic Galerkin matrix equation from subsection 5.2 for test problem 5 from S-
IFISS (m= 16129, n= 2002, \ell = 10). Comparison of R-NLCG with fixed rank r= 55 and with rank
adaptivity (RRAM) as well as truncated CG and MultiRB.
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Fig. 3. Stochastic Galerkin matrix equation from subsection 5.2 for test problem 2 from S-
IFISS (m= 16129, n= 1287, \ell = 9). Comparison of R-NLCG with fixed rank r= 180 and with rank
adaptivity (RRAM) as well as truncated CG and MultiRB.

preconditioner \scrP (1)X =K0X. Figure 3 shows the results for TP2 choosing the cor-
relation length l = 2 and standard deviation \sigma = 0.3. This turns the problem more
challenging, necessitating a higher rank and the more sophisticated preconditioner
\scrP (2)X =K0XG to achieve \ttt \tto \ttl = 10 - 5.

For both examples, CG with truncation and fixed-rank R-NLCG exhibit simi-
lar convergence rates. Due to intermediate rank growth, CG with truncation gets
more expensive in later iterations, rendering it slower than RRAM for both problems.
MultiRB is significantly slower than RRAM for TP5 and slightly faster than RRAM
for TP2, at the expense of a significantly larger rank. Note that for the RRAM, we
employed r0 = 5, rup = 10 in TP5 and r0 = rup = 30 in TP2.

5.3. Modified bilinear rail problem. Finally, we consider a multiterm Lya-
punov equation of the form

(\scrL  - \scrN )X = F with \scrL X =AXM +MXA, \scrN X =

\ell \sum 
i=1

NiXN
\top 
i ,(5.5)

where the coefficient matrices are a modified version of those in the bilinear reformu-
lation of the rail example from the Oberwolfach collection [10]. The matrices were
obtained from the M-M.E.S.S. toolbox [43], resulting in a multiterm linear matrix
equation with size with m = n = 5177 and \ell = 6 terms. Adjustments were made to
the constants to modify the significance of \scrN : \rho and \gamma k were divided by 102, \lambda and c
were divided by 10, and uext was multiplied by 102. Finally, for the right-hand side
we considered F = \~B \~B\top , where \~B contains the first and last columns of the matrix B
from the M-M.E.S.S toolbox. Although these modifications may result in the loss of
the original physical meaning of the equations, they yield an equation with a character
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that is different from the ones considered so far. In particular, the mass matrix M
plays a more critical role and it holds that \rho (\scrL  - 1\scrN ) < 1, which we have verified
numerically. The latter implies the positive definiteness of the operator \scrL  - \scrN and
that the solution inherits the symmetry and positive semidefiniteness of the right-
hand side [18, Lemma 5.1]. This allows for performing Riemannian optimization on
the manifold of fixed-rank symmetric positive semidefinite matrices. The described
Riemannian optimization tools and preconditioners described for \scrM r can be easily
adapted to this case; see [12] for details.

Preconditioning. Due to the nonuniform FEM mesh used in the discretization to
produce (5.5), this example features a mass matrixM with a relatively high condition
number (\kappa 2(M) \approx 350 for the chosen refinement level). As outlined in [53, section
8.2.3], this renders the Lyapunov preconditioner \scrP (1)X = AX +XA, obtained from
the dominant term \scrL by approximating M \approx I, less effective. We compare it with the
dominant generalized Lyapunov term \scrP (2)X =\scrL X =AXM +MXA.

Numerical results. As an initialization strategy for Riemannian methods, we per-
form enough fADI steps for the generalized Lyapunov equation AXM+MXA= \~B \~B\top 

until we reach the desired rank. In this example, achieving a relative residual below
\ttt \tto \ttl = 10 - 6 requires a relatively high rank of r = 150 compared to the matrix size
n \approx 5000. Consequently, the computational advantages of tangADI become evident.
While inverting the Riemannian preconditioner exactly involves solving 4r2+ r linear
systems of size n, each tangADI iteration requires solving only r linear systems. Given
the high rank r = 150, one iteration of R-NLCG with a few tangADI steps is much
more efficient than using the exact inverse of the preconditioner.

The obtained results are shown in Figure 4. As expected, using the preconditioner
\scrP (1) instead of \scrP (2) leads to significantly higher iteration counts and longer execution
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Fig. 4. Modified bilinear rail problem (n= 5177) from subsection 5.3. Comparison of R-NLCG
on manifold of low-rank SPSD matrices with fixed rank r = 150 and with rank adaptivity (RRAM)
as well as truncated CG.
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times for R-NLCG. Once again, the effectiveness of tangADI is confirmed; using 8
tangADI steps as a preconditioner does not significantly impact the R-NLCG iteration
counts compared to using the exact inverse of the preconditioner. Note that one
iteration with the exact preconditioner's inverse is about 4 times slower than the
entire convergence time with tangADI.

Preconditioned CG with truncation converges in only 3 iterations without exces-
sive rank growth, making it the best method in terms of iterations. Despite this,
fixed-rank R-NLCG and RRAM with tangADI preconditioner show comparable per-
formance in time, albeit requiring more iterations. Remarkably, even when CG with
truncation performs excellently, Riemannian methods exhibit comparable time per-
formance.

6. Conclusions. First-order Riemannian optimization methods lead to rela-
tively simple low-rank solvers for multiterm matrix equations. However, precondition-
ing is a challenge: existing preconditioners are defined on the ambient space, which
makes it difficult to incorporate them into Riemannian optimization. In this work, we
have addressed this challenge with several novel preconditioning strategies. Among
them, tangADI is particularly promising. Together with rank adaptivity, this leads
to a new solver that is competitive with a popular iterate-and-truncate approach.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/IvanBioli/riemannian-spdmatrixeq and
in the supplementary materials (riemannian-spdmatrixeq.zip [local/web 40.2MB]).
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