Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SIAM J. Sc1. COMPUT. @ 2025 Society for Industrial and Applied Mathematics
Vol. 47, No. 2, pp. A1091-A1116

PRECONDITIONED LOW-RANK RIEMANNIAN OPTIMIZATION
FOR SYMMETRIC POSITIVE DEFINITE LINEAR MATRIX
EQUATIONS*

IVAN BIOLIT, DANIEL KRESSNER!, AND LEONARDO ROBOLS

Abstract. This work is concerned with the numerical solution of large-scale symmetric positive
definite matrix equations of the form AlXBlT + AQXB; + -+ AgXBZT = F, as they arise from
discretized partial differential equations and control problems. One often finds that X admits good
low-rank approximations, in particular when the right-hand-side matrix F' has low rank. For ¢ < 2
terms, the solution of such equations is well studied, and effective low-rank solvers have been pro-
posed, including alternating direction implicit (ADI) methods for Lyapunov and Sylvester equations.
For £ > 2, several existing methods try to approach X through combining a classical iterative method,
such as the conjugate gradient (CG) method, with low-rank truncation. In this work, we consider a
more direct approach that approximates X on manifolds of fixed-rank matrices through Riemannian
CG. One particular challenge is the incorporation of effective preconditioners into such a first-order
Riemannian optimization method. We propose several novel preconditioning strategies, including a
change of metric in the ambient space, preconditioning the Riemannian gradient, and a variant of
ADI on the tangent space. Combined with a strategy for adapting the rank of the approximation,
the resulting method is demonstrated to be competitive for a number of examples representative for
typical applications.

Key words. linear matrix equations, low-rank, Riemannian opti-
mization, metric preconditioning, large scale E.IEJTL
o

Code and Data
Available

MSC codes. 65F45, 65F55, 65F08, 65K10, 90026

DOI. 10.1137/24M1688540
See reproducibility of
computational results
at end of the article.

1. Introduction. This paper is concerned with the numerical solution of mul-
titerm matrix equations of the form

(1.1) A\XB] + A, XB) +---+ AXB] =F,

where A; € R™*™ B, € R™*™ are known coefficient matrices, and F € R™*"™ is a
known right-hand side. This equation is equivalent to the linear system

(1.2) (B1® A1+ Ba® Ag + -+ + By ® Ag)vec(X) = vec(F),

where vec : R™*"™ — R™" stacks the columns of a matrix into a long vector and ®
denotes the usual Kronecker product. Such matrix equations appear in the context

*Submitted to the journal’s Numerical Algorithms for Scientific Computing section August 29,
2024; accepted for publication (in revised form) December 2, 2024; published electronically April 8,
2025.

https://doi.org/10.1137/24M1688540

Funding: Leonardo Robol is a member of the INdAAM research group GNCS and acknowledges
support from the National Research Center in High Performance Computing, Big Data and Quan-
tum Computing (CN1 — Spoke 6), from the MIUR Excellence Department Project awarded to the
Department of Mathematics, University of Pisa, CUP 157G22000700001, and from the PRIN 2022
Project “Low-Rank Structures and Numerical Methods in Matrix and Tensor Computations and
Their Application.”

TDepartment of Mathematics and Department of Civil Engineering and Architecture, University
of Pavia, Pavia, Italy (ivan.bioli@unipv.it).

TInstitute of Mathematics, EPFL, 1015 Lausanne, Switzerland (daniel.kressner@epfl.ch).

$Department of Mathematics, University of Pisa, Pisa, Italy (leonardo.robol@unipi.it).

A1091

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/24M1688540
mailto:ivan.bioli@unipv.it
mailto:daniel.kressner@epfl.ch
mailto:leonardo.robol@unipi.it

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1092 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

of discretized partial differential equations (PDEs) on tensorized domains, parametric
and stochastic PDEs, and bilinear and stochastic control; see [7, 8, 28, 37, 39, 58] and
the references therein.

For ¢ = 2, the matrix equation (1.1) becomes a (generalized) Sylvester equation
and many specialized solvers have been developed for this case; see [47] for an over-
view. This includes the Bartels—Stewart method [5, 20], which is suitable for dense
coefficients and requires only O(m?3 + n?) operations. For £ > 2, the development
of such solvers is significantly more challenging. For example, there is no meaning-
ful extension of the Bartels—Stewart method, unless rather strong conditions are met
[17]. Hence, under no additional assumptions on the data, to this date the only viable
approach for solving (1.1) is to apply a standard linear systems solver to (1.2), which
requires O(m? - n?) operations.

To address the case ¢ > 2 efficiently, additional assumptions on the data need
to be imposed. In particular, in the applications mentioned above it is frequently
the case that the right-hand-side F' has low-rank. Although there is only limited
theoretical insight on this matter 7, 22, 29], this often implies that X can be well
approximated by a low-rank matrix. By directly aiming at an approximate low-rank
solution to (1.1), without computing the exact solution first, one hopes to obtain an
efficient and reasonably accurate solver. One possible approach is to apply a standard
Krylov subspace method (like CG, GMRES, or BICGSTAB) to the linear system (1.2),
rephrase the method in terms of a matrix iteration, and apply low-rank truncation to
the iterates; see [4, 7, 28] for examples. Based on (block) matrix-vector products, these
methods directly benefit from sparse or low-rank coefficient matrices, allowing one to
address very-large-scale equations for which the full matrix X could not even be stored
in memory. Their nonstationary nature complicates the analysis of such truncated
Krylov subspace methods; see [38, 48] for recent progress. All methods benefit from
the availability of a preconditioner for which the inverse can be cheaply applied to
a low-rank matrix. In particular, this is the case for preconditioners of the form
D ® E; applying its inverse D~! ® E~! preserves the rank. Such Kronecker product
preconditioners are often constructed by averaging the terms in (1.2) or solving an
approximation problem; see, e.g., [50]. A more elaborate choice of preconditioner
takes the form D ® A 4+ B ® F, which can be constructed by, e.g., choosing the
first two terms in (1.2). Applying its inverse corresponds to solving a generalized
Sylvester equation, which is usually executed inexactly, for example, by a few steps
of the alternating direction implicit (ADI) iteration; see, e.g., [7]. For a sufficiently
good preconditioner, one can also combine a fixed point iteration (instead of a Krylov
subspace method) with low-rank truncation to arrive at a competitive method; see
[18, 45] for examples. With stronger assumptions on the data (such as low-rank
commutators), more effective solution strategies can be developed; see [7, 22, 42] for
examples.

In the following, we restrict ourselves to the symmetric positive definite (SPD)
case, that is, the system matrix in (1.2) is SPD or, equivalently, the linear operator

(1.3) A:R™™ S R™" AX = A XB| + A3 XBy +---+ A XB/
is SPD. In this case, it is well known that (1.1) is equivalent to minimizing 1 (AX, X)—
(X, F), where (-,-) denotes the standard matrix inner product. One then obtains a

low-rank approximation to X by restricting the minimization to

M, ={X eR™" : rank(X) =1}

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1093

for some fixed choice of r < m,n. Noting that M, is an embedded submanifold of
R™>*" this leads to the Riemannian optimization [13] problem

. 1
(1.4) Xngﬂrf(X) .—2(AX,X> (X, F).
For Lyapunov equations (¢ = 2), Vandereycken and Vandewalle [55] have developed
a Riemannian trust-region (RTR) approach for addressing (1.4). They also have
constructed a highly efficient preconditioner for iteratively solving the second-order
model in every step of RTR. For ¢ > 2, alternating optimization and greedy rank-one
strategies have been discussed in [16, 26], which allow the incorporation of precondi-
tioners indirectly through a preconditioned residual. In [49], combinations of multi-
grid/multilevel methods with Riemannian optimizations are proposed. The direct
incorporation of preconditioners into first-order Riemannian optimization methods
on low-rank tensor manifolds has been discussed for higher-dimensional generaliza-
tion of the Lyapunov case in [27].

The goal of this work is to develop a suitably preconditioned first-order Rie-
mannian optimization method for solving SPD multiterm matrix equations (1.1). We
address the optimization problem (1.4) using the Riemannian nonlinear conjugate
gradient (R-NLCG) method [44]. This approach inherently prevents the rank growth
often observed in truncated CG methods [26, 28], although it complicates the efficient
incorporation of preconditioners. We interpret preconditioning as a modification of
the Riemannian metric on M, achievable through two strategies: (1) altering the
inner product of the embedding space, or (2) implicitly, by preconditioning the Rie-
mannian gradient. We show feasibility of both alternatives for simpler preconditioners
of the form D® E. Additionally, the combined use of these two preconditioning strate-
gies allows us to extend the Lyapunov-like preconditioners developed in [55, 27] to
generalized Sylvester preconditioners of the form D ® A+ B ® E. For the latter, we
also introduce an approximate preconditioner based on a variant of the ADI method
applied on the tangent space. Finally, we develop a rank-adaptive algorithm [19, 51]
by alternating between fixed-rank Riemannian optimization and rank updates.

The rest of this paper is organized as follows. In section 2, we briefly review the
structure of the manifold of fixed-rank matrices and the (preconditioned) R-NLCG
method. Section 3 is dedicated to discussing the efficient application of Riemannian
preconditioners for SPD linear matrix equations. The rank-adaptive algorithm is
introduced in section 4. Finally, section 5 presents numerical experiments comparing
the performance of the proposed algorithms against existing methods.

2. Brief overview of low-rank Riemannian optimization. In this section,
we give a brief tour of the tools needed for Riemannian optimization on M,; see, e.g.,
[13] for more details. These tools depend on the choice of inner product on R™*"™. We
provide the well-known explicit expressions for the case of the standard inner product
(-,-) in the following and extend them to a more general setting in subsection 3.1.

By the singular value decomposition (SVD), any matrix X € M, can be written
as X =UXVT, where U € R™*", V € R**" have orthonormal columns and ¥ € R™*"
is diagonal with positive diagonal entries. The tangent space at X takes the form

(2.1) TxM, = {UMVT +UVT UV
M ERTXT,UP eRmxr,Vp ER”XT,UTUP :O,VTV;, _ 0}

This allows one to store X efficiently in terms of its factors (U,%,V) as well as a
tangent vector £ € Tx M, in terms of the coefficients (M, U, V},).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1094 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

2.1. Embedded geometry of fixed-rank matrices.

Tangent space projection. Given an arbitrary matrix Z € R™*™ the tangent space
projection Projy maps Z orthogonally, with respect to the choice of inner product on
R™*™ to Tx M,.

In the standard inner product, an explicit expression for Projy(Z) is given by

(2.2) Projy(2)=2 - PyZPy =UMV ' + U,V +UV,',
with M=U"2ZvV, U,=2ZV-UM, V,=Z'U-VMT',
where Pﬁ =]—-UUT and PJ‘; =I-VVT.

Transporter. To map (transport) an element from one tangent space to another,
we use orthogonal projection:

Ty x= PrOjY|TxM,,‘ :TxM, —>TyM, VX,Y eM,.

Based on (2.2), an efficient implementation, using O((m + n)r?) flops, is described in
[54, Algorithm 6].

Retraction induced by the standard inner product is the Frobenius norm. To map
an element X + ¢ for £ € Tx M, back to the manifold, we make use of the metric
projection retraction

(2.3) Rx(¢§) =argmin [X +& - Y,
YeM.
where || - || denotes the norm induced by the inner product on R™*".

The norm induced by the standard inner product is the Frobenius norm |||,
which allows one to compute (2.3) by performing a truncated SVD of X + £. Using
that X + € has rank at most 2r [13, section 7.5], this computation can be carried out
in O((m + n)r?) operations.

Riemannian gradient and Hessian. Because M, is embedded in R™*", the Rie-
mannian gradient of a smooth map f : M, — R is obtained from projecting the
Euclidean gradient of any smooth extension f: gradf(X) = Projy(Vf(X)) € TxM,..
Similarly, the Riemannian Hessian Hessf(X)[{] : Tx M, — Tx M, takes the form

(2.4) Hess f(X)[¢] = Projx (Hess f(X)[¢]) + D¢ (Projx (VF(X))),

where Hessf denotes the Euclidean Hessian of f and D is the differential of X
Projy at X along ¢ [13, Corollary 5.47]. The second term D¢ (Projx(Vf(X))) is
called the curvature term, as it can be related to the curvature of the manifold [2,
section 6]. The presence of this term may render the Riemannian Hessian indefinite
even when the Euclidean Hessian is positive definite.

2.2. Riemannian nonlinear conjugate gradient (R-NLCG). Given the in-
gredients defined above, a general line-search Riemannian optimization method [13]
takes the form

Xi+1 =Rx, (&)

for a search direction &, € Tx, M, and a suitable step size o > 0. We specifi-
cally consider the R-NLCG, which extends the (Euclidean) nonlinear conjugate gra-
dient method to Riemannian manifolds. R-NLCG determines the search direction
by combining the negative Riemannian gradient with the previous search direction
€p1€Tx, M:

(2.5) & =—gradf(Xy) + B Tx,x_, (§p—1)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1095

for some f3; € R. A reasonable search direction should satisfy (gradf(Xx),&k)x, <0;
we simply set & = —gradf(X}) if this condition is violated by (2.5). For choosing
the step size o, we use Armijo’s backtracking procedure adapted to Riemannian
optimization, as described in [1, Definition 4.2.2].

A comprehensive survey of methods for choosing 3y in (2.5) is provided in [44]. For
example, S =0 yields the Riemannian gradient descent (R-GD) method. Based on
preliminary numerical experiments, we have selected the modified Hestenes—Stiefel
rule [44, section 6.2.2]; comparable performance was observed when employing the
modified Polak—Ribiere rule [44, section 6.2.1], or the modified Liu—Storey rule [44,
section 6.2.3]. Denoting gi, := gradf(Xy), one chooses B = max(0, min(3H°, 8PY))
with

2
O P O R

k (g, Txpexp 1 (Ek=1)) — (gr—1,Ek—1)’
DY __ Hng2

oY —

(9r> Txp e x_1 (§k—1)) — (gh—1,Ek—1)
when using the standard inner product.

2.3. Preconditioned Riemannian optimization. First-order line-search
methods exhibit slow convergence if the (Riemannian) Hessian at the solution is ill-
conditioned. As observed in [27, 55], an ill-conditioned operator A in (1.3) can be
expected to lead to such a situation. In these cases, it is crucial to employ a precon-
ditioner. In principle, for the purpose of Riemannian optimization it suffices to define
the preconditioner as an SPD operator Px on the tangent space T x M. However, in
the context of matrix equations, it is most natural to search for an SPD preconditioner
P:R™*™ — R™X™ on the ambient space and let

(2.6) Px =Projy o P oProjx.

It can be easily verified that (£,n)p, = (,n)p for all ;7 € TxM,, that is, P and
Px induce the same metric on Tx M,..

We will consider two different ways of incorporating preconditioners into R-
NLCG:

(i) Given a (simple) preconditioner B on the ambient space, one possibility is to
replace the standard inner product on R™*"™ by the one induced by B; see [23, 35, 36]
for examples in the context of low-rank optimization. This effects the following change
of Riemannian gradient:

(2.7) grad f(X) := Proj} Vs f(X) = Proj} BV f(X),

where Projf(denotes the B-orthogonal projection onto Tx. While conceptually sim-
ple, this approach may bear practical difficulties. Unless B has Kronecker product
structure (see subsection 3.1 below), there are no simple formulas for the tools from
subsection 2.1. In particular, it is difficult to carry out the B-orthogonal projection
onto the tangent space efficiently for general B.

(ii) Another way to use a preconditioner P is to replace the Riemannian gradient
of f with respect to the standard inner product by the one with respect to (-, '>Px:

(2.8) Pxleradf(X).

Such an approach can be viewed as a quasi-Newton method when deriving Px from
an approximation of the Riemannian Hessian; see [14, 27, 55] for examples.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1096 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

As we will see below, it can sometimes be beneficial to combine both approaches:
Use a simple but less effective Kronecker product preconditioner B to change the
metric of the ambient space and, additionally, use a more effective (and more compli-
cated) preconditioner Px to modify the Riemannian gradient. The search direction
for the correspondingly preconditioned R-NLCG then takes the form

& =—Px, gradp f(Xi) + BrTx, x0_ (§o-1),

where 3, = max(0, min(B}S, BPY)) with

(91> Pxr9k) 5 — <gk’ Txp Xy (P§i,1gk—1)>6
g Txexi (&-1)) g — (Gr-1:8k-1)p
DY <9’<7P;(igk>ls
" g T X (G6-1)) g — (Gh-1,60-1) 5

(2.9) Bi®

)

and gy := gradz f(X)). Note that one needs to apply 73;(]1 to gradf(X}) only once
per iteration.

Observe that if X, is a nondegenerate minimizer, then the Riemannian Hessian
at X, with respect to the metric (-,-), is given by Hessp, f(Xs) = Hessp, (f o
Rx,)(0)= P)}}Hessf(X*) [13, Proposition 5.45] when B is identity. Therefore, when
Px, captures dominant parts of Hessf(X,) then one can expect that P)}}Hess F(X5)
is well-conditioned, leading to rapid local convergence of R-NLCG.

3. Riemannian preconditioning for multiterm matrix equations. This
section discusses different choices of (Riemannian) preconditioners for SPD multiterm
matrix equations. Using (2.4), it follows that the Riemannian Hessian of f(X) =
1 (AX,X) — (X, F) is given by

Hessf(X)[¢] = Proj x (A€) + D¢ (Projx (AX — F)).

Ignoring the second term, which becomes negligible close to a good approximation of
the solution, it appears reasonable to build the preconditioner P (defining Px as in
(2.6)) from identifying 1-2 dominant terms or combining terms of A. Depending on
the application (see the experiments in section 5), this may take the form EXD, AX +
XB,or AXD+ EXB. In the following sections, we will discuss the implementation of
P in increasing order of difficulty. Finally, in subsection 3.5, we will develop a variant
of ADI that leads to a cheaper (but still effective) alternative to the exact application
of preconditioners of the form AX + XB or AXD + EXB.

3.1. Preconditioned inner product with BX = EX D. We first consider
preconditioning by replacing the standard inner product with the one induced by
BX = EXD for SPD matrices D,E. Letting D = CLCp and E = CLCg denote
Cholesky decompositions, the Cholesky decomposition of the matrix representation
of B is obtained:

(3.1) D®FE=(CpaCg)" (Cp®Cg).

Although the change of inner product does not affect which elements are contained in
the manifold M or tangent spaces, it is computationally beneficial to choose different
representations for these elements. The following weighted SVD [52] is an important
tool for this purpose; we include its proof for the sake of illustration.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1097

PROPOSITION 3.1. Let E € R™*™, D € R"*™ bpe SPD. Given Z € R™*™ there
exists a decomposition Z = USV T called weighted SVD such that U € R™*™ s E-
orthogonal (UTEU = 1), V € R™ " is D-orthogonal (V' DV = 1), and ¥ € R™*"
1s diagonal with the diagonal entries 61 > G > -+ > Omin{m,n} = 0 called weighted
singular values.

Proof. Considering the Cholesky decompositions introduced above, let Z=UxVT

be the SVD of Z :=CpZC},. Then Z=U%V ", where U = C5'U and V = Cp'V are
FE-orthogonal and D-orthogonal, respectively. 0

For X € M,., only the first r weighted singular values are positive and we can
instead consider a thin weighted SVD of the form

(32) X=UxV', UeR™" VeRY™, U EU=V'DV=I, SeR™".
In the following, we represent X € M, by the triple (U, 3, ‘7)

Using QR decompositions U = URy, V = V Ry with invertible Ry, Ry € R™",
we can insert the substitutions M = R;;* MRy, ", U, = E~'U,, V,, = D™V, into (2.1)
to derive the modified tangent space representation
(33) TxM,={UMV'+0,V' +0V, :

M eR™" U, e R™" V, e R"*" UTEU,=0,V'DV,=0}.
In the following, a tangent vector £ € Tx M, is represented as £ = (M, Up, f/p).

To determine the coefficients (2.9) of R-NLCG, one needs to compute the (pre-
conditioned) inner product of two tangent space elements { = (M,U,,V,) and ¢’ =
(M',U,,V,):

(B4) (&)= (BOMVT +0,07 +07,)D.ONVT + 0,07 + 07,7
= (M, M') +(EU,,U,) + (DV,,, V).

We now derive extensions of the explicit formulas discussed in subsection 2.1 for
the inner product induced by B. o

Tangent space projection. Given X € M, in the representation (U,X,V) ex-
plained above, we define for arbitrary Z € R™*"—in analogy to (2.2)—the element
(3.5) ¢=Z-(I-UU'E)Z(I-DVVT)=UMV™ +U, V" +UV,]

with M=U'"EZDV, U,=ZDV -UM, V,=Z'EU-VM".
The first expression implies that Z — ¢ is B-orthogonal to the tangent space Tx M.,
because its range is F-orthogonal to U and its co-range is D-orthogonal to V. The
second expression matches (3.3). Noting that U" EU, =UTEZDV —-UTEUM = M —
M =0 and, analogously, VT DV, =0, this implies £ € Tx M, with the representation
§=(M,Up, Vp).

In summary, we have verified that (3.5) gives ¢ = Proj5(2).

Retraction. For defining a suitable retraction, we use the following straightfor-
ward extension of the Eckart—Young theorem.

PROPOSITION 3.2. For Z € R™*" let Z = USVT be the weighted SVD from
Proposition 3.1. For r <min{m,n}, let U,,V, denote the first r columns of U,V and
let ¥, =diag(61,...,6,). Then

(3.6) PR, (2)=0U,%,V,'

solves the minimization problem min{||Z =Y | z:Y € M, }.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1098 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Proof. Using the Cholesky decomposition (3.1), it holds that | Z—Y ||z =||Z — Y ||r
with Z = CgpZ Cg andY =C oA C’g. Because of the equivalence between the weighted
SVD of Z and the usual SVD of Z (see the proof of Proposition 3.1), the result follows
from the Eckart—Young theorem. 0

The metric projection retraction with respect to the inner product induced by B
is given by

(3.7) RE (&) =P, (X +&), XeM,, (€TxM,.

Given representations X = ULVT and ¢ = (Z\Z,Up,ffp), one computes X + £ =
[0 0,][ETTM AL]T, confirming that this matrix has rank at most 2r. This can be
exploited to compute (3.7) efficiently. Assuming 2r < min(m,n), one first computes
weighted QR decompositions

U U,)=QuRu, [V V,]=QvRv, Q}DQu=QyEQy=I.

For simplicity, we compute these two decompositions from the standard QR decompo-
sitions of C'g [(7 f]p] and Cp [\7 f/p}, respectively. Alternatively, a weighted Gram—
Schmidt procedure [31] or a weighted Householder-QR decomposition [46] can be used,
which directly use D, E and do not require the availability of the Cholesky factors

Cp,Cg. Using the (standard) SVD of the 2r x 2r matrix RU[iﬁM Ur]Ry = USV
gives the weighted (thin) SVD

X+&=(QuD)E(QvV)".

Finally, truncation in the sense of Proposition 3.2 yields (3.7).

Note that when computing R (¢£) for multiple values of ¢ (e.g., in a line-search
procedure) the weighted QR decompositions need to be computed only once.

Transporter. The transporter is defined in terms of B-orthogonal tangent space
projections as explained in subsection 2.1.

Riemannian gradient. Given the gradient Z = grad f(X), the Riemannian gradi-
ent is given by gradgf(X) = Proj% (B='Z); see (2.7). Using B~'Z = E~'ZD"!
and the expression (3.5) for the tangent space projection Plrojf?(7 we obtain that
gradg f(X) € Tx M, is represented by the triplet

(38) M=U"2zV, U,=E 2V -EUM), V,=D'(Z'U-DVMT).
Observe that the matrices EUP and DVE, needed for determining inner products (3.4),

are available for free when computing U, and V.

3.2. Preconditioned gradient with PX = EX D. Instead of changing the
inner product, one can use the preconditioned gradient (2.8) to improve the con-
vergence of R-NLCG. This requires solving a linear operator equation of the form
Px (&) =n, with n = gradf(X) € TxM,, in every iteration. For PX = EXD, this
amounts to solving

(3.9) Projx (E¢(D) =n, EeTxM,.

Considering the parametrizations for the known X = UXV " and n = (M, Uy, Vy),
and for the unknown & = (M, Ue, Ve), (3.9) is equivalent to

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1099

(3.10a) (EU)M¢(V'DV)+ EU:(V'DV)+ (EU)V, (DV)=U, +UM,,
(3.10b) (DV)M/ (U"EU)+ DV¢(U"EU) + (DV)U/ (EU) =V, + VM,
(3.10c) (U'E)U:(V'DV)+U"EU)V, (V'D)" + (UTEU)Me(V ' DV)=M,.

From (3.10a) and (3.10b) one obtains
U[M(V'DV)+ V' DV] +Ue(V'DV)=E~ (U, + UM,),
VM (UTEU)+ U/ EU] + Ve(UTEU)=D""(V, + VM,).

Exploiting that Uy, V¢ are orthogonal to U,V it follows that these matrices are com-
puted as

Ue =PGE (U, + UM,)(V'DV)™', Ve=PyD NV, + VM, JUTEU)".
Plugging these solutions into (3.10¢) yields
Me=(UTEU)™ " [M, — (UTE)Ue(V'DV) = (UTEU)V, (VI D)T] (VTDV) ™"

Implementation aspects and complexity. The evaluation of (Mg, Ug, V) using the
expressions derived above requires the solution of r linear systems with the matrices
E and D. Assuming FE and D to be sparse, this benefits from precomputing sparse
Cholesky factorizations of E and D. Additionally, m linear systems with U " EU and
n linear systems with V' T DV need to be solved. Using Cholesky factorizations of
these two dense matrices, this requires O(r?(m + n)) operations, which matches the
asymptotic complexity of carrying out a retraction or a vector transport.

Remark 3.3. Preconditioning the inner product as described in subsection 3.1
or preconditioning the gradient as described above lead to the same preconditioned
Riemannian gradient, but not to the same R-NLCG iterations due to the different
metrics used in the retraction.

3.3. Preconditioned gradient with PX = AX + XB. We now consider
preconditioned gradients with the Sylvester operator PX = AX + X B for SPD A, B.
This requires applying 73)_(1 to a tangent vector n € T x M, which amounts to solving
the projected Sylvester equation

(3.11) Projx (A§ +¢B) =n, EeTxM,.

This equation has been addressed in [55, section 7.2] for Lyapunov operators (B = A)
and the manifold of SPD fixed-rank matrices. A more general scenario involving
tensors of fixed multilinear rank was considered in [27, section 4.2]. Paralleling the
developments in [55], we outline the solution of (3.11).

Considering again the parametrizations n = (M,,U,,V;), § = (M¢,Ue, Ve), the
linear operator equation (3.11) is equivalent to solving the system of matrix equations
(3.12) (PEA)Ue +Ue(VI BV) = U, — (PEAU) M,

(PyB)Ve + Ve(UTAU) =V, — (PyBV) M,
(UTAU)M¢ + Me(VTBV) =M, — (UT AU — (V' B)Ve) "
Each individual matrix equation can be decoupled by performing the spectral decom-
positions
(3.13) UTAU =QaAAQ), VIBV =QpApQp

with Ay = diag A\ A, Ap =diag\?), .. AP,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1100 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

After the change of coordinates Uo = UaQp, Vo = VaQa, My = QL M,Qp for
ae{én} and U=UQa, V=VQp, the system (3.12) becomes equivalent to

(3.14&) (PéA)UngUfAB:Un*(AU*UAA)M&
(3.14b) (PEB)Ve + VeAa =V, — (BV = VAg) M,
(3.14¢) AaMg + MeAp =M, — (U A)U: — (V' B)Ve) ",

together with the orthogonality constraints U Tffg = VTVg = 0. Evaluating the ith
column of (3.14a) yields

(PEA)Te(:,7) + AP Te(:,i) = Uy (1) — (AU — UAa) Me(:,4).
Multiplying both sides of this equation with the matrix
L = (In + (A+ 2P L) 0 (S 0T (A+ AP 1,) 7,

where S§) = ~UT(A+)\I(B)Im)*lﬁ € R™" and exploiting U Ug(:,i) = 0, one
obtains that

(3.15) Ue(:,1) = LU, (:,0) — LY (AT — UAA) M (:,).

Similarly, the ith column of the relation (3.14b) gives

(3.16) Ve(:yi) = LV, (1) — LY(BV — VAg) M (i,:)

with an analogous expression for L. Note that the formulas (3.15) and (3.16) still
depend on the unknown ith column and row of M. Substituting these formulas into
(3.14c¢) results in the equation

M (1,5)(AT)T

(3.17) + [APM (1) | | AP M)] =R

Me(r,:) (AT
with the coefficient matrices
A =N L— (VTB)LO(BY = VAg), AP =A\P L — (0T ALY (AT ~ UAa)
and the right-hand side
R=M, — (UT AWy~ (V' B)W,)",

where the ith columns of W,, and W,, are given by L,(j)ljn(:7 i) and LS,”V,?(:, 1), respec-
tively.

Clearly, the system (3.17) is linear in Mg and can thus be reformulated as an
72 x r? linear system in vec(Mg). Solving this linear system determines M, which
can be inserted into (3.15) and (3.16) to determine Ug and V¢, respectively. Finally,
reverting the change of coordinates yields Ue = UQg, Ve = VQJ, and M¢ = QAMgQg.

Implementation aspects and complexity. The cost of computing & = (M, U, V)
using the procedure described above is dominated by setting up and solving the lin-
ear system (3.17) as well as the subsequent computation of Uz and Vi according
to (3.15) and (3.16). Let ca(m,r) denote the cost of solving r linear systems with

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1101

A+)\EB)Im by, e.g., precomputing a sparse Cholesky factorization of the matrix once
and performing backward/forward substitution with the triangular factor r times.
Then a total of O(ca(m,r)r) flops are needed in order to apply (A +)\EB)Im)*l to
U, (AU — UK) and U,(:,i) for all 4. Additionally, the application of Lgf) requires
the solution of O(r) linear systems with the dense r x r matrix Sgl), which requires
another O(r*) flops in total. The other operations, like applying A to U, can be
expected to remain negligible in cost. Analogously, for applying (B +)\EA)Im)_l and
LY atotal of O(cp(n,r)r+r*) flops are needed. Assuming linear complexity for the
sparse direct solvers, ca(m,r) = O(mr) and cg(n,r) = O(nr), this amounts to a cost
of O(mr? + nr? + r*) operations, which is on the level of computing a retraction or
a transporter as long as 7 = O(yv/m + n). However, solving the 72 x r2 linear system
equivalent to (3.17) with a direct dense method takes another O(r%) flops, which is
feasible only for relatively small ranks. For larger ranks, an iterative method might
be preferable, as it requires O(r®) flops per iteration to apply the operator on the
left-hand side of (3.17).

3.4. Preconditioning with PX = AX D + EX B. We now aim at utilizing
a preconditioner of the form PX = AXD + EXB for SPD A,B,D,E. When at-
tempting to directly use this preconditioner to precondition the Riemannian gradient,
it turns out that the presence of the matrices D, E makes the involved linear system
Projx (A¢D + E¢B) = n significantly more expensive to solve. In particular, the tech-
nique of subsection 3.3 to decouple equations for the columns of Us and V¢ cannot be
applied directly. To avoid this problem, we incorporate D, E by adjusting the inner
product, as in subsection 3.1, which will then allow us to resort to the Sylvester case
from subsection 3.3.

Specifically, we decompose P as follows:

P=BP where BX=EXD, PX=B'PX=E'AX+XBD .

Note that P remains an SPD linear operator in the inner product induced by B.
Together with the identity (X,Y), = (X,PY)s, this suggests using B for the inner
product and P for preconditioning the Riemannian gradient. In other words, the Rie-
mannian optimization tools from subsection 3.1 are used, except that the Riemannian
gradient is replaced by

ﬁ;lgradgf(X) = ﬁ;lProngdV?(X)

with Px = Proj% o P o Proj5. Setting n = Proj5 B~V f(X) € TxM,, this requires
determining ¢ € T x M,. such that the linear operator equation

(3.18) Proj5 (E~1A¢ +¢BD ™) =1

holds, which is structurally close to the projected Sylvester equation (3.11).

Paralleling the developments from the previous section, we now discuss a proce-
dure for solving (3.18) that avoids forming the matrices E~'A and BD~! explicitly.
Using the parametrizations n = (Mm
(3.18) can be rearranged as

Up, ‘N/n) and £ = (Mg, ﬁg, f/g) from subsection 3.1,
(3.19) (I, — EUUT)AU: 4+ EU:(V " BV) = EU, — (AU — EU(U " AU)) M

(Im — DVV T)BV; + DVe(U T AU) = DV, — (BV — DV(V BV)) M/ ,
(UTAU)Me + Me(VTBV) =M, — (U A)Ue — (VT B)Ve) ",

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1102 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

together with the orthogonality constraints f]TEUg = f/TDf/g = 0,. At this point,
one can essentially follow the procedure discussed in subsection 3.3. Performing spec-
tral decompositions (3.13) of UT AU, VT BV and performing an analogous change of
variables decouples the columns of the first two equations in (3.19). In particular, the
1th column of the transformed first equation reads as

(Im — EUUT) AU (:,1) + AP EU(:, i) = EU, (:,i) — (AU — EUA 4)Me(:,4).
Multiplying both sides of this equation with the matrix
LY = (I, + (A+ AP B) "N ED) (SO) " (ED)T)(A+ ME) ™,
where S{ := —(EU)T(A+ AP E)=1(EU) € R"™*", and exploiting U T EU¢(:,i) = 0

again gives
Ue(:,4) = LU, ;i) — LY (AT — UAA) Mg (:,).

Similarly, the expression (3.16) for Vg(:,4) and the equation (3.17) for Mg are extended.
Note that there is no need to explicitly compute E~'A4 and D~!B; instead, pencils
of the form A + AF and B + AD are used.

Implementation aspects and complexity. The analysis of computational cost is
completely analogous to the one in subsection 3.3; one only needs to replace c4(m,r)
and cp(n,r) by the cost for solving r linear systems with the (sparse) SPD matrices
A+)\Z(»B)E and B +)\EA)D, respectively.

3.5. tangADI: ADI on the tangent space. If the preconditioner takes the
form PX = AXD + EX B the application of P~! entails the solution of a generalized
Sylvester equation. ADI [57] is a popular strategy for iteratively solving such equa-
tions, which has been adapted to produce low-rank approximations in, e.g., [9, 32].
The goal of this section is to develop an ADI-like iteration on the tangent space to
approximate the inverse of Px = Projy oP o Projy, as a cheaper alternative to the
procedures described in subsections 3.3 and 3.4 for the exact inversion of Px.

3.5.1. Classical ADI. Classical ADI [57] can be derived from the observation
that the Sylvester operator PX = AX 4+ X B is a sum of two commuting linear oper-
ators, X — AX and X — X B, and that applying (shifted) inverses of the individual
summands is much simpler than applying P~! as a whole. ADI extends to the solu-
tion of a generalized Sylvester equations AXD + EXB = F by (formally) rewriting
it as the standard Sylvester equation E~'AX + XBD~! = E~'FD~!. The resulting
iteration can be rephrased such that explicit inverses of D, E are avoided. Given the
current iterate XU—1) € R™*" the next iterate X) of ADI is determined by solving
the matrix equation

(3.20) (A= g¢;E)XY(B+p;D)=(p; — q;)F + (A —p; E)XY=Y(B 4 ¢; D),

which amounts to multiplying both sides of the equation with (A —¢;E)~! and (B +
p; D)~ The scalars pj,q; are called shift parameters and their choice significantly
influences convergence. Although it is common to employ different shifts at each
iteration to attain fast convergence, it is worth noting that (3.20) can be viewed as a
fixed point iteration for constant shifts (p;,q;) = (p,¢). This fixed point iteration is
derived from the operator splitting

(3.21) szp%q (A= qE)X (B +pD)— (A —pE)X (B +¢D)

G(X) N(X)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1103

and converges linearly provided that p(g N) < 1, where p(-) denotes the spectral
radius. Provided that the pencils A— A E, B—AD are diagonalizable, the convergence
rate is determined by their spectra A(A, E), A(B,D):

1 (A—p)(u+q)’
p(G7N) = renam) (A= q)(u+p)|
nEAN(B,D)

3.5.2. Basic form of tang ADI. In this section, we derive an ADI-like iteration
for solving the projected generalized Sylvester equation

Px(§) =Projx(AD + E¢B) =n, {€TxM,,

for given n € Tx M, and SPD matrices A, B, D, FE. Considering the decomposition
Px (&) =Projx (A¢) + Projx (¢B) for E =1, and D = I,,, the presence of the projec-
tion Projy implies that the operators defining the two summands do not commute
and, in turn, the usual arguments for deriving ADI do not apply.

On the other hand, we can still extend the splitting (3.21),

Py (€)= ﬁ Projx (A — ¢E)&(B + pD)) — Projy (A — pE)E(B +4D)) | |
Gx (&) Nx (&)

resulting in the fixed point iteration £0) = G3* (Nx (U= 4 (p— q)n) on the tangent
space TxM,. The convergence of this iteration is determined by p(g)}l./\/ X) and
interlacing properties for eigenvalues of definite matrix pencils [30] imply

(3.22) p(g;}l/\/x> <p(G67'N)

with G, N defined as in (3.21). In other words, the convergence rate of this fixed point
iteration is not worse than the convergence rate of ADI (3.20) with constant shifts.

In practice, one observes that allowing for nonconstant shifts p;,q; benefits the
convergence of the fixed point iteration on the tangent space as well, leading to the
tangA DI iteration:

(3.23) Projy ((A—¢;E)¢Y) (B + p; D))
=Projx ((A—p; E)¢U"Y (B +¢;D)) + (p; — a;)n-

Due to the lack of commutativity mentioned above, the usual arguments [6] for
analyzing the convergence of ADI do not apply to (3.23) and therefore there is no
rigorous theoretical basis for choosing (nonconstant) shifts. Still, the inequality (3.22)
suggests that the shifts used for classical ADI are a good choice for tangADI as well.
In our experiments, we employ the elliptic integral based (sub)optimal Wachspress
ADI shifts [56]. Such a choice of shifts also has the advantage that it does not depend
on the tangent space and, hence, the shifts can be reused across different iterations
of R-NLCG.

3.5.3. Implementation aspects and complexity. The implementation of
tangADI requires the solution of (3.23). For this purpose, we consider the usual
parametrizations for the known quantities X = ULV, = (M,,U,,V,) and for the
unknown quantity £) = (M;,U;,V;). Defining Z; := (A —ij)f(j_l)(B +4q;D), the
techniques discussed in subsection 3.2 yield

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Al1104 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Uj1 =PH(A—q;E)"N(Z;V + U, +UM,) (V' BV +p;V ' DV)7,
Vis1=Py(B+p;D) "1 (Z]U +V, + VM,)(UTAU — q;UTEU) ™",
M1 =(U"TAU — ;U EU) ' [U" Z;V + M, —U " AU; 1+ (V' BV +p; V' DV)
+ (UTAU — q;UTEU)V,\BV](VTBV +p;V'DV) ™.

Note that the matrix Z; is not explicitly formed; instead the quantities Z;V and
ZJ—-r U appearing in these expressions are evaluated by setting £0) = [U ‘ U; |
[VM;+V; |V]T =:Y;W,;" and computing

ZV = [(A+p, EY;| [(B+¢;D)W;] 'V, Z]U=[(B+q¢;D)W;][(A+p,E)Y;] U.

Using the formulas derived above, the two dominant costs of the jth iteration of
tangADI are

e the solution of r sparse linear systems with matrices (A — ¢;E) and (B +p; D)
with a complexity of O(ca,gy(m,r) +cB,p)(n,1)),

e the solution of m linear systems with the dense matrix (U" AU — ¢;U " EU)
and n linear systems with the dense matrix (VT BV —p;V T DV), which (us-
ing, e.g., Cholesky factorizations) requires O(r3) + O(r?(m+n)) = O(r?(m+
n)) flops.

When ¢4, g)(m,7), ¢(,py(n,7) are linear in m, n, we thus arrive at a total complexity
of O(r?(m +n)).

Remark 3.4. Similar ideas to the ones in this section can be found in [27], which
presents a (Riemannian) truncated preconditioned Richardson iteration. In that work,
the preconditioner is applied to the Fuclidean gradient. Instead of applying tan-
gADI to the Riemannian gradient, this strategy requires the application of factored
ADI (fADI) [6] to the Euclidean gradient. This comes with two disadvantages: (1)
the Fuclidean gradient has significantly higher rank (£ + rp instead of 2r) and
(2) the rank of the approximation returned by fADI grows with the number of it-
erations. These disadvantages can be countered with low-rank truncation, which,
however, comes with additional cost not needed when using tangADI. Further numer-
ical experiments are reported in [12] and demonstrate the advantages of the method
presented here.

4. Preconditioned R-NLCG with rank adaptivity. Algorithm 4.1 summa-
rizes our developments. It applies R-NLCG with a preconditioner P decomposed as
PB, where BX = EXD with SPD E, D is used to define the inner product, consider-
ing M, as a Riemannian submanifold of (R™*" (-,.) 2}, and P is used to precondition
the Riemannian gradient through the action of ”ﬁ}l. For PX = EX D, we can choose
either B=P, P =id, or B=1id, P = P; the two choices lead to different algorithms.
For PX = AXD + EXB, we can set B=EXD and P=FE'AX + XBD™!, or use
B=id, P =P and approximate the action of 75;(1 using tangADI.

At each iteration, Algorithm 4.1 commences by computing the preconditioned
Riemannian gradient (line 2): notably, this is the only step where 75)_(1 is applied.
Subsequently, the R-NLCG search direction & is computed, and if it is not a descent
direction, we reset it to the negative preconditioned gradient (lines 4 to 7). Following
[54, 27], the initial step size @y for Armijo backtracking is obtained by conducting an
exact line search on the tangent space, neglecting the retraction (line 9). This initial
estimate turned out to be highly effective, rarely necessitating backtracking. Utilizing
the metric projection with respect to B as a retraction (see Proposition 3.2), starting

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1105

Algorithm 4.1. Preconditioned R-NLCG for multiterm linear matrix equations.
Require: AX = Zle A; X B with SPD A, right-hand-side F = F;, Fj
Input: Rank r, initial guess Xy = UsvVT e M, (zero by default), inner product
BX = EXD with SPD E, D, Riemannian preconditioner Py, backtracking
parameters 7,7 € (0,1) (r=10"%7=0.5 by default)
1: for k=0,1,2,... do

2: Compute gradz f(Xy) (using (3.8) with Z=AXy — F)

3: Compute 75;(]1 gradgz f(Xy) > Preconditioned gradient
4: Compute B, = max (0, min(85, BPY)) according to (2.9)

5 & =—Px gradsf(Xi) + BT x, e x, (§e-1)

6: if (ﬁ;igradlgf(Xk),gk)B >0 then > If & is not a descent direction
7 &= —ﬁ;igradlgf(Xk) > Resort to R-GD

8: end if

9: Compute ay, = — <pff;§j?££)fﬁ)éf§,)gi T > Initial step size for backtracking
10: Set ap = ay, ’
11: while (PR, (Xi+are)) > f(Xi) +7- oy (gradg f(Xi), &) g do
12: QT > Backtracking
13: end while
14: X1 =Py (Xi + arbyp) > Rank-r truncation in B-inner product
15: end for

from @y, we utilize Armijo backtracking to compute the step size ay (lines 10 to 12),
and finally execute the step (line 14).

Complezity. To simplify the complexity analysis, we assume that the coefficients
of A,B,P are sparse and that the cost of matrix-vector multiplication or solving a
sparse linear system is linear with respect to the size of the sparse matrix involved.
Let X =UXV . Writing
(41) AX —F=R.R:=[A08 - AUS —F][BV - BV Fg] ,
we obtain that the cost of computing f(X) and gradgf(X) is O (r(¢r +rp)(n+m)).
Note that most of the operations needed to calculate the gradient are already per-
formed when f(X) is computed and can therefore be reused; we refer to [12] for
details. Thus, lines 2 and 11 have cost O (r(¢r + rp)(n +m)). Making simplifications
similar to (3.8), the cost of calculating &y, is O (r?(n+m)). Lines 4 and 14 have
cost O(r?(m + n)). Therefore, assuming 7 = O(r), the total cost of one iteration of
R-NLCG is O (r?(n+m)) plus the cost of applying Py In the case of a constant
number of tangADI iterations, the latter has complexity O (7’2(71 + m)) as well.

4.1. Rank adaptivity. Until now, we have assumed that the rank r is constant
and known. However, in practical applications, a good choice of r is rarely known a
priori, and determining it can be challenging. This has motivated the development
of rank-adaptive techniques (see, e.g., [19, 51]), which we have extended to precondi-
tioned R-NLCG for multiterm matrix equations.

Our Riemannian rank-adaptive method (RRAM) is summarized in Algorithm
4.2. It alternates between fixed-rank optimization and updates that increase the
rank. Beginning with an initial guess Xy of rank r = ry, we execute one step of R-
NLCG on M,.. If the current iterate becomes numerically rank-deficient (that is, the

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1106 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

Algorithm 4.2. Riemannian rank-adaptive method.

Parameters: Tolerance for truncation ¢, €]0,1[, update rank
Input: Initial guess Xo € M,,, BX = EXD with SPD E, D, tolerance tol >0 on
relative residual in B-norm
1: Initialize 7 = rg, res = || AXo — F||g/||F||l¢, k=0
2: while res > tol do
while fixed-rank optimization does not converge do
4 One step of (preconditioned) R-NLCG, obtaining Xy, = ULV € M,
5 if (fixed-rank optim. did not converge) and (62/Y.;_, 52 <e2) then
6: rer_=max{k: Y , ,67/> 07 >e2} > rank decrease
. g .
8

X1 < UG1:mE(1 1)V (1) T
: end if
9: k—k+1
10: end while
11: res = || AXy — F|lr/|| F|l¢
12: if res > tol then

13: Xy« Xk + .Yy, where Y, a, are computed as in (4.2)
14: rTy=1r+7ryp
15: end if

16: end while

rth weighted singular value becomes small), the iterate is truncated to the largest
rank r_ for which the r_th weighted singular value is not small, and the optimization
restarts with rank r_ (lines 6 and 7). Upon convergence of the fixed-rank optimization,
we compute the norm of the residual (line 11). If this norm is above the tolerance, we
increment the rank for Riemannian optimization to r4 =+ ru,. Following [19, 51],
we construct a warm start for Riemannian optimization on M,., by adding a normal
correction to the previous solution Xy € M, (lines 13 and 14). For this purpose, we
conduct a line search along the rank-r,, truncation of the normal component of the
negative Euclidean gradient —grady f(Xy) = B~1(F —AX}). Using the same notation
as in (4.1), this yields the update X + X + .Y, with

Y, =P8, (((E*l —OUT)Ry) ((D’lfff/T)RR)T),

(4.2) N :_<gradBT(Xk),Y*>B _ Y.l
* (BTAY..Y.)s (AY..Y.)

Note that the matrix Y, in (4.2) is only well-defined if Proj3® (B~ (F — AX)) has
rank at least ryp. If this is not the case, we add random components, B-orthogonal
to the tangent space, until reaching rank ryp.

We employ a heuristic strategy for halting fixed-rank Riemannian optimization
by detecting a plateau in the residual norm. For this purpose, we compute the slope
of the logarithm of an estimate of the residual norm over a backward window of w_len
iterations and compare it to a factor fact < 1 times the mean slope over all previous
iterations with the same rank. If the minimum slope over the last few iterations is
less than this factor times the mean slope, fixed-rank optimization continues; oth-
erwise, it halts. In our experiments, we employ Hutch++ [34] with 5 matrix-vector
multiplication to estimate the residual norm and set w_len =3,fact =0.75.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1107

Complezity. In addition to the cost of R-NLCG, the largest cost of RRAM occurs
in the rank-increase steps when the residual norm and the truncated weighted SVD
of —gradgf(Xy) = B~Y(F — AX},) are computed. Computing them using standard
QR and SVD decomposition would involve a cost of O((m +n)(£r)?) flops, quadratic
in ¢r, where £ is the number of terms in the equation. To obtain a cost linear in
£r, one estimates the residual norm using Hutch++ [34] and could use a random-
ized (weighted) SVD [21]. Nevertheless, for the sake of a simpler implementation,
we employed a combination of QR decompositions and SVD instead of utilizing a
randomized SVD.

Convergence. Some convergence results for the fixed-rank variant of the algorithm
have been established in [12, section 4.3]. Local convergence to the solution X, =
A~L1F is ensured under the condition that X, € M,. Global convergence can be
guaranteed using a regularized cost function, employing techniques similar to those
in [54, section 4]. Analyzing the convergence of the rank-adaptive version is more
challenging due to the additional complexity introduced by the rank update heuristics.

5. Numerical tests. We implemented all algorithms presented in this work in
MATLAB R2024a. The preconditioned Riemannian methods are implemented us-
ing Manopt [15]. For R-NLCG, we used Manopt’s conjugategradient solver, but
we modified the Hestenes—Stiefel rule according to (2.9) in the preconditioned case.
Unless otherwise stated, we have always used an initial guess Xy that is randomly
chosen to have suitable rank and Frobenius norm of 1. We implemented the trun-
cated CG method as outlined in [28, Algorithm 2]. For low-rank truncation, the
following setup was found to be effective in our experiments. Given a target rela-
tive tolerance tol for the residual, we employed a relative truncation tolerance of
€rel = 0.0025 - tol for the truncation of the iterates. To prevent unnecessarily high
ranks in the final CG steps, as suggested in [25], we employed a mixed absolute-
relative criterion for residual truncation with €. = 0.1 - tol and €,,s = 0.001 - tol.
Using the notation from [28, Algorithm 2], the same mixed criterion was applied
to truncate Py, while Q; was not truncated. All numerical experiments were car-
ried out on an Intel Core i7-9750H 2.6 GHz CPU, featuring 6 cores, operating on a
MacOS Sonoma machine with 16 GB RAM. The implementation is publicly available
at https://github.com/IvanBioli/riemannian-spdmatrixeq.git.

Additional numerical experiments are reported in [12]. In particular, we have also
developed and tested a Riemannian trust-region approach and observed it to be not
competitive with R-NLCG.

In the following, we consider three problem classes representative for applications
of multiterm matrix equations: PDEs on separable domains, stochastic/parametric
PDEs, and control problems.

5.1. Finite difference discretization of two-dimensional PDEs on square
domain. As a first test problem, we consider a stationary diffusion equation on a
square domain with Dirichlet boundary conditions

51) {—V-(kVu)zO in Q=10,1] x [0,1],
u=g on 09},

where the diffusion coefficient k is semiseparable:

k;(x, y) = a1k17w(x)kl7y(y) Ty, k£k7$(‘r)k£k,y(y)'

When using a standard finite difference discretization on a uniform mesh with mesh
size h = 1/(n + 1) and arranging the unknowns as a matrix U € R"*™ such that
Us k = u(xs, z)) with z; =ih, one obtains the matrix equation

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

https://github.com/IvanBioli/riemannian-spdmatrixeq.git

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1108 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL
Ly
(5.2) > i (A5, U(D},)" + Dy, UA])T) = F,

where (using MATLAB-like notation)

1 ...
A?,z=ﬁtrld1ag([—kj,z($i_%)’ kj, Z()+k =(z; l)a _kj,Z(xi-&-%)}a _1:1)7

Df)z = diag (k‘j,z<.’1?1)7kj’z(.’1?2>, .. .,k’j’z(l‘n)),

with z € {z,y}. The right-hand-side matrix F is given by

i

F=Y eib) +enb] +bae] +bye,)
j=1

[b] k(h/Q’xj)g(LIj% [ba] 5 = k(h/2,25)9(0, ;).

Assuming k > 0 in , the linear operator defined by (5.2) is SPD. Moreover, all the
matrices Ak and Dk are symmetric and, when additionally assuming k; . > 0, also
SPD.

For our numerical experiments we consider k(z,y) = 1—1—2:Z 15T crtyt, f(z,y) =0,
and g(x,y) = exp(—a(x + 1)y) with a = 10, £, = 3, and n = 10000. The resulting
multiterm matrix equation (5.2) has ¢ =8 terms and F has rank rp =4.

Preconditioning. A suitable preconditioner for (5.2) is derived by approximating
the diffusion coefficient k by separable function kq(z,y) > 0. For the example above,
we choose ko(z,y) = (1 + (vax)" /I (1 + (Vay)® /), as this form preserves
both the lowest and highest degree terms in k. Discretizing (5.1) with k replaced by kg
yields a preconditioner of the form P?) X = Ako UDk0 + Dkf’ UAk‘; =:AXD+EXB.
Following [53, section 4.6.2], a Lyapunov precondltloner can be obtained by simply
dropping F, D, resulting in P X = AX + XB.

Numerical results. In Figure 1, we compare different approaches for solving (5.2).
We used R-NLCG with rank r = 12 employing one of the two preconditioners P
and P implemented as described in subsections 3.3 and 3.4, respectively. It can be
seen that P() does not lead to competitive performance relative to using P . Using
tangADI with 8 shifts instead of P results in slightly slower convergence but, due to
its lower cost, the execution time required to reach a small residual norm is lower. A
further speedup is obtained when using rank adaptivity (RRAM), which constitutes
the best choice for this example. In RRAM the initial and update ranks are set to
70 = ryp =3 and P?) is employed as a preconditioner. Note that the red dots in the
curves of Figure 1 indicate rank increases of RRAM.

We have tested CG with truncation, using fADI with the same 8 shifts used for
tangADI as a preconditioner and two different ways of low-rank truncation: (1) When
choosing a low-rank truncation tolerance based on a mixed relative-absolute criterion,
as described at the beginning of the section, one obtains a convergence rate similar to
fixed-rank R-NLCG, confirming that its weaker theoretical foundations do not seem to
impede the effectiveness of tangADI. At the same time, the ranks of the CG iterates
grow quickly, leading to noncompetitive time performance. (2) When capping the
rank at 12, CG is initially faster but its convergence significantly suffers from the
error introduced by rank-12 truncations, to the extent that the method stagnates at
a residual norm of 10~%, far above what R-NLCG can attain with the same rank.

32

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1109

107 : : 107 40
35
10°
30 |
E 5
E 10,2 25+
8 .
s 2 20
2]
= 107"} = 15 4
= r=12
[———
10
1076 !
5 >
108 k k 108 k k k ol k
0 50 100 150 0 10 20 30 0 50 100
Tteration number k Time s Iteration number &

—%— R-NLCG + POX = AX + XB, r=12
R-NLCG + POX = AXD+ EXB, r =12
)
(

—6—R-NLCG + POX = AXD + EXB tangADIx8, r = 12

CG trunc. + POX = AXD + EXB fADIx8

———— CG trunc. + capr =12 + P@X = AXD + EXB fADIx8
RRAM + R-NLCG + P®X = AXD + EXB

Fic. 1. Discretized two-dimensional PDE from subsection 5.1 with m =n = 10000. Comparison
of R-NLCG with fized rank r =12 and with rank adaptivity (RRAM) as well as truncated CG with
two different low-rank truncation strategies. From left to right: relative residual versus iterations,
relative residual versus time, and rank of approzimate solution versus iterations. (Color figures are
available online.)

5.2. Stochastic Galerkin matrix equations. We now consider a parameter-
ized diffusion equation given by

-V (a(iL’,y)VU(CE,y)) = f(iL’) in Q2 x T,

(5:3) u(z,y)=0 on 9N

for some spatial domain Q and the parametric domain I' = [-1,1]9, ¢ € N. The
parameter a:) x I' = R determining the diffusion coefficient takes the form a(z,y) =
ao+ Y ¢_q ar(z)yr with ag >0 and >_{_; [lar| ., < ao. Typically, such parameterized
PDEs arise from a truncated Karhunen—Loéve (KL) expansion of the random field in
a stochastic elliptic PDE; see, e.g., [33].

To solve (5.3) we use stochastic Galerkin [3, 33|, that is, we use the Galerkin
method to discretize the weak formulation of (5.3) on V" @ SP, where V" is spanned
by a finite element basis {¢; ()}, and SP contains all multivariate polynomials in y
of a maximal (total) degree p, with an L2-orthonormal basis {1;(y) %_;. This yields
the multiterm matrix equation

q
(5.4) KoX +) Ky XGj =fog)
k=1

with the matrix entries [Kj]s, = fQ axVps- Vo fork=0,...,qand [Grls.t = (yr¥s, Y1)
for k=1,...,q. The entries of the right-hand side are determined by [fo]s = [, foes
and [go]s = (¥s,1). The locality of the finite element basis implies that the matrices

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1110 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL
K, are sparse, and when choosing a Legendre basis for SP, the matrices Gy, are also
sparse.

Preconditioning. The ill-conditioning of (5.4) is primarily caused by the stiffness
matrices K} and, in turn, a simple but often effective preconditioner is obtained by
simply using a constant approximation for the diffusion coefficient: a(z,y) = ag, re-
sulting in PMX = KqX. As the effectiveness of this preconditioner diminishes as
the variance of a increases [40, Theorem 3.8], it can be beneficial to take more infor-
mation into account. One possibility [24] is to average the other terms contributing
to a, a(z,y) = ag + Y} _; aryr with a; = [, a;(z), which yields the preconditioner
PAX = Ko XGT with G =T+ pr %Gk. In our preliminary experiments, this
preconditioner performed very similarly to the one proposed in [50]. Both P and
P are incorporated into R-NLCG according to subsection 3.2.

5.2.1. Numerical results. We consider Examples 5.1 and 5.2 from [41], corre-
sponding to test problems 5 (TP5) and 2 (TP2) of S-IFISS [11]. For both problems, the
spatial domain € is a square and V" contains all piecewise bilinear functions on a uni-
form finite element mesh with m = 16129 degrees of freedom (grid-level 7 of S-TFISS).
We choose p = 5 for SP and obtain an orthonormal basis from tensorized Legendre
polynomials in y1,...,y,. We include the MultiRB solver from [41, Algorithm 4.1] in
our comparison, using the implementation available at https://www.dm.unibo.it/~
simoncin/software.html. For TP5 the KL expansion is truncated after ¢ =9 terms,
leading to ¢ =10 terms in the matrix equation (5.4), while for TP2 we set ¢ =8 and
{=9.

Figure 2 shows the results obtained for TP5, with target relative residual tol =
1075, Due to the rapid decay of the KL expansion, it suffices to consider the simple

10? K{ . 102 100
10° \ 10° & 80 t
g . . o 0\)
< 1072 107° ¢ . 60 r =551
& & I A
= =
[} o L] —
k= = .
= 1074} * 1074F = 40 |
Q
~ . s
106 | ST ‘ \ S 20 t
»>
10 ‘ ‘ 10 ‘ ol ‘ ‘
0 20 40 0 10 20 0 20 40

Iteration number & Time [s] Iteration number &

R-NLCG + PUX = Ky X, r = 55
——— CG trunc. + POX = Ko X
MultiRB parameter-dependent
RRAM + R-NLCG + PUX = Ko X

FiG. 2. Stochastic Galerkin matriz equation from subsection 5.2 for test problem 5 from S-
IFISS (m =16129, n =2002, £=10). Comparison of R-NLCG with fized rank r =55 and with rank
adaptivity (RRAM) as well as truncated CG and MultiRB.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

https://www.dm.unibo.it/~simoncin/software.html
https://www.dm.unibo.it/~simoncin/software.html

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS Al111

10* - - 10* - 400
350 t
107 : 102
\ 300 |
3 \
S 1004 1 100 250
% =~
5 \\ 2 200 r =180
2 A = (Y
S 10-2 . -2
< 1077 F 1) 1 10 1 150 | R
o °
[2
4
» » 100 .
107% ¢+ .. 4 10 4
2 d 50 [L 2
J
106 s s 10°6 s 0 4 s s
0 20 40 60 0 20 40 0 20 40 60
Iteration number k Time s Iteration number k

R-NLCG + POX = KoXG, r = 180
—« CG trunc. + POX = Ky XG
MultiRB parameter-dependent
RRAM + R-NLCG + POX = Ko XG

FiG. 3. Stochastic Galerkin matriz equation from subsection 5.2 for test problem 2 from S-
IFISS (m=16129, n=1287, £=9). Comparison of R-NLCG with fized rank r =180 and with rank
adaptivity (RRAM) as well as truncated CG and MultiRB.

preconditioner PMX = Ky X. Figure 3 shows the results for TP2 choosing the cor-
relation length [= 2 and standard deviation ¢ = 0.3. This turns the problem more
challenging, necessitating a higher rank and the more sophisticated preconditioner
PR X = Ko XG to achieve tol =107,

For both examples, CG with truncation and fixed-rank R-NLCG exhibit simi-
lar convergence rates. Due to intermediate rank growth, CG with truncation gets
more expensive in later iterations, rendering it slower than RRAM for both problems.
MultiRB is significantly slower than RRAM for TP5 and slightly faster than RRAM
for TP2, at the expense of a significantly larger rank. Note that for the RRAM, we
employed ro =5, ryp = 10 in TP5 and rg = ryp = 30 in TP2.

5.3. Modified bilinear rail problem. Finally, we consider a multiterm Lya-
punov equation of the form

4
(5.5) (L-N)X=F with LX=AXM+MXA, NX=> NXN/,

i=1

where the coefficient matrices are a modified version of those in the bilinear reformu-
lation of the rail example from the Oberwolfach collection [10]. The matrices were
obtained from the M-M.E.S.S. toolbox [43], resulting in a multiterm linear matrix
equation with size with m = n = 5177 and £ = 6 terms. Adjustments were made to
the constants to modify the significance of N: p and v; were divided by 102, X and ¢
were divided by 10, and ey was multiplied by 102. Finally, for the right-hand side
we considered F' = BBT7 where B contains the first and last columns of the matrix B
from the M-M.E.S.S toolbox. Although these modifications may result in the loss of
the original physical meaning of the equations, they yield an equation with a character

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Al112 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

that is different from the ones considered so far. In particular, the mass matrix M
plays a more critical role and it holds that p(£L~'A) < 1, which we have verified
numerically. The latter implies the positive definiteness of the operator £ — N and
that the solution inherits the symmetry and positive semidefiniteness of the right-
hand side [18, Lemma 5.1]. This allows for performing Riemannian optimization on
the manifold of fixed-rank symmetric positive semidefinite matrices. The described
Riemannian optimization tools and preconditioners described for M, can be easily
adapted to this case; see [12] for details.

Preconditioning. Due to the nonuniform FEM mesh used in the discretization to
produce (5.5), this example features a mass matrix M with a relatively high condition
number (ko(M) a2 350 for the chosen refinement level). As outlined in [53, section
8.2.3], this renders the Lyapunov preconditioner PMDX = AX + XA, obtained from
the dominant term £ by approximating M =~ I, less effective. We compare it with the
dominant generalized Lyapunov term P X = £LX = AXM + M X A.

Numerical results. As an initialization strategy for Riemannian methods, we per-
form enough fADI steps for the generalized Lyapunov equation AXM+MX A= BBT
until we reach the desired rank. In this example, achieving a relative residual below
tol = 107° requires a relatively high rank of r = 150 compared to the matrix size
n ~ 5000. Consequently, the computational advantages of tangADI become evident.
While inverting the Riemannian preconditioner exactly involves solving 472 +r linear
systems of size n, each tangADI iteration requires solving only 7 linear systems. Given
the high rank r = 150, one iteration of R-NLCG with a few tangADI steps is much
more efficient than using the exact inverse of the preconditioner.

The obtained results are shown in Figure 4. As expected, using the preconditioner
PW instead of P2 leads to significantly higher iteration counts and longer execution

10° : : 10° : : : 200
; ; r = 150
1072y 1072 R 1 10 — — — —
Tg i %
g it c
S104] 107 fi = 100 } 0
=) S
: \ :
= %
A
1076 1076 %\ 50|
1078 . . 108 . . . 0 . .
0 20 40 60 0 20 40 60 0 10 20 30
Iteration number k Time [s] Iteration number k

—%—R-NLCG + PWX = AX + XA, r =150
R-NLCG + POX = AXM + MXA, r = 150
—6—R-NLCG + PO X = AXM + MXA tangADIx8, r = 150
——— CG trunc. + POX = AXM + MXA fADIx16

RRAM + R-NLCG + PP X = AXM + MXA tangADIx8

F1G. 4. Modified bilinear rail problem (n=>5177) from subsection 5.3. Comparison of R-NLCG
on manifold of low-rank SPSD matrices with fized rank r =150 and with rank adaptivity (RRAM)
as well as truncated CG.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS A1113

times for R-NLCG. Once again, the effectiveness of tangADI is confirmed; using 8
tangADI steps as a preconditioner does not significantly impact the R-NLCG iteration
counts compared to using the exact inverse of the preconditioner. Note that one
iteration with the exact preconditioner’s inverse is about 4 times slower than the
entire convergence time with tangADI.

Preconditioned CG with truncation converges in only 3 iterations without exces-
sive rank growth, making it the best method in terms of iterations. Despite this,
fixed-rank R-NLCG and RRAM with tangADI preconditioner show comparable per-
formance in time, albeit requiring more iterations. Remarkably, even when CG with
truncation performs excellently, Riemannian methods exhibit comparable time per-
formance.

6. Conclusions. First-order Riemannian optimization methods lead to rela-
tively simple low-rank solvers for multiterm matrix equations. However, precondition-
ing is a challenge: existing preconditioners are defined on the ambient space, which
makes it difficult to incorporate them into Riemannian optimization. In this work, we
have addressed this challenge with several novel preconditioning strategies. Among
them, tangADI is particularly promising. Together with rank adaptivity, this leads
to a new solver that is competitive with a popular iterate-and-truncate approach.

Reproducibility of computational results. This paper has been awarded
the “STAM Reproducibility Badge: Code and data available” as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/IvanBioli/riemannian-spdmatrixeq and
in the supplementary materials (riemannian-spdmatrixeq.zip [local/web 40.2MB]).

Acknowledgment. The work of Ivan Bioli in this manuscript was carried out
during his time at EPFL and the University of Pisa.

REFERENCES

[1] P.-A. ABsiL, R. MAHONY, AND R. SEPULCHRE, Optimization Algorithms on Matriz Manifolds,
Princeton University Press, Princeton, NJ, 2008, https://doi.org/10.1515/9781400830244.

[2] P.-A. ABsiL, J. TRUMPF, R. MAHONY, AND B. ANDREWS, All Roads Lead to Newton: Feasi-
ble Second-Order Methods for Equality-Constrained Optimization, Technical report UCL-
INMA-2009.024, 2009.

[3] I. BABUsKA, R. TEMPONE, AND G. E. ZOURARIS, Galerkin finite element approzimations of
stochastic elliptic partial differential equations, STAM J. Numer. Anal., 42 (2004), pp.
800825, https://doi.org/10.1137/S0036142902418680.

[4] J. BALLANI AND L. GRASEDYCK, A projection method to solve linear systems in tensor format,
Numer. Linear Algebra Appl., 20 (2013), pp. 2743, https://doi.org/10.1002/nla.1818.

(5] R. H. BARTELS AND G. W. STEWART, Algorithm 432 [C2]: The solution of the matriz
equation AX + XB = C [F4], Comm. ACM, 15 (1972), pp. 820-826, https://doi.org/
10.1145/361573.361582.

(6] B. BECKERMANN AND A. TOWNSEND, Bounds on the singular values of matrices with displace-
ment structure, STAM Rev., 61 (2019), pp. 319-344, https://doi.org/10.1137/19M1244433.

[7] P. BENNER AND T. BREITEN, Low rank methods for a class of generalized Lyapunov equa-
tions and related issues, Numer. Math., 124 (2013), pp. 441-470, https://doi.org/10.1007/
s00211-013-0521-0.

[8] P. BENNER AND T. DAMM, Lyapunov equations, energy functionals, and model order reduc-
tion of bilinear and stochastic systems, SIAM J. Control Optim., 49 (2011), pp. 686-711,
https://doi.org/10.1137/09075041X.

[9] P. BENNER, R.-C. L1, AND N. TRUHAR, On the ADI method for Sylvester equations, J. Comput.
Appl. Math., 233 (2009), pp. 1035-1045, https://doi.org/10.1016/j.cam.2009.08.108.

[10] P. BENNER AND J. SAAK, A semi-discretized heat transfer model for optimal cooling of steel
profiles, in Dimension Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

https://github.com/IvanBioli/riemannian-spdmatrixeq
riemannian-spdmatrixeq.zip
https://epubs.siam.org/doi/suppl/10.1137/24M1688540/suppl_file/riemannian-spdmatrixeq.zip
https://doi.org/10.1515/9781400830244
https://doi.org/10.1137/S0036142902418680
https://doi.org/10.1002/nla.1818
https://doi.org/10.1145/361573.361582
https://doi.org/10.1145/361573.361582
https://doi.org/10.1137/19M1244433
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1137/09075041X
https://doi.org/10.1016/j.cam.2009.08.108

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Al114 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]

[26]

27]

(28]

[29]

(30]

(31]

45, P. Benner, D. C. Sorensen, and V. Mehrmann, eds., Springer, New York, 2005,
pp. 353-356, https://doi.org/10.1007/3-540-27909-1_19.

A. BespaLov, C. E. POWELL, AND D. SILVESTER, Stochastic IFISS (s-IFISS), http://www.
manchester.ac.uk/ifiss/s-ifiss1.0.tar.gz.

I. BioLl, Preconditioned Low-Rank Riemannian Optimization for Multiterm Linear Ma-
triz Equations, Master’s thesis, EPFL, 2024, https://sites.google.com/view /ivan-bioli/
publications-talks.

N. BouMAL, An Introduction to Optimization on Smooth Manifolds, Cambridge University
Press, Cambridge, UK, 2023, https://doi.org/10.1017/9781009166164.

N. BouMAL AND P.-A. ABSIL, Low-rank matriz completion via preconditioned optimization
on the Grassmann manifold, Linear Algebra Appl., 475 (2015), pp. 200-239, https://doi.
org/10.1016/j.1aa.2015.02.027.

N. BoumaL, B. MisHrA, P.-A. ABsIL, AND R. SEPULCHRE, Manopt, a Matlab tool-
box for optimization on manifolds, J. Mach. Learn. Res., 15 (2014), pp. 1455-1459,
https://www.manopt.org/about.html.

T. BREITEN AND E. RINGH, Residual-based iterations for the generalized Lyapunov equation,
BIT, 59 (2019), pp. 823-852, https://doi.org/10.1007/s10543-019-00760-9.

M. CHEN AND D. KRESSNER, Recursive blocked algorithms for linear systems with Kron-
ecker product structure, Numer. Algorithms, 84 (2020), pp. 1199-1216, https://doi.
org/10.1007/s11075-019-00797-5.

T. DAaMM, Direct methods and ADI-preconditioned Krylov subspace methods for generalized
Lyapunov equations, Numer. Linear Algebra Appl., 15 (2008), pp. 853-871, https://doi.
org/10.1002/nla.603.

B. GAo AND P.-A. ABsIL, A Riemannian rank-adaptive method for low-rank matriz comple-
tion, Comput. Optim. Appl., 81 (2022), pp. 67-90, https://doi.org/10.1007/s10589-021-
00328-w.

J. D. GARDINER, A. J. LAuB, J. J. AMATO, AND C. B. MOLER, Solution of the Sylvester matriz
equation AXBT 4+ CXDT = E, ACM Trans. Math. Software, 18 (1992), pp. 223-231,
https://doi.org/10.1145/146847.146929.

N. HarLko, P. G. MARTINSSON, AND J. A. TRrRoOPP, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matriz decompositions, STAM Rev., 53
(2011), pp. 217-288, https://doi.org/10.1137/090771806.

E. JARLEBRING, G. MELE, D. PALiTTA, AND E. RINGH, Krylov methods for low-rank com-
muting generalized Sylvester equations, Numer. Linear Algebra Appl., 25 (2018), 2176,
https://doi.org/10.1002/nla.2176 .

H. KAsAl AND B. MISHRA, Low-rank tensor completion: A Riemannian manifold precondition-
ing approach, in Proceedings of the 33rd International Conference on Machine Learning,
Vol. 48, M. F. Balcan and K. Q. Weinberger, eds., PMLR, 2016, https://proceedings.
mlr.press/v48/kasail6.html.

B. N. KHOROMSKIJ AND C. SCHWAB, Tensor-structured Galerkin approximation of parametric
and stochastic elliptic PDEs, SIAM J. Sci. Comput., 33 (2011), pp. 364-385, https://doi.
org/10.1137/100785715.

D. KRESSNER, M. PLESINGER, AND C. TOBLER, A preconditioned low-rank CG method for
parameter-dependent Lyapunov matriz equations, Numer. Linear Algebra Appl., 21 (2014),
pp. 666—684, https://doi.org/10.1002/nla.1919.

D. KRESSNER AND P. SIRKOVIC, Truncated low-rank methods for solving general linear ma-
triz equations, Numer. Linear Algebra Appl., 22 (2015), pp. 564-583, https://doi.org/
10.1002/nla.1973.

D. KRESSNER, M. STEINLECHNER, AND B. VANDEREYCKEN, Preconditioned low-rank Riemann-
ian optimization for linear systems with tensor product structure, SIAM J. Sci. Comput.,
38 (2016), pp. A2018-A2044, https://doi.org/10.1137/15M1032909.

D. KRESSNER AND C. TOBLER, Low-rank tensor Krylov subspace methods for parametrized
linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288-1316, https://doi.org/
10.1137/100799010.

D. KRESSNER AND A. USCHMAJEW, On low-rank approzimability of solutions to high-
dimensional operator equations and eigenvalue problems, Linear Algebra Appl., 493 (2016),
pp. 556572, https://doi.org/10.1016/j.1aa.2015.12.016.

P. LANCASTER AND Q. YE, Variational and numerical methods for symmetric matriz pencils,
Bull. Aust. Math. Soc., 43 (1991), pp. 1-17, https://doi.org/10.1017/S0004972700028732.

S. J. LEoN, A. K. BJORCK, AND W. GANDER, Gram-Schmidt orthogonalization: 100 years
and more, Numer. Linear Algebra Appl.,, 20 (2013), pp. 492-532, https://doi.org/
10.1002/nla.1839.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1007/3-540-27909-1_19
http://www.manchester.ac.uk/ifiss/s-ifiss1.0.tar.gz
http://www.manchester.ac.uk/ifiss/s-ifiss1.0.tar.gz
https://sites.google.com/view/ivan-bioli/publications-talks
https://sites.google.com/view/ivan-bioli/publications-talks
https://doi.org/10.1017/9781009166164
https://doi.org/10.1016/j.laa.2015.02.027
https://doi.org/10.1016/j.laa.2015.02.027
https://www.manopt.org/about.html
https://doi.org/10.1007/s10543-019-00760-9
https://doi.org/10.1007/s11075-019-00797-5
https://doi.org/10.1007/s11075-019-00797-5
https://doi.org/10.1002/nla.603
https://doi.org/10.1002/nla.603
https://doi.org/10.1007/s10589-021-00328-w
https://doi.org/10.1007/s10589-021-00328-w
https://doi.org/10.1145/146847.146929
https://doi.org/10.1137/090771806
https://doi.org/10.1002/nla.2176
https://proceedings.mlr.press/v48/kasai16.html
https://proceedings.mlr.press/v48/kasai16.html
https://doi.org/10.1137/100785715
https://doi.org/10.1137/100785715
https://doi.org/10.1002/nla.1919
https://doi.org/10.1002/nla.1973
https://doi.org/10.1002/nla.1973
https://doi.org/10.1137/15M1032909
https://doi.org/10.1137/100799010
https://doi.org/10.1137/100799010
https://doi.org/10.1016/j.laa.2015.12.016
https://doi.org/10.1017/S0004972700028732
https://doi.org/10.1002/nla.1839
https://doi.org/10.1002/nla.1839

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RIEMANNIAN PRECONDITIONING FOR MATRIX EQUATIONS Al1115

[32] J.-R. L1 AND J. WHITE, Low-rank solution of Lyapunov equations, SIAM Rev., 46 (2004),

pp. 693-713, https://doi.org/10.1137/S0036144504443389.

[33] G. J. Lorp, C. E. POWELL, AND T. SHARDLOW, An Introduction to Computational Stochas-

(34]

(35]

(36]

(37)

(38]

(39]

[40]

[41]

42]

[43]

[44]

(45]

[46]
(47]

(48]

[49]

(50]

[51]

[52]
(53]
[54]

[55]

R.

M.

M.

tic PDFEs, Cambridge Texts Appl. Math., Cambridge University Press, New York, 2014,
https://doi.org/10.1017/CB0O9781139017329.

A. MEYER, C. Musco, C. Musco, AND D. P. WOODRUFF, Hutch++: Optimal stochastic
trace estimation, in Proceedings of the Symposium on Simplicity in Algorithms (SOSA),
SIAM, Philadelphia, 2021, pp. 142-155, https://doi.org/10.1137/1.9781611976496.16.

. MISHRA AND R. SEPULCHRE, Riemannian preconditioning, SIAM J. Optim., 26 (2016),

pp. 635-660, https://doi.org/10.1137/140970860.

. NGO AND Y. SAAD, Scaled gradients on Grassmann manifolds for matriz completion, in

Advances in Neural Information Processing Systems, Vol. 25, F. Pereira, C. Burges, L.
Bottou, and K. Weinberger, eds., Curran Associates, 2012.

. PALITTA, Matriz equation techniques for certain evolutionary partial differential equations,

J. Sci. Comput., 87 (2021), 99, https://doi.org/10.1007/s10915-021-01515-x.

. PALITTA AND P. KURSCHNER, On the convergence of Krylov methods with low-rank trunca-

tions, Numer. Algorithms, 88 (2021), pp. 1383-1417, https://doi.org/10.1007/s11075-021-
01080-2.

. PALITTA AND V. SIMONCINI, Matriz-equation-based strategies for convection-diffusion equa-

tions, BIT, 56 (2016), pp. 751-776, https://doi.org/10.1007/s10543-015-0575-8.

. E. PoweLL AND H. C. ELMAN, Block-diagonal preconditioning for spectral stochastic

finite-element systems, IMA J. Numer. Anal., 29 (2009), pp. 350-375, https://doi.org/
10.1093/imanum/drn014.

. E. POWELL, D. SILVESTER, AND V. SIMONCINI, An efficient reduced basis solver for stochastic

Galerkin matriz equations, STAM J. Sci. Comput., 39 (2017), pp. A141-A163, https://
doi.org/10.1137/15M1032399.

. RICHTER, L. D. Davis, aAND E. G. CoOLLINS, JR., Efficient computation of the solutions

to modified Lyapunov equations, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 420-431,
https://doi.org/10.1137/0614030.

. Saak, M. KOHLER, AND P. BENNER, M-M.E.S.S. — The Matriz Equation Sparse Solver

Library, https://doi.org/10.5281/ZENODO.7701424.

. SATO, Riemannian conjugate gradient methods: General framework and specific al-

gorithms with convergence analyses, SIAM J. Optim., 32 (2022), pp. 2690-2717,
https://doi.org/10.1137/21M1464178.

. D. SHANK, V. SIMONCINI, AND D. B. SzYLD, Efficient low-rank solution of generalized Lya-

punov equations, Numer. Math., 134 (2016), pp. 327-342, https://doi.org/10.1007/s00211-
015-0777-7.

SHAO, Householder orthogonalization with a nonstandard inner product, STAM J. Matrix
Anal. Appl., 44 (2023), pp. 481-502, https://doi.org/10.1137/21M1414814.

. SIMONCINI, Computational methods for linear matriz equations, SIAM Rev., 58 (2016),

pp. 377-441, https://doi.org/10.1137/130912839.

. SIMONCINI AND Y. HAO, Analysis of the truncated conjugate gradient method for linear

matriz equations, SIAM J. Matrix Anal. Appl., 44 (2023), pp. 359381, https://doi.org/
10.1137/22M147880X.

SUTTI AND B. VANDEREYCKEN, Riemannian multigrid line search for low-rank prob-
lems, SIAM J. Sci. Comput., 43 (2021), pp. A1803-A1831, https://doi.org/10.1137/
20M1337430.

. ULLMANN, A Kronecker product preconditioner for stochastic Galerkin finite element dis-

cretizations, SIAM J. Sci. Comput., 32 (2010), pp. 923-946, https://doi.org/10.1137/
080742853.

. USCHMAJEW AND B. VANDEREYCKEN, Line-search methods and rank increase on low-rank

matriz varieties, in Proceedings of the 2014 International Symposium on Nonlinear Theory
and Its Applications (NOLTA2014), Vol. 46, IEICE Japan, 2014, pp. 52-55.

. F. VAN LoaN, Generalizing the singular value decomposition, STAM J. Numer. Anal., 13

(1976), pp. 76-83, https://doi.org/10.1137/0713009.

. VANDEREYCKEN, Riemannian and Multilevel Optimization for Rank-Constrained Matriz

Problems, Ph.D. thesis, Department of Computer Science, KU Leuven, 2010.

. VANDEREYCKEN, Low-rank matrixz completion by Riemannian optimization, STAM J. Optim.,

23 (2013), pp. 1214-1236, https://doi.org/10.1137/110845768.

. VANDEREYCKEN AND S. VANDEWALLE, A Riemannian optimization approach for comput-

ing low-rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl., 31 (2010),
pp. 2553-2579, https://doi.org/10.1137/090764566.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/S0036144504443389
https://doi.org/10.1017/CBO9781139017329
https://doi.org/10.1137/1.9781611976496.16
https://doi.org/10.1137/140970860
https://doi.org/10.1007/s10915-021-01515-x
https://doi.org/10.1007/s11075-021-01080-2
https://doi.org/10.1007/s11075-021-01080-2
https://doi.org/10.1007/s10543-015-0575-8
https://doi.org/10.1093/imanum/drn014
https://doi.org/10.1093/imanum/drn014
https://doi.org/10.1137/15M1032399
https://doi.org/10.1137/15M1032399
https://doi.org/10.1137/0614030
https://doi.org/10.5281/ZENODO.7701424
https://doi.org/10.1137/21M1464178
https://doi.org/10.1007/s00211-015-0777-7
https://doi.org/10.1007/s00211-015-0777-7
https://doi.org/10.1137/21M1414814
https://doi.org/10.1137/130912839
https://doi.org/10.1137/22M147880X
https://doi.org/10.1137/22M147880X
https://doi.org/10.1137/20M1337430
https://doi.org/10.1137/20M1337430
https://doi.org/10.1137/080742853
https://doi.org/10.1137/080742853
https://doi.org/10.1137/0713009
https://doi.org/10.1137/110845768
https://doi.org/10.1137/090764566

Downloaded 10/28/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Al116 IVAN BIOLI, DANIEL KRESSNER, AND LEONARDO ROBOL

[56] E. WACHSPRESS, The ADI Model Problem, Springer, New York, 2013, https://doi.org/10.
1007/978-1-4614-5122-8.

[57] E. L. WACHSPRESS, Iterative solution of the Lyapunov matriz equation, Appl. Math. Lett., 1
(1988), pp. 87-90, https://doi.org/10.1016/0893-9659(88)90183-8.

[58] J. ZuanG AND J. G. NAGY, An alternating direction method of multipliers for the solution of
matriz equations arising in inverse problems, Numer. Linear Algebra Appl., 25 (2018),
€2123, https://doi.org/10.1002/nla.2123.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1007/978-1-4614-5122-8
https://doi.org/10.1007/978-1-4614-5122-8
https://doi.org/10.1016/0893-9659(88)90183-8
https://doi.org/10.1002/nla.2123

	Introduction
	Brief overview of low-rank Riemannian optimization
	Embedded geometry of fixed-rank matrices
	Riemannian nonlinear conjugate gradient (R-NLCG)
	Preconditioned Riemannian optimization

	Riemannian preconditioning for multiterm matrix equations
	Preconditioned inner product with B X=EXD
	Preconditioned gradient with P X=EXD
	Preconditioned gradient with P X=AX+XB
	Preconditioning with P X=AXD+EXB
	tangADI: ADI on the tangent space
	Classical ADI
	Basic form of tangADI
	Implementation aspects and complexity

	Preconditioned R-NLCG with rank adaptivity
	Rank adaptivity

	Numerical tests
	Finite difference discretization of two-dimensional PDEs on square domain
	Stochastic Galerkin matrix equations
	Numerical results

	Modified bilinear rail problem

	Conclusions
	Acknowledgment
	References

