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Abstract. The Nystr\"om method offers an effective way to obtain low-rank approximation of
SPD matrices and has been recently extended and analyzed to nonsymmetric matrices (leading to the
generalized Nystr\"om method). It is a randomized, single-pass, streamable, cost-effective, and accurate
alternative to the randomized SVD, and it facilitates the computation of several matrix low-rank
factorizations. In this paper, we take these advancements a step further by introducing a higher-order
variant of Nystr\"om's methodology tailored to approximating low-rank tensors in the Tucker format:
the multilinear Nystr\"om technique. We show that, by introducing appropriate small modifications
in the formulation of the higher-order method, strong stability properties can be obtained. This
algorithm retains the key attributes of the generalized Nystr\"om method, positioning it as a viable
substitute for the randomized higher-order SVD algorithm.
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1. Introduction. Multilinear arrays, or tensors, offer a natural way to model
higher-order structures, such as multivariate functions, models depending on several
parameters, or high-dimensional PDEs. For this reason, they are often encountered
in the numerical treatment of such applications. On one hand, this allows a seamless
description of such structures. On the other hand, problems dealing with multidi-
mensional arrays suffer the so-called curse of dimensionality [3], which makes them
computationally intractable due to memory requirements. More specifically, the stor-
age requirements and the complexity of the numerical tools grow exponentially with
the number of dimensions d.

There have been several efforts to reduce the cost associated with dealing with
tensors, and the most promising techniques leverage the use of low-rank properties
[15]. It turns out that giving an appropriate definition of tensor rank can be a chal-
lenging task. In contrast to the 2-dimensional case (i.e., when dealing with matrices),
where the definition of rank is essentially unique (and is linked with the dimensions of
the subspaces spanned by rows and columns, which are the same), for tensors, we have
several alternatives. In the matrix case, the rank and the closest rank k approximant
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1930 ALBERTO BUCCI AND LEONARDO ROBOL

can be efficiently and stably computed with the singular value decomposition (SVD)
[12].

The closest algebraic concept for d > 2 is finding the shortest decomposition in
terms of outer products of d vector (which we define as rank 1 tensors). This is usually
referred to as canonical polyadic decomposition (CP or CPD) [19] and does not lead
to favorable properties for numerical computations (for instance, the set of tensors
with rank at most k is not closed). An analogue of the SVD is not available in this
setting. For this reason, it is convenient to look for other definitions of rank, such
as the multilinear rank and the related Tucker decomposition (for which a higher-
order SVD (HOSVD) is available [9]) or decompositions such as tensor trains [29] or
hierarchical Tucker [14].

In this work, we focus on the Tucker decomposition [17] of low-rank tensors, and
we address the problem of finding a randomized algorithm for the low-rank approxi-
mation in this format exploiting only tensor mode-j products or contractions.

It has been recently shown that randomization can be a powerful and highly suc-
cessful tool in numerical linear algebra [20, 22, 28], especially for large-scale problems,
where parallelization and limited access to data are needed. The main example of this
situation is to find a near-optimal low-rank approximation to a matrix A\in \BbbR m\times n.

The underlying idea of randomized low-rank approximation algorithms is that
the rows of a numerically low-rank matrix are almost linearly dependent, and they
can be embedded into a low-dimensional space without substantially altering their
geometric properties. In particular, it has been observed that using random sketch
matrices to construct a dimensionality reduction map (DRM) is often an efficient and
nonadaptive way to achieve this.

In this regard, consider Algorithm 1.1, described by Halko, Martinsson, and Tropp
(HMT) in [16], to determine an orthogonal matrix Q\in \BbbR m\times (r+\ell ) such that QQTA\approx A
is a rank r+ \ell factorization of A.

Despite its simplicity, this strategy is efficient and comes with attractive theoret-
ical guarantees: It provides a near-optimal low-rank approximation to A. When the
matrix X is chosen with independent Gaussian distributed entries (with zero mean
and unit variance), one can prove the following upper bound for the expected value
of the approximation error:

\BbbE \| A - QQTA\| F \leq 
\sqrt{} 
1 +

r

\ell  - 1
\cdot 
\sqrt{} \sum 

j>r

\sigma 2
j (A).

Since
\sqrt{} \sum 

j>r \sigma 
2
j (A) is the distance of A from the set of rank r matrices with respect

to the Frobenius norm, the result is quasi-optimal up to a moderate constant. To
better characterize the behavior of the randomized algorithm, one can describe the
tail of the distribution. Under mild assumptions on \ell (the oversampling parameter),
we have

Algorithm 1.1. Randomized rangefinder (HMT).
Input A\in \BbbR m\times n, rank r\leq min\{ m,n\} , oversampling parameter \ell \geq 2.
Output Q\in \BbbR m\times (r+\ell ) with QTQ= I and such that QQTA\approx A.

Draw a random matrix X \in \BbbR n\times (r+\ell );
Compute AX (sketching);
Compute Q, orthogonal factor of an economy-size QR of AX.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1931

\BbbP 

\left\{   \| A - QQTA\| F >

\Biggl( 
1 + \ell 

\sqrt{} 
3r

\ell + 1
+ e
\sqrt{} 

2\ell (r+ \ell ) log \ell 

\Biggr) \sqrt{} \sum 
j>r

\sigma 2
j (A)

\right\}   \leq 3\ell  - \ell .

This and other results are discussed in [16] and the references therein.1

While very effective, the HMT method requires orthogonalization steps, which,
in specific situations, may be relatively expensive or not available because of the
use of particular architectures (e.g., GPUs) [25]. In addition, the method requires two
passes, where the result of the first matrix-vector multiplication needs to be processed
and then used in another matrix-vector multiplication. To reduce communication,
single-pass algorithms are more attractive in several environments and have driven
the interest in the design of ``streamable"" algorithms [21]. To mitigate this issue,
one may rely on the Nystr\"om method; originally developed for SPD matrices, it has
been recently extended to general matrices in [35]. In [25], where the method is called
generalized Nystr\"om, or GN, a few tricks to improve stability are proposed and a
detailed error analysis of the method is given.

The scheme of the GN method is the following: First, two DRMs X \in \BbbR n\times r and
Y \in \BbbR m\times (r+\ell ) for some \ell \geq 1 are generated; then, the low-rank approximation \widehat A is
obtained by the formula \widehat A=AX(Y TAX)\dagger Y TA.(1.1)

The analysis in [25] shows that, as for HMT, the quality of the approximation provided
by GN is near optimal and that the method can be implemented in a numerically
stable fashion despite the presence of a (potentially) ill-conditioned pseudoinverse.

In scenarios involving sparsity or structured data, one may wish to have factors
with the same structure, a feature that GN might not have. In this context, alternative
approaches such as the CUR factorization proposed in [13] may be more appealing.

As regards tensors, several different randomized approaches for the Tucker approx-
imation have been proposed in the literature [1, 8, 10, 23, 24, 33]. In [5, 11, 30, 32], for
instance, the authors propose CUR-type algorithms for the decomposition of tensors.

Another straightforward approach is to replace every truncated SVD inside the
HOSVD [9] or the sequential truncated HOSVD (STHOSVD) [36] algorithms with
the HMT method [37]. However, such methods and the variants mentioned above are
not streamable and may require (large and expensive) QR decompositions.

In this work, we present an extension of GN to tensors that recovers a Tucker
decomposition; being a higher-order generalization of the Nystr\"om method, we refer
to the new version as multilinear Nystr\"om (MLN).

The resulting method has near-optimal approximation quality and delivers results
of comparable accuracy to other competing methods; the computational cost is near
optimal for dense tensors, with small hidden constants, and, similarly to GN, it can be
implemented in a numerically stable fashion. The method avoids QR factorizations
of large matrices and only uses ``advanced"" linear algebra techniques (i.e., operations
that are not matrix-vector products or matrix-matrix products) on small matrices.
Hence, it is amenable to the implementation on various architectures with minimal
requirements.

Theoretical results and numerical experiments show that the algorithm outper-
forms state-of-the-art methods in terms of memory requirements, computational cost,
and number of accesses to the original tensor data.

1To obtain the tail bound for the approximation error in the Frobenius norm, we used t= \ell and
u=

\surd 
2\ell log \ell in Theorem 10.7 of [16].
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1932 ALBERTO BUCCI AND LEONARDO ROBOL

2. Preliminary concepts and notation. In this section, we introduce a few
concepts and notations used throughout the paper. A tensor \scrA \in \BbbR I1\times \cdot \cdot \cdot \times Id is a d
dimensional array with entries

ai1i2...id , 1\leq ik \leq Ik, k= 1, . . . , d.

The symbols used for transposition, Moore--Penrose inverse, and Kronecker products
of matrices are T , \dagger , and \otimes , respectively. We use \| \cdot \| F for the Frobenius norm and
\| \cdot \| 2 for the spectral norm.

We will repeatedly use the unfolding operation, which consists of reshaping ten-
sors into matrices. The operation is sometimes called matricization or flattening.
More specifically, when \scrA is a tensor, its mode-k matricization is denoted by \scrA k \in 
\BbbR Ik\times 

\prod 
j \not =k Ij and satisfies

(\scrA k)ik,j =\scrA i1,...,id ,

where

j = 1+

d\sum 
t=1,t\not =k

(it  - 1)Jt, Jt =

t - 1\prod 
s=1,s \not =k

Is.

The mode-k product of a tensor \scrA \in \BbbR I1\times \cdot \cdot \cdot \times Id and a matrix X \in \BbbR J\times Ik is denoted by
\scrA \times k X and is such that

(\scrA \times k X)i1...ik - 1jik+1...id =

Ik\sum 
s=1

\scrA i1...ik - 1sik+1...idXjs.

The mode-k product along all dimensions (i.e., for k = 1, . . . , d) can be effectively
expressed by leveraging a mix of matricizations and Kronecker products as follows:

(\scrA \times 1 X1 \times \cdot \cdot \cdot \times Xd)k =Xk\scrA k(Xd \otimes \cdot \cdot \cdot \otimes Xk+1 \otimes Xk - 1 \otimes \cdot \cdot \cdot \otimes X1)
T .

The focus of this work is on Tucker decompositions, which are closely related with
the concept of multilinear rank. Given a d-dimensional tensor, its multilinear rank
is a tuple denoted by rkML(\scrA ) = (r1, . . . , rd), where rk is the matrix rank of \scrA k, its
mode-k matricization [9].

When we need to compare multilinear ranks of different tensors, we say that
rkML(\scrA )\leq rkML(\scrB ) if the multilinear rank of \scrA is componentwise smaller than the
one of \scrB .

Several tensors of interest have some low-rank properties [15], which often only
hold in an approximate sense (i.e., they are not low-rank, but they are close to a
low-rank tensor in an appropriate metric). We introduce the class of \epsilon -approximable
tensors, which makes this idea more precise.

Definition 2.1. Given a tuple (r1, . . . , rd) and \epsilon > 0, we define \scrT \epsilon (r1, . . . , rd) as
the set

\scrT \epsilon (r1, . . . , rd) := \{ \scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd | \exists \| \scrE \| F \leq \epsilon with rkML(\scrA + \scrE )\leq (r1, . . . , rd)\} .

When multiplying a tensor with mode-k products along different modes (for in-
stance, for k = 1, . . . , d), the order of the multiplication is irrelevant since the opera-
tions commute. Hence, we often shorten formulas involving this kind of product as
follows:

\scrA \times d
i=1 Xi =\scrA \times 1 X1 \cdot \cdot \cdot \times d Xd,

X\otimes \v k =Xd \otimes \cdot \cdot \cdot \otimes Xk+1 \otimes Xk - 1 \otimes \cdot \cdot \cdot \otimes X1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1933

We also remark that the following properties hold and are easily verified using
the formulations of mode-k products by means of matricization:

\scrA \times k Xi \times k Xj =\scrA \times k XjXi, (\scrA \times d
i=1 Xi)k =Xk\scrA kX

T
\otimes \v k

.

We denote by Q = orth(X) the Q factor of an economy-size QR factorization of
a matrix X with more rows than columns.

3. Randomized matrix low-rank approximation. The analysis of the MLN
method is based on results from the matrix case, which are briefly reviewed in this
section. More specifically, we consider the approximant obtained by the HMT scheme
for finding an orthogonal basis of the column span (as in [16]) and the GN scheme
from [25].

Given a matrix A of size m\times n, the approximants obtained by the HMT and GN
methods are given, respectively, by\widehat AHMT =Q(QTA) and \widehat AGN =AX(Y TAX)\dagger Y TA,

where Q= orth(AX) and X \in \BbbR n\times r, Y \in \BbbR m\times (r+\ell ) are two DRM matrices.
We denote by EHMT the error of the approximation in the Frobenius norm of the

HMT approximant and with EGN that of GN; we have the following upper bounds:

EHMT \leq \| \widetilde \Sigma \| F\sqrt{} 1 + \| \widetilde V T
\bot X\| 22\| (\widetilde V TX)\dagger \| 22,(3.1)

EGN \leq EHMT

\sqrt{} 
1 + \| QT

\bot Y \| 22\| (QTY )\dagger \| 22,(3.2)

where, for any \widehat r < r, \widetilde \Sigma is the diagonal term in the SVD of A with a 0 in place of the
first \widehat r singular values and \widetilde V is the orthogonal matrix with the first \widehat r right singular
vectors of A.

The term \| \widetilde \Sigma \| F is the optimal error that would be obtained by a truncated SVD;
hence, it is clear that it is important to choose the DRM in a way that makes the
other terms as small as possible (with high probability). At the same time, we wish
to maintain the cost of taking the matrix-vector products small, so it makes sense
to use DRMs drawn from a set of structured matrices that have fast matrix-vector
products routines available.

A few choices of random samplings that allow for fast multiplications arise from
subsampling trigonometric transforms. Examples include the subsampled randomized
Hadamard transform (denoted by SRHT) [4, 34], and the subsampled randomized
Fourier transform (SRFT) [31]. These approaches reduce the cost of forming AX to
\scrO (mn logn), where n is the number of columns of X and m the number of rows of A.
The theory for these subsampled transforms can be more complex than the one for
more ``classical"" choices, such as Gaussian matrices; the latter are deeply understood
and have sharp error bounds available (see [22] and the references therein).

The use of GN has a few advantages with respect to the HMT scheme; it avoids
orthogonalizations and can be used as a single-pass approximation method.

However, without a proper implementation, the stability of GN can be cause
for concern. The pseudocode in Algorithm 3.1 reports the implementation suggested
in [25].

In practice, a slight oversample parameter \ell makes this implementation stable, but
no theoretical assessments have been conducted. While stability cannot be established
for (1.1) as is, there is an inexpensive modification that guarantees stability:\widehat A=AX(Y TAX)\dagger \epsilon Y

TA,(3.3)

which is the stabilized generalized Nystr\"om (SGN) method.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1934 ALBERTO BUCCI AND LEONARDO ROBOL

Algorithm 3.1. GN.
Input A\in \BbbR m\times n, rank r\leq min\{ m,n\} , oversampling parameter \ell \geq 1.

Output Low-rank approximant \widehat A of A.
Draw two random matrices X \in \BbbR n\times r and Y \in \BbbR m\times (r+\ell );
Compute AX, Y TA;
Compute an economy-size QR factorization Y TAX =ZR;

Compute \widehat A= ((AX)R - 1)(ZT (Y TA)).

Here, (Y TAX)\epsilon denotes the \epsilon -pseudoinverse; that is, if

Y TAX =
\bigl[ 
U1 U2

\bigr] \biggl[ \Sigma 1

\Sigma 2

\biggr] \bigl[ 
V1 V2

\bigr] T
is the SVD, where \Sigma 1 contains singular values larger than \epsilon , then (Y TAX)\dagger \epsilon =
V1\Sigma 

 - 1
1 UT

1 . In the following, \epsilon will be chosen as a modest multiple of the unit roundoff
u times \| A\| F ; that is, \epsilon =\scrO (u\| A\| F ).

Different strategies to implement SGN in a stable manner can be found in [25].

4. MLN. This section is devoted to extending GN to tensors and, in particu-
lar, laying the ground for determining whether the stability analysis and the related
guarantees that are explored in [25] for matrices carry over to the tensor setting.

To simplify the analysis, it is convenient to rewrite the classical Nystr\"om approx-
imant (1.1) in the matrix setting in a slightly different way. Leveraging the properties
of the Moore--Penrose pseudoinverse, we have the following identity:

AX(Y TAX)\dagger Y TA=AX(Y TAX)\dagger Y TAX(Y TAX)\dagger Y TA.

The above reformulation identifies a structure in the approximant, which is formed
by a small core matrix Y TAX and two matrices of the form AX(Y TAX)\dagger and
(Y TAX)\dagger Y TA = (ATY (XTATY )\dagger )T that invert the sketching procedure. Notice
that the matrices \scrP 1 :=AX(Y TAX)\dagger Y T and \scrP 2 :=ATY (XTATY )\dagger XT are approxi-
mate oblique projections on the column space of A and AT , respectively.

This formulation can be replicated in the tensor setting. Given a tensor \scrA \in 
\BbbR n1\times \cdot \cdot \cdot \times nd and sketch matrices Xi \in \BbbR ni\times ri i = 1, . . . , d, we form a core tensor
\scrA \times d

i=1 X
T
i by sketching \scrA in all the modes, and we construct the matrices (\scrA \times i \not =k

XT
i )k(\scrA \times d

i=1X
T
i )

\dagger 
k that give an approximate basis of the column span of the mode-k

matricization.
This leads to a randomized algorithm for finding a low-rank representation of a

tensor in Tucker format. Formally, we define the approximant \widehat \scrA of \scrA by\widehat \scrA = (\scrA \times d
i=1 X

T
i )\times d

k=1

\Bigl( 
(\scrA \times i \not =k X

T
i )k(\scrA \times d

i=1 X
T
i )

\dagger 
k

\Bigr) 
= (\scrA \times d

i=1 X
T
i )\times d

k=1

\bigl( 
\scrA kX\otimes \v k(X

T
k \scrA kX\otimes \v k)

\dagger \bigr) .(4.1)

Note that, when d = 2, the matrix \widehat A1, flattening along the first index of (4.1), is
indeed the reformulation of the GN approximant proposed above. In fact, we have\widehat A1 =AX2(X

T
1 AX2)

\dagger (XT
1 AX2)(X

T
1 AX2)

\dagger XT
1 A=AX2(X

T
1 AX2)

\dagger XT
1 A.(4.2)

It is convenient to define, for each k= 1, . . . , d, the projection matrix

\scrP k :=
\Bigl( 
(\scrA \times i \not =k X

T
i )k(\scrA \times d

i=1 X
T
i )

\dagger 
k

\Bigr) 
XT

k =\scrA kX\otimes \v k(X
T
k \scrA kX\otimes \v k)

\dagger XT
k .(4.3)
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MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1935

The matrix \scrP k is an oblique projection onto the column space of \scrA k and allows us to
rewrite (4.1) in the compact form \widehat \scrA =\scrA \times d

k=1 \scrP k.

Note that the formula we mentioned above is not new and was already present in
Caiafa and Cichocki [6]. This paper was published before the formulation of GN in
[35, 25]. To the best of our knowledge, the connection between these two works has
not been emphasized so far.

An important feature of (4.1) is that, when the tensor \scrA is expressed in Tucker
format (that is, \scrA = \scrC \times d

k=1 Uk with small core tensor \scrC ), the cost of computing
the different mode products drops dramatically; we can first compute the products
\Psi k =XT

k Uk and then the mode products between \scrC and the \Psi k. This suggests that
(4.1) can be used as an effective method for recompression of tensors in Tucker format.

For the matrix case (d = 2) in the formulation of (3.3), the key property that
allows us to prove some form of stability under floating-point inaccuracies is to have
unbalanced dimensions in X and Y ; the fact that Y has r + \ell rows and X only r
plays the same role of the oversampling in Algorithm 1.1 and allows us to stabilize
the least-square solution. This property is lost when we factor out the projections as
in (4.1). Hence, the reformulation of (4.1) has two opposite effects on the design of
the low-rank approximation scheme:

\bullet On one hand, it makes extending the approach to d> 2 much easier because
it suffices to define the oblique projectors \scrP k and apply them on all modes
from k= 1, . . . , d.

\bullet On the other hand, it makes a stability analysis more difficult (or impossible
without further modifications) because any immediate bound will depend on
the norms of \scrP k, which are hard to control.

We have already discussed how the reformulation allows for an easy extension for
a generic d. In the next section, we will show that we can introduce further degrees
of freedom in the choice of samplings, and this will greatly help in slightly modifying
the method to make it stable. The core idea is that, instead of fixing only d sampling
matrices X1, . . . ,Xd, we can choose 2d by introducing additional samplings Y1, . . . , Yd.
This will allow us to reintroduce the unbalanced dimension (and the stabilized least-
square solvers) into the picture.

4.1. Introducing more sketching matrices. This section introduces a small
variant of the sketching procedure described in (4.1) that allows us to select more than
d sketching matrices (2d instead of d). The aim of this generalization is to design an
approximation method with better stability properties.

To make it easier to follow the discussion, we start by showing how this general-
ization can be formulated in the matrix case.

Recall that, according to the previous discussion, the approximation provided by
GN can be written as

AX(Y TAX)\dagger Y TAX(Y TAX)\dagger Y TA.

Instead of using the same X and Y for the two projections AX(Y TAX)\dagger Y T

and X(Y TAX)\dagger Y TA, we may achieve more generality by using different sketching
matrices (X1 \in \BbbR n1\times r1 and Y1 \in \BbbR m1\times (r1+\ell 1) for the first projection and X2 \in \BbbR n2\times r2

and Y2 \in \BbbR m2\times (r2+\ell 2) for the second), still ensuring that, whenever A is of low rank,
an exact representation is retrieved (at least theoretically, if no floating-point errors
are considered). The resulting approximant would be as follows:
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1936 ALBERTO BUCCI AND LEONARDO ROBOL

\widehat A=AX1(Y
T
1 AX1)

\dagger Y T
1 AY2(X

T
2 AY2)

\dagger XT
2 A.(4.4)

Note that, in the second projection, not only have we substituted X and Y with
X2 and Y2, but we have also swapped them for reasons of symmetry.

In addition, by looking at \widehat A as a 2-dimensional tensor, this approximation can be
obtained by applying oblique projectors \scrP 1 and \scrP 2 along modes 1 and 2, respectively,
with the projectors \scrP 1 =AX1(Y

T
1 AX1)

\dagger Y T
1 and \scrP 2 =ATX2(Y

T
2 ATX2)

\dagger Y T
2 . We use

the same notation \scrP k used in (4.3) for these more general projectors since there is no
risk of confusion.

Going back to the notation of mode-j products, we may rewrite the approximation
as follows: \widehat A=A\times 1 \scrP 1 \times 2 \scrP 2.

In the matrix case d= 2, this idea is not particularly appealing since it requires more
matrix-vector products.

For the ``standard"" GN, only one of two projections needs to be computed since
we may write

\widehat A=A\times 1 \scrP 1 \times 2 \scrP 2 =A\times 1 \scrP 1 =A\times 2 \scrP 2.

The idea will, however, be valuable in the tensor setting, where we have already an-
ticipated that the simplification of the projections that happens for d= 2 is not easily
obtainable. The next section is devoted to analyzing (4.4) in detail; we anticipate
that its accuracy is just slightly less than GN but still near optimal, its cost is about
twice as expensive as GN, and crucially, it can be implemented in a numerically stable
fashion.

This more general approximant is expressed in a form that can be readily extended
to the tensor setting. Given a tensor \scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd and sketch matrices Xi \in 
\BbbR 

\prod 
j \not =i nj\times ri and Yi \in \BbbR ni\times (ri+\ell i), i = 1, . . . , d, we define the MLN approximant \widehat \scrA of

\scrA as follows:

\widehat \scrA = (\scrA \times d
k=1 Y

T
k )\times d

k=1 \scrA kXk(Y
T
k \scrA kXk)

\dagger .(4.5)

The approximant is obtained by sketching with matrices Yk and using oblique projec-
tions built with the matrices Xk in order to construct a low-rank Tucker factorization.
The oblique projectors are easy to write explicitly; we have \scrP k :=\scrA kXk(Y

T
k \scrA kXk)

\dagger Y T
k ,

and this will be helpful for our analysis later on. In (4.5), we assumed Yk with more
columns than Xk. Nevertheless, it is worth noting that, by relaxing this assumption,
the resulting reformulation is an extension of the original one in (4.1), which can be
recovered by substituting Yk with Xk and Xk with X\otimes \v k in (4.5).

The pseudocode in Algorithm 4.1 describes the method for computing the approx-
imant in (4.5). The QR factorization in the pseudocode is the standard economy-size
QR factorization without pivoting.

We remark that, even though we obtained (4.5) with a different approach, the
MLN approximant turns out to be mathematically equivalent to the one provided by
Algorithm 4.3 in [33]. There are, however, algorithmic differences; our implementation
avoids the expensive QR factorization of AkXk and, as we prove in section 5.3, has
the same stability properties of GN.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1937

Algorithm 4.1. MLN.
Input \scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd , multilinear rank r= (r1, . . . , rd)\leq (n1, . . . , nd),

oversampling vector \ell = (\ell 1, . . . , \ell d).

Output Low-rank Tucker approximant \widehat \scrA of \scrA .
for k= 1, . . . , d

Draw random matrices Xk \in \BbbR 
\prod 

i\not =k ni\times rk and Yk \in \BbbR nk\times (rk+\ell k);
Compute \scrA kXk, Y

T
k \scrA k;

Compute an economy-size QR factorization Y T
k \scrA kXk =ZkRk;

Compute \widehat \scrA = ((\scrA \times d
k=1 Y

T
k )\times d

k=1 Z
T
k )\times d

k=1 (\scrA kXkR
 - 1
k ).

end

5. Properties of MLN. In this section, we prove that the accuracy of MLN is
near optimal and that the version of Algorithm 4.1 with the \varepsilon -pseudoinverse, stabilized
multilinear Nystr\"om (SMLN) may be implemented in a stable way.

Concerning accuracy, our objective is to show that, choosing appropriate sketch-
ings, the performances attained by MLN are close to the one of randomized HOSVD
(RHOSVD) (a tensor version of HMT), which is, in turn, close to the HOSVD with
high probability [37].

For what concerns the stabilization, we will show how some ideas from [25] can
be generalized from the matrix to the tensor setting, allowing stronger stability guar-
antees. This will be obtained thanks to the particular choices of sketchings that we
made in the previous section, introducing the matrices Yk, and is not easy to obtain
otherwise (such as in the first MLN proposed by Caiafa and Cichocki [6], where some
form of stability has been shown only in the matrix case d= 2).

5.1. Accuracy of MLN. In order to prove the results related to the accuracy
of the MLN scheme, we now introduce a few auxiliary lemmas.

We denote by \scrP k the oblique projections \scrP k := \scrA kXk(Y
T
k \scrA kXk)

\dagger Y T
k . In this

way, we may write the approximation obtained by MLN with the compact notation\widehat \scrA =\scrA \times d
k=1 \scrP k.

Lemma 5.1. Let \scrA be a d-dimensional tensor and \scrP k :=\scrA kXk(Y
T
k \scrA kXk)

\dagger Y T
k for

sketching matrices Xk, Yk of compatible dimensions. Then, the following inequality
holds:

\| \scrA  - \widehat \scrA \| F \leq 
d\sum 

k=1

\| \scrA \times k - 1
i=1 \scrP i  - \scrA \times k

i=1 \scrP i\| F .(5.1)

Proof. We expand the approximation error \scrA  - \widehat \scrA in the telescopic sum

\scrA  - \widehat \scrA =

d\sum 
k=1

\bigl( 
\scrA \times k - 1

i=1 \scrP i  - \scrA \times k
i=1 \scrP i

\bigr) 
.

The result follows by taking Frobenius norms on both sides and using the subadditivity
property.

The terms in the summation above are of the form \| \scrB  - \scrB \times k \scrP k\| F , where \scrB =
\scrA \times k - 1

i=1 \scrP i. This fact allows us to relate the approximation error of MLN with the
approximation error of a GN obtained by appropriately flattening the tensors.

The next lemma is a step in this direction; it relates the approximation error
along mode-1 with the error in the projection used with HMT on the matricization.
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1938 ALBERTO BUCCI AND LEONARDO ROBOL

The result is in line with the one proved in [25] for the matrix case when analyzing
GN.

Lemma 5.2. Let \scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd and X1 \in \BbbR 
\prod 

k \not =1 nk\times r1 , and let Q1R1 denote an
economy-size QR of \scrA 1X1 \in \BbbR n1\times r1 . If Y1 has r1 + \ell 1 columns and Y T

1 Q1 has rank
r1, then

\| \scrA  - \scrA \times 1 \scrP 1\| F \leq \| QT
1\bot \scrA 1\| F

\sqrt{} 
1 + \| (Y T

1 Q1)\dagger \| 22\| Y T
1 Q1\bot \| 22.(5.2)

Proof. The Frobenius norm of a tensor coincides with the one of any of its ma-
tricizations; hence, we may write

\| \scrA  - \scrA \times 1 \scrP 1\| F = \| \scrA 1  - Q1Q
T
1 \scrA 1 +Q1Q

T
1 \scrA 1  - \scrA 1X1(Y

T
1 \scrA 1X1)

\dagger Y T
1 \scrA 1\| F

= \| \scrA 1  - Q1Q
T
1 \scrA 1 +Q1(Q

T
1  - (Y T

1 Q1)
\dagger Y T

1 )\scrA 1\| F .

Let us denote with Q1\bot a matrix whose columns span the orthogonal space to the
columns of Q1. Then, the following two identities hold:

Q1Q
T
1 +Q1\bot Q

T
1\bot = I,(5.3)

(QT
1  - (Y T

1 Q1)
\dagger Y T

1 )Q1 = 0.(5.4)

The first relation is simply the decomposition of the identity as the projections over the
column span of Q1 and its orthogonal space; the second follows from our assumption
that Y T

1 Q1 is of full column rank. We make use of these two identities to further
simplify the previous expression for \| \scrA  - \scrA \times 1 \scrP 1\| F :

\| \scrA  - \scrA \times 1 \scrP 1\| F = \| \scrA 1  - Q1Q
T
1 \scrA 1 +Q1(Q

T
1  - (Y T

1 Q1)
\dagger Y T

1 )\scrA 1\| F ,
[(5.3) + (5.4)]\rightarrow = \| Q1\bot Q

T
1\bot \scrA 1 +Q1(Q

T
1  - (Y T

1 Q1)
\dagger Y T

1 )Q1\bot Q
T
1\bot \scrA 1\| F ,

QT
1 Q1\bot = 0\rightarrow = \| Q1\bot Q

T
1\bot \scrA 1  - Q1(Y

T
1 Q1)

\dagger (Y T
1 Q1\bot )Q

T
1\bot \scrA 1\| F .

To conclude, recall that, whenever two matrices A,B have orthogonal columns, we
have \| A+B\| 2F = \| A\| 2F + \| B\| 2F . Therefore,

\| \scrA  - \scrA \times 1 \scrP 1\| 2F = \| Q1\bot Q
T
1\bot \scrA 1\| 2F + \| Q1(Y

T
1 Q1)

\dagger (Y T
1 Q1\bot )Q

T
1\bot \scrA 1\| 2F

\leq \| QT
1\bot \scrA 1\| 2F + \| (Y T

1 Q1)
\dagger \| 22\| Y T

1 Q1\bot \| 22\| QT
1\bot \scrA 1\| 2F

\leq \| QT
1\bot \scrA 1\| 2F \cdot 

\bigl( 
1 + \| (Y T

1 Q1)
\dagger \| 22\| Y T

1 Q1\bot \| 22
\bigr) 
.

Taking the square root on both sides of the inequality gives us the claim.

Lemma 5.2 is stated for \scrP 1 but clearly holds for any \scrP i with i = 1, . . . , d up
to permuting the indices. Hence, a rough bound for the accuracy of the low-rank
approximation may be obtained by bounding the terms in (5.1) as follows:

\| \scrA \times k - 1
i=1 \scrP i  - \scrA \times k

i=1 \scrP i\| F \leq \| \scrA  - \scrA \times k \scrP k\| F
k - 1\prod 
i=1

\| \scrP i\| 2.

We may then proceed by finding upper bounds for \| \scrA  - \scrA \times k \scrP k\| F and the norms of
the projections \scrP k separately. However, as discussed in [25, section 3.3], this would
lead to a large overestimate.

To obtain more predictive bounds, we follow another approach and consider the
tensor \scrA \times k

i=1 \scrP i as the tensor \scrA \times k - 1
i=1 \scrP i projected along the kth mode. This yields

the following result. Since the proof follows similar steps to the one of Lemma 5.2,
some details are omitted.
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MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1939

Lemma 5.3. Let \scrA \in \BbbR n1\times \cdot \cdot \cdot \times nd and Xk \in \BbbR 
\prod 

i\not =k ni\times rk , and let QkRk denote an
economy-size QR of \scrA kXk \in \BbbR nk\times rk . If Yk has rk + \ell k columns and Y T

k Qk has rank
rk, then, setting Ek := \| \scrA \times k - 1

i=1 \scrP i  - \scrA \times k
i=1 \scrP i\| F , we have

Ek \leq 
\Bigl( 
\| QT

k\bot \scrA k\| F + \| \scrA  - \scrA \times k - 1
i=1 \scrP i\| F

\Bigr) \sqrt{} 
1 + \| (Y T

k Qk)\dagger \| 22\| Y T
k Qk\bot \| 22.

Proof. Let us define B1 = I and Bk = I \otimes \cdot \cdot \cdot \otimes I \otimes \scrP T
k - 1 \otimes \cdot \cdot \cdot \otimes \scrP T

1 for k > 1 so
we may write

Ek = \| \scrA \times k - 1
i=1 \scrP i  - \scrA \times k

i=1 \scrP i\| F = \| \scrA kBk  - \scrP k\scrA kBk\| F .

We now follow the analogous steps to the proof for Lemma 5.2 but taking into account
the effect of Bk, which yields

E2
k = \| \scrA kBk  - QkQ

T
k\scrA kBk +QkQ

T
k\scrA kBk  - \scrA kXk(Y

T
k \scrA kXk)

\dagger Y T
k \scrA kBk\| 2F

= \| Qk\bot Q
T
k\bot \scrA kBk +Qk(Q

T
k  - (Y T

k Qk)
\dagger Y T

k )\scrA kBk\| 2F
= \| Qk\bot Q

T
k\bot \scrA kBk  - Qk(Y

T
k Qk)

\dagger (Y T
k Qk\bot )Q

T
k\bot \scrA kBk\| 2F

= \| Qk\bot Q
T
k\bot \scrA kBk\| 2F + \| Qk(Y

T
k Qk)

\dagger (Y T
k Qk\bot )Q

T
k\bot \scrA kBk\| 2F

\leq \| QT
k\bot \scrA kBk\| 2F + \| (Y T

k Qk)
\dagger \| 22\| Y T

k Qk\bot \| 22\| QT
k\bot \scrA kBk\| 2F

\leq \| QT
k\bot \scrA kBk\| 2F

\Bigl( 
1 + \| (Y T

k Qk)
\dagger \| 22\| Y T

k Qk\bot \| 22
\Bigr) 

= \| QT
k\bot (\scrA k +\scrA kBk  - \scrA k)\| 2F

\Bigl( 
1 + \| (Y T

k Qk)
\dagger \| 22\| Y T

k Qk\bot \| 22
\Bigr) 

\leq 
\Bigl( 
\| QT

k\bot \scrA k\| F + \| \scrA k  - \scrA kBk\| F
\Bigr) 2\Bigl( 

1 + \| (Y T
k Qk)

\dagger \| 22\| Y T
k Qk\bot \| 22

\Bigr) 
.

As in the previous result, the thesis follows by taking the square root on both sides
of the identity.

Remark 5.4. The term \| QT
k\bot \scrA k\| F is the approximation error of HMT of the

matrix \scrA k with sketch matrix Xk. Thus, by (3.1), we have

\| QT
k\bot \scrA k\| F \leq \| \widetilde \Sigma k\| F

\sqrt{} 
1 + \| \widetilde V T

k\bot Xk\| 22\| (\widetilde V T
k Xk)\dagger \| 22,

where, for any \widehat rk < rk, \widetilde Vk is the orthogonal matrix with the leading \widehat rk right singular
vectors of \scrA k and \widetilde \Sigma k is the diagonal term in the SVD of \scrA k with a 0 in place of the
first \widehat rk singular values.

We now combine these results to state a deterministic accuracy bound for MLN.
Here, deterministic means that the bound is exact as long as the sketchings Xk, Yk

have been fixed. When these sketches are instead random variables with a known
distribution, the result yields probabilistic estimates.

Recall that we denote by \scrT \varepsilon (r1, . . . , rd) the set of tensors that admit an approxi-
mation with multilinear rank at most (r1, . . . , rd) and an approximation error at most
\epsilon in the Frobenius norm (see Definition 2.1).

Theorem 5.5 (deterministic accuracy bound). Let \scrA \in \scrT \varepsilon (r1, . . . , rd), let \widehat \scrA be
the approximant in (4.5), and set

\tau k :=
\sqrt{} 

1 + \| (Y T
k Qk)\dagger \| 22\| Y T

k Qk\bot \| 22 and \rho k :=

\sqrt{} 
1 + \| \widetilde V T

k\bot Xk\| 22\| (\widetilde V T
k Xk)\dagger \| 22,
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1940 ALBERTO BUCCI AND LEONARDO ROBOL

where \widetilde Vk is an orthogonal matrix with the first rk right singular vectors of \scrA k and
Qk = orth(\scrA kXk). Then, denoting with \tau = maxk \tau k and \rho = maxk \rho k, the following
bound holds:

\| \scrA  - \widehat \scrA \| F \leq \varepsilon \rho ((1 + \tau )d  - 1).

Proof. Note that \tau k and \rho k are defined in terms of Qk and \widetilde Vk, which are uniquely
determined only up to right multiplication by appropriate unitary matrices; we start
by verifying that \tau k and \rho k do not depend on the specific choice of Qk and \widetilde Vk and
are therefore well-defined.

Since \widetilde V T
k Xk is square and Y T

k Qk has more rows than columns, for any unitary
matrices Z,W ,

(ZT \widetilde V T
k Xk)

\dagger = (\widetilde V T
k Xk)

\dagger Z, (WTY T
k Qk)

\dagger = (Y T
k Qk)

\dagger W.

Hence, thanks to the invariance of the spectral norm under unitary transformation,
we conclude that \tau k and \rho k do not depend on the specific choice of Qk and \widetilde Vk, as
desired.

We now prove that the sought inequality holds. Thanks to (5.1), to obtain the
claim, it is sufficient to bound terms of the form Ek = \| \scrA \times k - 1

i=1 \scrP i  - \scrA \times k
i=1 \scrP i\| F ,

which then leads to the upper bound

\| \scrA  - \widehat \scrA \| F \leq 
d\sum 

k=1

Ek.(5.5)

We use Lemma 5.2 and Remark 5.4 to obtain the upper bound

E1 \leq \varepsilon 1\rho 1\tau 1,

where \varepsilon k denotes the best possible error of approximation in the Frobenius norm of
rank rk of \scrA k. Similarly, we make use of Lemma 5.3 for all the remaining modes,
which yields for k= 1, . . . , d - 1 the recurrence relation

Ek+1 \leq (\varepsilon k\rho k + \| \scrA  - \scrA \times i\leq k \scrP i\| F )\tau k \leq 

\left(  \varepsilon k\rho k +
\sum 
i\leq k

Eia

\right)  \tau k \leq 

\left(  \varepsilon \rho +
\sum 
i\leq k

Ei

\right)  \tau .

In the last inequality, we used maxk \varepsilon k \leq \varepsilon , which holds thanks to \scrA \in \scrT \varepsilon (r1, . . . , rd).
Then, the Ek for k= 1, . . . , d satisfy the vector inequality\left[         

\tau  - 1 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

 - 1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

 - 1 \cdot \cdot \cdot \cdot \cdot \cdot  - 1 \tau  - 1

\right]         

\left[         

E1

...

...

...
Ed

\right]         
\leq 

\left[         

\varepsilon \rho 
...
...
...
\varepsilon \rho 

\right]         
.(5.6)

Let Tk be the k\times k principal minor of the lower triangular matrix in (5.6); both Tk and
its inverse are lower triangular Toeplitz matrices, and we have the explicit formula

(T - 1
k )ij =

\left\{     
0 if i < j,

\tau if i= j,

\tau 
\bigl[ 
(1 + \tau )i - j  - (1 + \tau )i - j - 1

\bigr] 
if i > j.
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MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1941

In particular, T - 1
k is nonnegative since \tau > 0, so we can left-multiply inequality (5.6)

by eTk T
 - 1
k and obtain an upper bound for Ek:

Ek \leq eTk T
 - 1
k

\left[   \varepsilon \rho ...
\varepsilon \rho 

\right]   .(5.7)

Using the explicit expression of the entries in the row vector eTk T
 - 1
k , we finally obtain

the upper bound Ek \leq \varepsilon \rho \tau (1 + \tau )k - 1. We conclude using (5.5):

\| \scrA  - \widehat \scrA \| F \leq 
d\sum 

k=1

\varepsilon \rho \tau (1 + \tau )k - 1 \leq \varepsilon \rho ((1 + \tau )d  - 1).

5.2. Accuracy of SMLN. We now consider a modification of the proposed
approach that improves the stability properties: we replace any pseudoinverse M\dagger 

appearing in the formulas with its regularized counterpart M\dagger 
\epsilon , which consists in

treating the singular values below \epsilon in M as zeros (see the definition of \epsilon -pseudoinverse
at the end of section 3). We refer to such a modification as SMLN. In practice, this
amounts to replacing the projections \scrP k with

\widetilde \scrP k :=\scrA kXk(Y
T
k
\widetilde \scrA kXk)

\dagger 
\epsilon Y

T
k .

This modification is motivated by the following observations made in the analysis of
the matrix case in [25]:

1. For the matrix GN, this change does not substantially change the attainable
accuracy.

2. This modification makes the method reliable in the presence of inexact floating-
point arithmetic.

This and section 5.3 investigate whether the same results hold in the tensor case for
the generalization discussed in this paper. This section covers the first item (the
accuracy), whereas section 5.3 discusses the second item (the stability).

Concerning the accuracy, we prove that the computed approximant \widehat \scrA =\scrA \times d
k=1

\widetilde \scrP k

attains, in exact arithmetic, an error estimate of the form

\| \scrA  - \widehat \scrA \| F \leq (1 + \~\tau )d  - 1

\~\tau 
max

k=1,...,d
\| E(k)

SGN\| F ,

where E
(k)
SGN is the error of the matrix SGN approximation computed in exact arith-

metic for the mode-k matricization \scrA k with sketchings Xk, Yk and where \widetilde \tau is chosen
so that \| \widetilde \scrP k\| 2 \leq \widetilde \tau .

In relation to the stability result, to obtain a similar estimate, it will be necessary
to take into account the floating-point error of approximation. In doing so, we will
make the simplifying assumption that \scrA kXk and Y T

k \scrA kXk are computed exactly. On
one hand, this is obviously unrealistic. On the other hand, any sketching low-rank
approximation method will use matrices of this form and will thus incur a similar
approximation error; in this work, we prefer to focus on the error introduced by the
algorithmic choice in SMLN that happens after the sketching.

The upcoming theorem proves the accuracy result discussed above.
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1942 ALBERTO BUCCI AND LEONARDO ROBOL

Theorem 5.6. Let \widetilde \scrP k :=\scrA kXk(Y
T
k
\widetilde \scrA kXk)

\dagger 
\epsilon Y

T
k , where \widetilde \scrA k =\scrA k + \delta \scrA k, and set

\widetilde \varepsilon k := \| \scrA  - \scrA \times k
\widetilde \scrP k\| F and \widetilde \tau k := 1 + \| \widetilde \scrP k\| 2.

Then, denoting with \widetilde \varepsilon :=maxk \widetilde \varepsilon k and \widetilde \tau :=maxk \widetilde \tau k, we have

\| \scrA  - \scrA \times d
k=1

\widetilde \scrP k\| F \leq \widetilde \varepsilon \widetilde \tau ((1 + \widetilde \tau )d  - 1).

Proof. Since

\scrA  - \scrA \times d
k=1

\widetilde \scrP k =

d\sum 
k=1

\scrA \times k - 1
i=1

\widetilde \scrP i  - \scrA \times k
i=1

\widetilde \scrP i,

by the subadditivity of the Frobenius norm, we can write

\| \scrA  - \scrA \times d
k=1

\widetilde \scrP k\| F \leq 
d\sum 

k=1

\| \scrA \times k - 1
i=1

\widetilde \scrP i  - \scrA \times k
i=1

\widetilde \scrP i\| F .

Observe that E
(1)
SGN := \| \scrA  - \scrA \times 1

\widetilde \scrP 1\| F is exactly the error of the SGN approximant

of \scrA 1 with sketches X1 and Y1. For k \geq 2, let (\scrA \times k - 1
i=1

\widetilde \scrP i)k := \scrA k
\widetilde Bk with \widetilde Bk =

I \otimes \cdot \cdot \cdot \otimes I \otimes \widetilde \scrP T
k - 1 \otimes \cdot \cdot \cdot \otimes \widetilde \scrP T

1 . We have

\| \scrA \times k - 1
i=1

\widetilde \scrP i  - \scrA \times k
i=1

\widetilde \scrP i\| F = \| \scrA k
\widetilde Bk  - \widetilde \scrP k\scrA k

\widetilde Bk\| F = \| (I  - \widetilde \scrP k)\scrA k
\widetilde Bk\| F

= \| (I  - \widetilde \scrP k)(\scrA k  - \scrA k +\scrA k
\widetilde Bk)\| F

\leq \| (I  - \widetilde \scrP k)\scrA k\| F + \| (I  - \widetilde \scrP k)(\scrA k  - \scrA k
\widetilde Bk)\| F .

Again, E
(k)
SGN := \| (I - \widetilde \scrP k)\scrA k\| F is the error of the SGN approximant \scrA k with sketches

Xk and Yk.
It remains to bound the term \| (I - \widetilde \scrP k)(\scrA k - \scrA k

\widetilde Bk)\| F . We can write the following
chain of inequalities:

\| (I  - \widetilde \scrP k)(\scrA k  - \scrA k
\widetilde Bk)\| F \leq \| I  - \widetilde \scrP k\| 2\| \scrA k  - \scrA k

\widetilde Bk\| F \leq (1 + \| \widetilde \scrP k\| 2)\| \scrA k  - \scrA k
\widetilde Bk\| F

= \widetilde \tau k\| \scrA k  - \scrA k
\widetilde Bk\| F = \widetilde \tau k\| \scrA  - \scrA \times k - 1

i=1
\widetilde \scrP i\| F

\leq \widetilde \tau k k - 1\sum 
s=1

\| \scrA \times s - 1
i=1

\widetilde \scrP i  - \scrA \times s
i=1

\widetilde \scrP i\| F .

Summarizing and denoting with E(k) := \| \scrA \times k - 1
i=1

\widetilde \scrP i  - \scrA \times k
i=1

\widetilde \scrP i\| F , we can write the
following recurrence relation for an upper bound to the approximation error:\Biggl\{ 

E(1) =E
(1)
SGN \leq \widetilde \varepsilon ,

E(k) \leq E
(k)
SGN + \widetilde \tau k\sum k - 1

i=1 E(i) \leq \widetilde \varepsilon + \widetilde \tau \sum k - 1
i=1 E(i).

The latter system of inequalities is similar to that in (5.6), and analogous steps lead
to the sought bound.

The structure of the bound for SMLN is similar to the one of MLN. However, in
this second case, \widetilde \tau k depends on the norm of \widetilde \scrP k, which, in general, can be nonnegligible
(for instance, it grows as \scrO (

\surd 
nk) in the Gaussian case [25]).

In practice, the proof of Theorem 5.6 can be modified to obtain a sharper bound.
We avoided this change in Theorem 5.6 for the sake of clarity, but we give some details
here. The key idea is to modify the bound for \| (I - \widetilde \scrP k)(\scrA k - \scrA k

\widetilde Bk)\| F in a way that
changes the \scrO (

\surd 
nk) term into an \scrO (

\surd 
rk). We may write
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MULTILINEAR NYSTR\"OM IN THE TUCKER FORMAT 1943

\| (I  - \widetilde \scrP k)(\scrA k  - \scrA k
\widetilde Bk)\| F \leq \| \scrA k  - \scrA k

\widetilde Bk\| F + \| \widetilde \scrP k(\scrA k  - \scrA k
\widetilde Bk)\| F .

The second term in the formula satisfies

\| \widetilde \scrP k(\scrA k  - \scrA k
\widetilde Bk)\| F = \| \scrA kXk(Y

T
k \scrA kXk)

\dagger 
\epsilon Y

T
k (\scrA k  - \scrA k

\widetilde Bk)\| F
\leq \| \scrA kXk(Y

T
k \scrA kXk)

\dagger 
\epsilon \| 2\| Y T

k (\scrA k  - \scrA k
\widetilde Bk)\| F .

We refer the reader to [25, Theorem 3.3] for a detailed discussion on how to proceed
from here to derive a sharper bound since the remaining steps coincide for d= 2 or d>
2. At a high level, we need to check two facts: The term \| \scrA kXk(Y

T
k \scrA kXk)

\dagger 
\epsilon \| 2 is \scrO (1),

while \| Y T
k (\scrA k  - \scrA k

\widetilde Bk)\| F is \scrO (
\surd 
rk)\| \scrA k  - \scrA k

\widetilde Bk\| F . The proof requires Gaussianity
of Xk, Yk. However, in practical applications, any class of random matrices such that
the entries are \scrO (1) and a rectangular realization is well-conditioned would work well,
including the SRFT and SRHT matrices.

5.3. Stability of SMLN. So far, we have analyzed the accuracy of MLN and
SMLN without taking into account roundoff errors in floating-point arithmetic. In
this section, we address this potential issue.

Regarding the instability of MLN, the situation is similar to that of GN analyzed
in [25]: Stability cannot be established, but the instability is usually benign, and one
obtains satisfactory results. In this section, we establish the numerical stability of
SMLN.

Consider the stabilized MLN approximation (\scrA \times d
k=1Y

T
k )\times d

k=1\scrA kXk(Y
T
k \scrA kXk)

\dagger 
\epsilon 

obtained in finite precision arithmetic. We assume that we can compute each Tucker
factor \widetilde Wk :=\scrA kXk(Y

T
k \scrA kXk)

\dagger 
\epsilon and \scrC =\scrA \times d

k=1Y
T
k separately. Then, we compare the

floating representation with the original tensor \scrA : \| \scrA  - \scrC \times d
k=1 fl(

\widetilde Wk)\| F , where we
used the notation fl(\cdot ) to denote the outcome of an arithmetic operation in floating-
point arithmetic.

As we have anticipated in section 5.2, and in line with the analysis in [25], we

will assume that each row of \widetilde Wk is computed by a backward stable underdetermined
linear solver and that \scrA kXk and Y T

k \scrA kXk are computed exactly.
We also borrow some notation from [25]; we use {\O}(1) to suppress terms involving

dimensions of the problem or the ranks (like nk, rk), but not 1/\epsilon ,\sigma 
 - 1
r (\scrA k). We use \epsilon \ast 

to denote a tensor, a matrix, or a scalar such that \| \epsilon \ast \| F = {\O}(u\| A\| F ). The precise
value of \epsilon \ast may change from appearance to appearance. See [25] and [26] for the
motivation behind this notation, which is standard practice in stability analysis.

Let us denote with [M ]i the ith row of M . The following proofs are heavily based
on the results from [25] in the matrix case, for which we give precise references.

Lemma 5.7. Let \scrA , Xk, Yk be such that Xk, Yk are Gaussian, \scrA kXk is full column
rank, and Y T

k \scrA kXk is tall. Suppose also that \epsilon = \varnothing (u\| A\| F ) and that each row of
\scrA kXk(Y

T
k \scrA kXk)

\dagger 
\epsilon is computed by a backward stable underdetermined linear solver.

Then, with an exponentially high probability,

\| fl(\scrA kXk(Y
T
k \scrA kXk)

\dagger 
\epsilon )\| F \sim \varnothing (1).(5.8)

Proof. We can assume, without loss of generality, that we can perform a prelim-
inary scaling to have \| \scrA k\| F = 1. Following the proof of [25, Theorem 4.1], we know
that

\| [fl(\scrA kXk(Y
T
k \scrA kXk)

\dagger 
\epsilon )]i\| 2 = \| [\scrA kXk + \epsilon \ast ]i(Y

T
k \scrA kXk + \epsilon \ast )

\dagger 
\epsilon \| 2(5.9)

\leq \| [\scrA kXk]i(Y
T
k \scrA kXk + \epsilon \ast )

\dagger 
\epsilon \| 2 +{\O}(1).(5.10)
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1944 ALBERTO BUCCI AND LEONARDO ROBOL

Let U\Sigma V T be the SVD of \scrA kXk; we have

\| \scrA kXk(Y
T
k \scrA kXk + \epsilon \ast )

\dagger 
\epsilon \| 2 = \| \Sigma V T (Y T

k \scrA kXk + \epsilon \ast )
\dagger 
\epsilon \| 2

= \| (Y T
k U)\dagger (Y T

k \scrA kXk)(Y
T
k \scrA kXk + \epsilon \ast )

\dagger 
\epsilon \| 2.

Let us denote by \Xi i the error matrix in the above expression; we fix (Y T
k \scrA kXk + \epsilon \ast )

\dagger 
\epsilon =

(Y T
k \scrA kXk +\Xi i)

\dagger 
\epsilon , and we have \| \Xi i\| 2 \sim {\O}(u). Then,

\| \scrA kXk(Y
T
k \scrA kXk + \epsilon \ast )

\dagger 
\epsilon \| 2 \leq \| (Y T

k U)\dagger \| 2\| (Y T
k \scrA kXk +\Xi + \epsilon \ast )(Y

T
k \scrA kXk +\Xi )\dagger \epsilon \| 2

\leq \| (Y T
k U)\dagger \| 2\| (Y T

k \scrA kXk +\Xi i)(Y
T
k \scrA kXk +\Xi i)

\dagger 
\epsilon \| 2

+ \| (Y T
k U)\dagger \| 2\| \epsilon \ast (Y T

k \scrA kXk + \epsilon \ast )
\dagger 
\epsilon \| 2 \sim {\O}(1).

In the last equality, we used that \| (Y T
k U)\dagger \| 2 \sim {\O}(1), which follows from the fact that

Y T
k U is tall-Gaussian and hence well-conditioned; that \| (Y T

k \scrA kXk +\Xi i)(Y
T
k \scrA kXk +

\Xi i)
\dagger 
\epsilon \| 2 = 1; and that \| \epsilon \ast (Y T

k \scrA kXk +\Xi i)
\dagger 
\epsilon \| 2 \leq \| \epsilon \ast \| 2/\epsilon \sim {\O}(1).

Then, the rows of the computed matrix satisfy \| [fl(\scrA kXk(Y
T
k \scrA kXk)

\dagger 
\epsilon )]i\| 2 ={\O}(1).

As a consequence, the Frobenius norm of the computed matrix is also {\O}(1).

We are now ready to prove the main stability result.

Theorem 5.8. Let the assumptions in Lemma 5.7 be satisfied, and suppose that
we can form \scrC \times d

k=1
\widetilde Wk = (\scrA \times d

k=1 Y
T
k )\times d

k=1\scrA kXk(Y
T
k \scrA kXk)

\dagger 
\epsilon by first computing the

core tensor \scrC and the matrices \widetilde Wk and then performing the mode products between \scrC 
and the \widetilde Wk. Set

\widetilde \varepsilon k := \| \scrA  - \scrA \times k fl(\widetilde Wk)Y
T
k )\| F and \widetilde \tau k := 1 + \| fl(\widetilde Wk)\| 2\| Y T

k \| 2.

Then, denoting with \widetilde \varepsilon :=maxk \widetilde \varepsilon k and \widetilde \tau :=maxk \widetilde \tau k, we have

\| \scrA  - \scrC \times d
k=1 fl(\widetilde Wk)\| F \leq \widetilde \varepsilon \widetilde \tau ((1 + \widetilde \tau )d  - 1).

Proof. The error of the approximation, in view of the subadditivity of the Frobe-
nius norm, satisfies

\| \scrA  - \scrC \times d
k=1 fl(\widetilde Wk)\| F = \| \scrA  - \scrA \times d

k=1 fl(\widetilde Wk)Y
T
k \| F

\leq 
d\sum 

k=1

\| \scrA \times k - 1
i=1 fl(\widetilde Wi)Y

T
i  - \scrA \times k

i=1 fl(\widetilde Wi)Y
T
i \| F .

The Frobenius norm is invariant under matricization, so it suffices to bound terms of
the form \| (I  - fl(\widetilde Wk)Y

T
k )\scrA kBk\| F for k = 1, . . . , d, where the matrices Bk are given

by Bk := (I \otimes \cdot \cdot \cdot \otimes I \otimes fl(\widetilde Wk - 1)Y
T
k - 1 \otimes \cdot \cdot \cdot \otimes fl(\widetilde W1)Y

T
1 )T . Then,

\| (I  - fl(\widetilde Wk)Y
T
k )\scrA kBk\| F = \| (I  - fl(\widetilde Wk)Y

T
k )(\scrA k +\scrA kBk  - \scrA k)\| F

\leq \| (I  - fl(\widetilde Wk)Y
T
k )\scrA k\| F + \| (I  - fl(\widetilde Wk)Y

T
k )(\scrA k  - \scrA kBk)\| F

\leq \| \scrA  - \scrA \times k fl(\widetilde Wk)Y
T
k \| F + (1+ \| fl(\widetilde Wk)\| 2\| Y T

k \| 2)\| \scrA k  - \scrA kBk\| F
\leq \| \scrA k  - fl(\scrA kXk(Y

T\scrA kXk)
\dagger 
\epsilon )Y

T
k \scrA k\| F + \widetilde \tau k\| \scrA k  - \scrA kBk\| F

\leq \widetilde \varepsilon k + \widetilde \tau k d\sum 
k=1

\| \scrA \times k - 1
i=1 fl(\widetilde Wi)Y

T
i  - \scrA \times k

i=1 fl(
\widetilde Wi)Y

T
i \| F .
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We obtained a recurrence inequality with the same structure encountered in the
proof of Theorem 5.6. Thus, similar steps lead to the sought inequality.

We emphasize that the parameter \widetilde \varepsilon k = \| \scrA  - \scrA \times k fl(\widetilde Wk)Y
T
k \| F is the error of

approximation of the SGN method in floating-point arithmetic performed on \scrA k with
sketch matrices Xk, Yk and has been extensively analyzed in [25, section 4.1]. The
parameter \widetilde \tau k is bounded thanks to Lemma 5.7. To facilitate the understanding of the
proof, we set \widetilde \tau k equal to 1 + \| fl( \widetilde Qk)\| 2\| Y T

k \| 2; however, a sharper estimate may be
obtained following the strategies in [25, section 4.1]. Again, the Gaussian hypothesis
is not strictly necessary, and any class of random matrices such that the entries are
\scrO (1) and a rectangular realization is well-conditioned would work well.

6. Sketch selection for MLN. An important aspect of MLN is the choice of
the sketch matrices. Indeed, in the deterministic bound for MLN (5.5), conditioning
terms that depend on the probability distribution of the sketching appear.

If the tensor \scrA is not structured, several options are available: Gaussian, SRHT,
SRFT, and Discrete Cosine Transform (DCT), just to name a few. We recommend
the recent survey [22] for an excellent overview of randomized algorithms in numerical
linear algebra.

When \scrA is structured instead, specific DRMs should be used. Of particular
interest is the case where the tensor \scrA is given in Tucker format; that is, \scrA = \scrC \times d

i=1Ui,
where \scrC \in \BbbR k1\times \cdot \cdot \cdot \times kd is a small tensor and the Ui have size ni \times ki, and we would
compress it to obtain a Tucker tensor of smaller dimensions.

In this case, the flattening along the kth index is given by Uk\scrC kUT
\otimes \v k

, and an
appropriate right DRM could exploit the Kronecker structure of U\otimes \v k to accelerate the
sketching procedure. For example, one may choose as sketching matrix a Kronecker
product of small independent DRMs \Omega i \in \BbbR ni\times ri , ri, like the ones described for the
unstructured case, in order to compute U\otimes \v k\Omega \otimes \v k in a very cheap way.

This strategy has the drawback that, to obtain a satisfactory approximation of
a matrix with rank r with high probability, each \Omega i should have at least r columns
for a total of rd columns. Another possibility, which is what we suggest, is to use
a random selection of columns from the Kronecker product of the \Omega i. These types
of sketchings have been extensively analyzed in the literature; in particular, in [18],
Kronecker Fast Johnson--Lindenstrauss Transforms (KFJLT) are proposed. KFJLTs
drastically reduce the embedding cost to an exponential factor of the standard fast
Johnson--Lindenstrauss transform (FJLT)'s cost when applied to vectors with Kron-
ecker structure, and, above all, the computational gain comes with only a small price
in embedding power. A related strategy is selecting the right DRMs with Khatri--Rao
structure, as done in [7] in a similar context.

Our results allow us to analyze the accuracy attained from the approximation
methods obtained by a specific choice of sketchings Yk,Xk in terms of the singular
values and the condition number of the matrices Y T

k Qk with an orthogonal Qk (see
Theorem 5.5).

7. Experiments. The aim of this section is to illustrate the performances of
MLN and SMLN and to show that the theoretical bounds provided in Theorem 5.5
are sharp. The code used for the numerical experiments is available at https://github.
com/alb95/MLN.

Implementation. In our implementation of (S)MLN, the core tensor \scrA \times d
k=1Y

T
k

and the matrices \scrA kXk(Y
T
k \scrA kXk)

\dagger are computed separately. Regarding the im-
plementation of the pseudoinverse and of the \epsilon -truncated pseudoinverse, see [25,
section 5].
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1946 ALBERTO BUCCI AND LEONARDO ROBOL

Numerical illustration. In the experiments, we will compare the performances
of the MLN and SMLN methods with other popular methods for the low-rank tensor
approximation in Tucker format. In particular, we will compare the method with the
truncated HOSVD, the RHOSVD, and the randomized sequential truncated HOSVD
(RSTHOSVD).

All numerical experiments were performed in MATLAB version 2023b on a laptop
with 16 GB of system memory, and the tensor operations (mode-k products, unfold-
ings, and the computation of the HOSVD) have been performed by means of the
Tensor Toolbox for MATLAB v3.5 [2] and the tensorprod function in MATLAB.

We recall that, in the HOSVD method, the SVD of each of the d matricizations of
the tensor \scrA is computed; i.e., UkSkV

T
k =\scrA k, and then, setting r= (r1, . . . , rd) as the

desired multilinear rank of the approximant, the tensor \widehat \scrA = (\scrA \times d
k=1U

(rk)T
k )\times d

k=1U
(rk)
k

is formed, where U
(rk)
k are the first rk columns of Uk.

The RHOSVD is similar; once the multilinear rank r of the approximant is fixed,
we draw d random sketchings Xk of size

\prod 
j \not =k nj \times rk, and then we compute an

economy-size SVD of the matrices UkSkV
T
k = \scrA kXk. The approximant is given by\widehat \scrA = (\scrA \times d

k=1 U
T
k )\times d

k=1 Uk.
The RSTHOSVD differs from previous methods because it truncates the tensor

while processing each mode. More specifically, if the target multilinear rank r of the
approximant is chosen, d random sketchings Xk of size (

\prod 
j<k rj)(

\prod 
j>k nj)\times rk are

drawn. Then, an economy-size SVD of the matrices UkSkV
T
k =\scrB (k)

k Xk is sequentially
computed, where \scrB (k) denotes the partially truncated core tensor \scrB (k) =\scrA \times k

j=1 U
T
j .

In this case, the approximant is given by \widehat \scrA = (\scrA \times d
k=1 U

T
k )\times d

k=1 Uk.
Even if the truncated HOSVD is often prohibitively expensive, it is an important

benchmark because it provides an almost-optimal Tucker approximant; i.e., if \widehat \scrA is
the truncated HOSVD and \scrA \ast is the optimal solution to the best low multilinear rank
approximation problem, then

\| \scrA  - \widehat \scrA \| F \leq 
\surd 
d\| \scrA  - \scrA \ast \| F .

In the majority of the experiment, to describe different decays, we construct
the tensors by fixing their CPD. That is, we fix a sequence of n decreasing positive
numbers \sigma i; we generate d matrices Qi \in \BbbR n\times n, where Qi is a random orthogonal
matrix (Q-factor in the QR factorization of a square Gaussian matrix); and we set
\scrT = \scrS \times d

i=1Qi, where \scrS is the superdiagonal tensor with the \sigma i in the superdiagonal.
Notice that, in this way, the singular values of each matricization are the \sigma i.

Unless explicitly specified, the sketch matrices are assumed to be Gaussian.
In the first experiment, Figure 1, we compare the performances of MLN and

SMLN. To do so, we test the algorithms on a numerically low-rank tensor \scrT of size
70\times 70\times 70 with exponential decay in the \sigma i of rate 0.1 (i.e., \sigma i = 0.1i).

The tests show that, when there is no oversampling, SMLN performs better than
MLN, but both methods produce unsatisfactory results. Instead, even with a small
oversampling (\ell = 3), both methods show significant improvement and in practice
result equivalent. This confirms what was observed in [25] for GN: Stability cannot
be established for plain MLN, but oversampling makes its instability benign, and one
usually obtains satisfactory results.

Given that both theoretical and experimental results support oversampling's fun-
damental impact, we recommend its consistent implementation; moreover, due to the
equivalence of results achieved with oversampling by MLN and SMLN, we will not
include SMLN in the experiments below.
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Fig. 1. Accuracy of MLN and SMLN with \epsilon = u\| A\| F (SMLN-1) and \epsilon = 10u\| A\| F (SMLN-10).
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Fig. 2. Performance comparison of MLN with varying values of the oversampling parameter \ell 
on two tensors of size 100\times 100\times 100: one with \sigma i = 0.7i (left) and another with \sigma i = 1/i (right).""

We notice that oversampling, other than stabilizing MLN, serves to improve its
accuracy. Hence, we conduct experiments to determine the optimal choice for the
oversampling parameter \ell .

The results are shown in Figure 2. As observed for GN in [25], MLN with fixed \ell 
gets further from optimal as r increases, whereas choosing \ell = cr avoids this issue. In
particular, the examples show that choosing c= 1

2 and therefore \ell = r
2 yields a robust

implementation in all cases.
In the upcoming experiment, Figure 3, we compare the performances of MLN

(with \ell = r/2), RHOSVD, and HOSVD. We test the algorithms on 4 tensors of size
100\times 100\times 100 with different decays: linear (\sigma i = 1/i), quadratic (\sigma i = 1/i2), cubic
(\sigma i = 1/i3), and exponential (\sigma i = 0.5i). The plots show that, up to a small constant,
the accuracy of MLN and RHOSVD are the same and that both achieve near-optimal
accuracy.

The same occurs when we test the algorithms on 3-dimensional and 4-dimensional
Hilbert tensors; see Figure 4. We remark that the Tucker approximations are only
practical for such values of d since, for larger values, the storage cost for the core
tensor can easily become the bottleneck.

To evaluate the execution time of the MLN method, in the next experiments,
we compare it against the RHOSVD and RSTHOSVD. In Figure 5, we show the
performances of these 3 methods on 3D tensors of size 100\times 100\times 100 and 4D tensors
of size 70\times 70\times 70\times 70 varying the multilinear rank of the approximants, while in
Figure 6, we fix the multilinear rank of the approximants and increase the size of the
problem.
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Fig. 3. Comparison of MLN with oversampling parameter \ell = r/2, HOSVD, RHOSVD, and
RSTHOSVD on tensors with different decays.
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Fig. 4. Frobenius error of approximation of the 3D Hilbert tensor \scrH (i, j, k) = 1
i+j+k - 2

(left)

and 4D Hilbert tensor \scrH (i, j, k, \ell ) = 1
i+j+k+\ell  - 3

(right).

As we can see, the computing time of MLN is slightly higher than that of
RHOSVD and RSTHOSVD. This is because the bulk of the algorithm lies in the
sketching procedure for not-structured tensors and MLN requires oversampling.

In the next experiment, we investigate the effect of d on the accuracy of the ap-
proximation. In terms of accuracy, our analysis suggests a linear correlation between
algorithmic error and the singular values of the tensor's matricizations and an ex-
ponential relationship with the norm of the projections \scrP k, as shown for instance in
Theorem 5.8. In particular, since we do not expect the norm of the projectors \widetilde \scrP k to
be influenced by d, the bound would predict an exponential growth of the constant
with respect to d, because of the term (1 + \~\tau )d.
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Fig. 5. Comparison of Tucker approximation methods in terms of computing time on 3D ten-
sors (left) and 4D tensors (right) of fixed size.
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Fig. 6. Comparison of Tucker approximation methods in terms of computing time on 3D ten-
sors (left) and 4D tensors (right) with a fixed multilinear rank of approximation.

Figure 7 shows a slight degradation of the quality of the approximation as d
increases, but this does not severely impact the performances (in particular, in the
case of exponential decay of the \sigma i).

In fact, the growth is far from the exponential one predicted by Theorem 5.5.
We now perform another experiment aimed at understanding whether Theorem 5.5
is descriptive of the worst-case behavior. To accomplish this, we select non-Gaussian
sketching in an unfavorable setting. Specifically, we use SRHT matrices for the sketch-
ings. The tensor \scrA = \scrS \times d

i=1 QT
i is constructed as follows: Instead of employing

different Haar-distributed orthogonal matrices for the Qi, each Qi is set equal to the
same 2\times 2 block diagonal matrix diag(I7,U), where I7 is the 7\times 7 identity matrix
and U \in \BbbR 25\times 25 is a Haar-distributed orthogonal matrix. These Qi are known to be
a difficult example for SRHT matrices [4, 27]. Regarding \scrS , we use a 4-dimensional
superdiagonal tensor with exponential decay in the \sigma i of rate 0.3. Note that, by con-
struction, such a tensor is symmetric with respect to each mode. Therefore, setting
the SRHT matrices Xi and Yi equal to the same X and Y , we expect that each
projection contributes almost equally to the total error.

We report the numerical results in Table 1 and consistently use the following
notation for k= 1, . . . ,4:

Ek =
| | \scrT  - \scrT \times k

i=1 \scrP i| | F
| | \scrT  - \scrT r| | F

.

In view of Theorem 5.5, we would expect that Ej+1 \approx (\tau + 1)Ej (assuming a worst-
case behavior is encountered for all modes). The experiment demonstrates that the
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Fig. 7. MLN tested for tensors of varying dimension d= 2,3,4,5 but same decay rate: \sigma i = 1/i3

(left) and \sigma i = 0.5i (right).

Table 1
Frobenius relative error of approximation obtained by increasing the number of oblique pro-

jections used for the approximation. Each row of the table represents a different experiment; in
this example, the sketchings are chosen in a particularly unfavorable manner in order to trigger the
worst-case growth of the errors described in Theorem 5.5.

\rho \tau | | \scrT  - \scrT r| | F E1 E2 E3 E4

1.20\times 10 - 8 1.04\times 102 4.51\times 10 - 9 9.67\times 100 4.16\times 101 6.38\times 102 2.02\times 104

1.45\times 10 - 3 1.49\times 103 4.51\times 10 - 9 3.63\times 107 6.93\times 109 2.45\times 1012 9.27\times 1014

1.01\times 10 - 8 1.12\times 107 4.51\times 10 - 9 4.16\times 106 2.27\times 1012 6.12\times 1018 1.94\times 1025

1.46\times 10 - 3 1.04\times 102 4.51\times 10 - 9 1.22\times 106 4.38\times 106 3.66\times 107 3.33\times 108

2.40\times 10 - 8 2.23\times 103 4.51\times 10 - 9 3.92\times 103 5.71\times 105 2.98\times 108 2.22\times 1011

Table 2
The table represents the ratio of the errors obtained projecting on the first j + 1 modes and

the first j. Each row of the table represents a different experiment; the sketchings are chosen in a
particularly unfavorable manner to trigger the worst-case growth of the errors described in Theorem
5.5.

1 + \tau E2/E1 E3/E2 E4/E3

1.05\times 102 4.33\times 100 1.54\times 101 3.17\times 101

1.49\times 103 1.90\times 102 3.54\times 102 3.78\times 102

1.12\times 107 5.46\times 105 2.72\times 107 3.17\times 106

1.05\times 102 3.61\times 100 8.35\times 100 9.10\times 100

2.23\times 103 1.96\times 102 5.22\times 102 7.45\times 102

error growth is indeed exponential in d; in addition, the results in Table 1 show
that 1 + \tau describes the order of magnitude of Ej+1/Ej , as expected. To further
highlight this, we report in Table 2 the factors 1 + \tau and the error amplifications
Ej+1/Ej . We remark that this example is not particularly meaningful from the low-
rank approximation perspective; the errors are large and the low-rank approximations
obtained of little practical use. We only include it to discuss whether Theorem 5.5
gives an accurate description of the worst-case scenario.

Recall that this is not a limitation in practice; the method and the analysis are
only of interest for moderate d, whereas for situations involving high dimensions,
we suggest looking for alternatives that completely avoid the curse of dimensional-
ity. Among these alternatives, the streaming tensor train approximation (STTA) [21]
emerges as the closest in methodology to ours. It remains grounded in the GN frame-
work and maintains streamability and one-pass capability, yet delivers an approximant
in tensor train format.
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8. Conclusions. This paper presents and analyzes MLN, an innovative algo-
rithm for the low-rank compression of a tensor in Tucker format. The method is
based on the matrix Nystr\"om method, and in particular on the GN presented in [25].

Two key distinctions set our method apart from existing techniques. First, MLN
is a single-pass and streamable algorithm as it requires only two-sided sketchings
of the original tensor. Second, the MLN algorithm eliminates the need for costly
orthogonalizations because it is based on the GN method for matrices, a crucial
advantage over traditional approaches based on the randomized SVD.

In terms of accuracy, the method exhibits only a marginal deviation from the
RHOSVD while still maintaining its near-optimal approximation quality. This asser-
tion is reinforced not only by our rigorous theoretical analysis, but also by the results
obtained through extensive experiments.

Another crucial aspect of the method is its stability. Even though similar ideas
have been proposed in the past (see, for instance, [6]), we propose suitable modifica-
tions that can ensure the stability of the methodology; this is attained by carefully
handling the pseudoinverses involved in the process. This stability further strength-
ens the applicability and practicality of our proposed approach. Several research lines
remain open and will be investigated in the future. Our work characterizes the quality
of the approximants based on the norm of certain matrices (see Theorem 5.5).

In principle, finding a priori probabilistic bounds for such matrices allows us to
select the best sketching in any given scenario. While deriving an a priori bound
proves to be relatively easy in certain instances (such as when dealing with Gaussian
matrices, as discussed in our paper), the complexity of the analysis increases when
adopting structured sketching techniques. These techniques, while highly beneficial
for structured tensors, present a more intricate analytical challenge. Notably, sub-
stantial efforts are already underway in this direction. Another intriguing avenue of
research involves expanding the methodology outlined in this study to encompass a
broader spectrum of tensor networks. Such an extension could potentially unlock
novel insights and applications across a wider range of contexts within the realm of
tensor-based computations.

Reproducibility of computational results. This paper has been awarded the
``SIAM Reproducibility Badge: Code and data available"" as a recognition that the
authors have followed reproducibility principles valued by SIMAX and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/alb95/MLN and in the supplementary
materials (MLN-main.zip [local/web 20KB]).
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