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Abstract

We analyze the problem of carrying out an efficient iteration to approximate the
eigenvalues of some rank structured pencils obtained as linearization of sums of
polynomials and rational functions expressed in (possibly different) interpolation
bases. The class of linearizations that we consider has been introduced by Robol,
Vandebril and Van Dooren in [17]. We show that a traditional QZ iteration on
the pencil is both asymptotically slow (since it is a cubic algorithm in the size of
the matrices) and sometimes not accurate (since in some cases the deflation of
artificially introduced infinite eigenvalues is numerically difficult). To solve these
issues we propose to use a specifically designed Ehrlich—Aberth iteration that
can approximate the eigenvalues in O(kn?) flops, where k is the average number
of iterations per eigenvalue, and n the degree of the linearized polynomial. We
suggest possible strategies for the choice of the initial starting points that make k
asymptotically smaller than O(n), thus making this method less expensive than
the QZ iteration. Moreover, we show in the numerical experiments that this
approach does not suffer of numerical issues, and accurate results are obtained.
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1. Introduction

Polynomials and rational functions are used extensively in mathematics and
engineering, for modeling and as approximations of smooth functions [2, 3, 21].
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A particularly relevant application is the analysis of closed loop linear systems,
which involves also matrices of rational functions when MIMO systems are con-
sidered [16]. Often one is interested in finding the roots of sums of polynomials
or rational functions that are expressed in different bases, such as interpola-
tion bases with distinct nodes. Robol, Vandebril and Van Dooren introduced a
framework [17] that provides the possibility to linearize? rational functions of

the form:
FO\) = pi(A) | p2(N)
a(A) gV’
where p;(\) and ¢;(z) can be expressed in different polynomial bases. More
general forms with more than 2 summands are possible (see [17] for further
details). The linearizations obtained in this setting, as we will see in Section 2,
have particular rank structures, which suggests that a fast method for finding
their eigenvalues might be formulated. This is precisely the aim of this work.
We will concentrate on the case where p;(A) and ¢;(\) are expressed in
interpolation bases, namely the Newton and Lagrange ones. The framework
can be extended to cover the case of rational and polynomial eigenproblems,
that is to the problem of finding the values of A that make the matrix

F() =P\ 'Qi(\) + (V@3 (V) (1)

singular, even when the bases in which the P;(\) and the @Q;(\) are represented
do not match. This problem arises, for example, when one wants to verify
that a transfer function associated to a linear time invariant system has all the
eigenvalues in the left plane, thus ensuring that the associated system is stable
[16]. When the factors of the transfer functions have been computed using
different interpolation nodes the problem fits precisely in the framework that
we are describing.

Linearizations are widely used to find roots of polynomials and matrix poly-
nomials. Given a polynomial p(A) one usually constructs a pencil L(A) := A—AB
such that det £L(\) = p(\), and then computes its eigenvalues using an approx-
imation method. This strategy has the advantage of relying on well-tested and
efficient numerical software for the approximation of eigenvalues, usually the
QZ iteration (or the QR when the pencil is monic).

However, there are some drawbacks to this approach. Since we rephrase
the rootfinding problem as an eigenvalue one, applying an unstructured method
leads to a cubic computational cost in the degree and possibly to a higher con-
dition number. In fact, once the coefficients of the polynomial are embedded
in a companion matrix the set of possible perturbations becomes larger, and
the condition number of the eigenvalue problem can grow due to this fact [10].
Motivated by the introduction of a new class of linearizations for sums of poly-
nomials and rational functions in [17], we develop a class of structured iterations
for the approximation of the eigenvalues of such pencils.

2Here by linearize we mean constructing a linear pencil whose eigenvalues are the solution
of the given nonlinear equation.



30

35

40

45

50

55

60

Our approach is based on the Ehrlich—Aberth method, which is a functional
iteration for the approximation of roots of polynomials [1, 11]. We will shorten
it as EAI in the following. One advantage is that, even if the linearizations can
have spurious infinite eigenvalues, the EAI can implicitly deflate them at no
additional cost and without introducing numerical errors. In contrast, the QZ
iteration would need an explicit deflation step (either a priori or a posteriori).
Moreover, the EAI relies on the original input data at each step of the iteration,
unlike the QR algorithms, making it much easier to exploit the structure of the
problem.

The advantage of this approach compared to just running the EAI on the
scalar polynomial is that it provides a backward stable evaluation method. This
can be transparently applied to any polynomial basis with a two-term recurrence
relation (like monomials, Newton and Lagrange, which are described here —
and with small adaptations could also be extended to three terms recurrence
relations). Moreover, the matrix polynomial and rational case of (1) can be
handled with minimal modifications.

In Section 2 we briefly review the structure and the construction of the
pencils A — AB introduced in [17]. In Section 3, we recap the definition of the
Ehrlich—-Aberth iteration and we provide efficient strategies for the selection of
the starting points. In Section 3 we show that computing the Newton correction
is the main ingredient in order to apply the EAI In Section 4, we show how such
structure can be exploited to compute it in a fast and accurate way. Finally,
numerical experiments are reported in Section 5.

2. Linearizing interpolation polynomials

It is shown in [17] that linearizations for sums of polynomials and rational
functions can be realized easily if one knows the so-called dual bases related to
the polynomial bases of interest. We will briefly recall these concepts and then
show how the construction can be performed in the Newton and Lagrange cases.
These definitions, which are here adapted for our needs, go back to the work of
Forney [13].

Definition 2.1. Let ¢g(\),...,¢r(A) be a basis for the vector space of scalar
polynomials of degree at most k. We say that a k x (k+ 1) linear pencil A—AB
is dual to the polynomial basis ¢;(X), j =0,...,k, if

Pr(N)
(A4-AB)| : |=o0 (2)

Po(N)

In the following we will use ms(A\) to denote the column vector containing

P(N) - - Po(A).

The concept of duality introduced in [13] is much more general than what is
described here, since it handles bases with different sizes and degrees. Another
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important concept defined by Forney is the one of minimality. For its definition
we rely on the row-degree, which can be defined as the maximum of the degrees
of the entries in a row. As an example, the row-degrees of

A A2Z—-1 1
1 X 0

are 2 and 1.

Definition 2.2. We say that a matrix polynomial P(\) = Z?:o P\t € C[\Jkrxk2
is minimal if its rows form a basis of a subspace of C(A\)*2, the vector space of
ko-tuples of rational functions, and the sum of its row-degrees is minimal among
all the possible polynomial bases for that subspace.

The above definition is often difficult to check in practice, so that the fol-
lowing characterization will be useful.

Lemma 2.3. A matriz polynomial P(\) = Z?:o P;)\' is minimal if and only if
e its row rank is mazimal for every A € C;

o the matriz whose rows are the highest degree coefficients of the polynomial
rows of P(\) has full row rank;

Remark 2.4. It is immediate to verify that the row vector Wg;()\) containing the
elements of a polynomial basis ¢;(A) is always minimal according to the above
definition. In fact, its highest degree coefficient is el', and so different from zero,
and thus has rank 1. Moreover, if w is the column vector with the coordinates
of 1 in the given basis then Wg()\)w = 1 independently of A, thus proving the
rank 1 property for every A.

The same can not be said of the pencils dual to wg()\). However, when the
minimality property holds, we say that the pencil is minimal and dual to ¢;(X).
Here we state a general result, adapted from the framework of [17], which eases
the construction of linearizations for rational functions.

Theorem 2.5. Let p;(\), q¢;(X) fori = 1,2 be polynomials of degree d with no
common factors. Denote by p;,q; the vectors of their coefficients in two bases
which are dual to Ly(N) and Ly (N), respectively. Then the matric pencil

T T T

P1gy —p2qi  Ly(A) 2d+1) x (2d+1
L) = @ e(j( +1)x( +)/\
(M) Ly(N) 0 A

is a linearization for the polynomial p1(X)qa(N) — p2(N)q1(A) so, in particular,
has as finite eigenvalues the solutions of the rational equation

pi(A) _ p2(})
a(A) (M)

Remark 2.6. When p;(\) and ¢;(\) share a common factor the above construc-
tion is still a linearization for p;(A)ga(A) — p2(A)g1(N). In this case, however,
the common factors might appear as additional eigenvalues which are not roots
of the rational equation.
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The above result can be used to linearize sums of rational functions defined
as quotient of polynomials expressed in different bases. We show that, when a
certain structure is present in the matrices Ly(A) and Ly (A), one can apply a
fast and stable functional iteration to approximate all the solutions.

The results that follow do not strictly depend on the rank 2 in the top-left
block, and they are generalizable to rank k blocks with some k < d. One can
check then that the obtained pencils are linearizations of polynomials of the
form

k
p(A) = Zpi()‘)(h()‘)'
i=1

Moreover, it is possible to formulate a block version of the above result which
yields linearizations of the form

T T T
p1gy —p2qi Ly (N) @1 dkxk
A) = ¢ i, qi € C )
L(A) |:Lw()\)®lk 0 . DG € (3)

whose eigenvalues coincides with the ones of the nonlinear matrix function
F(A) :==Py(A)7'Q1(A) + Pa(N)Q3 (V).

2.1. Newton linearizations

Let ¥ = {o1,...,0k} be a (ordered) set of interpolation nodes in the complex
plane. Then the Newton basis related to ¥ is defined as follows:

ns;(N) =[[A=0i),  i=1... .k

i<j

Given a function f(A) or, more generally, a set of points f; for j =1,...,k, we
can construct the interpolating polynomial p(A) such that p(o;) = f; by com-
puting the so-called divided differences. This is a classical topic in interpolation
theory, for which we refer to [22].

The following result gives a concrete recipe to construct a dual basis for the
Newton case. The proof can be found in [17].

Lemma 2.7 (Section 3.6 of [17]). The linear pencil Ly, 1,(\) of size k x (k+1)

for the nodes o1, ...,04 defined as follows
1 —(A—ox)
LE,k(/\) = : ..
1 —()\ — 0’1)
s dual to the Newton basis associated with o1, ..., 0.
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2.2. Lagrange linearizations

A construction for the Lagrange case can be given in a similar way. This case
is also treated in [17], but we prefer to introduce a slight variation that makes
the dual basis equal to the one used in [20] to linearize Lagrange polynomials.

Given a set of nodes o1,...,0k, we consider the set of (scaled) Lagrange
polynomials defined as:

k
A—o0; .
ej(A):zejHUrJi, j=1,....k (4)
i=1
]
Lemma 2.8. Given a set of nodes 0, j =1,...,k, the following matriz pencil

is dual to the scaled Lagrange basis defined in (4) for any choice of non-zero 8;:

(/\—Uk) —(A—Uk,1)95f1

Lio(N) = .
()\—0'1) —(A—O’o)%
Proof. Tt is easy to check that Ly 4(A\)7s(A) = 0. Moreover, the pencil Ly 4())
is a row and column scaling of the one introduced in [17], and so it has the same
property of maximal rank for any A. U

In order to keep the growth of the coefficients under control it is often con-
venient to choose the parameter §; as the the barycentric weights of the nodes
0. We refer to [20] for the details concerning this choice.

3. The Ehrlich—Aberth iteration

The Ehrlich-Aberth method [1, 11] is a functional iteration that simulta-
neously approximates all the roots of a scalar polynomial p(\). It works by
updating a set of d approximations A1, ..., Aq, where d is the degree of p()), by
means of the following formula:

N(\; A\
)\z(k+1) = )\z(k) - ( 1 ) 9 N(A) p/( )\) )
1= s - V() PN

where N(A) is Newton’s correction of the polynomial at the point A. This
iteration can be seen as Newton’s correction computed on the rational functions

Ri(A):ﬁ i=1,...d.

Hj;éi()‘i - )‘j)’
Ek) are near the roots of the polynomial for 7 # 7,
then R;(\) is almost linear in a neighborhood of )\gk), and so Newton’s method
converges fast. In fact, it is possible to prove that the Ehrlich—Aberth iteration
is locally cubically convergent on simple roots, and linearly on multiple ones [1].

Whenever the approximations A
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In this work we discuss the applicability of the Ehrlich—Aberth method to
the computation of the eigenvalues of a square n x n pencil A — AB. A similar
idea has been previosuly considered by Bini, Gemignani, and Tisseur in [4] and
by Bini and Noferini in [6]. We know that (if no infinite eigenvalues are present)
the degree of det(A — AB) is equal to n, and its eigenvalues are the roots of this
polynomial. We recall that computing the coefficients of the scalar polynomial
p(A) := det(A — AB) starting from the matrices A and B is an ill-conditioned
operation in general [9]. For this reason, we rely on the following formula for
the application of the EAI

Theorem 3.1 (Jacobi’s formula). Let A()\) be a C' matriz function. Then

T den A = (2 A - 24 ).

where adj() is the adjugate operator.

Theorem 3.1 can be exploited to compute Newton’s correction of p(\) :=
det L(\). We have, in fact,

N\ = <tr (A(A)l(;A(A)>)_1.

Applying the above formula to the pencil L(\) := A — AB yields the relation
N == (tr((A=AB)7'B)) " (5)

In Section 4 we will see how to exploit the structure to compute Newton’s
correction in a fast way.

8.1. Choosing the starting points

A non-trivial task in the implementation of the Ehrlich—Aberth iteration is
the choice of the starting points. As suggested by Aberth in [1], a strategy
that works well in most cases is to put them on a circle whose radius is slightly
larger than the maximum modulus of all the roots. In order to do this we
need to estimate the spectral radius of the pencil A — AB. However, we have
emphasized at the beginning that our pencil might have infinite eigenvalues,
which we want to ignore. From now on, whenever we will mention the spectral
radius of A— AB, we will mean the maximum modulus of the finite eigenvalues.

We present two different strategies to provide starting points. The first is
based on an adaptation of the power method, while the other relies on contour
integration.

3.1.1. Power method
Given a pencil A — AB one can estimate the spectral radius by running
a certain number of iterations of an adapted power method. Recall that, in
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the standard eigenvalue problem setting, the power method associated with a
matrix M is obtained by performing the iteration

D) = pg®),

Assuming there exist a unique and simple dominant eigenvalue A; so that |A;| <
[A1] for any j > 1, the ratio between the entries of ) and z(®) converges
to A\; as k — oo. Renormalization of z(*) might be needed after some steps in
order to avoid overflow or underflow situations.
This method can be generalized easily to a pencil when B is invertible by
running the iteration
:L‘(k+1) _ BflAw(k)

which is equivalent to the above when setting M = B~'A. Notice, however, the
explicit computation of the matrix M is not needed and one can perform the
iteration by solving a certain number of linear systems.

In our case, however, B is singular®, so we make use of Brauer’s theorem,
which is a simple yet powerful tool that allows one to move a specified eigenvalue
of a matrix [8] and, more generally, of matrix functions expressed as Laurent
series [5]. In our case we are interested in shifting an entire Jordan chain from
the infinite eigenvalue to a zero one, such that it will not interfere with the
power iteration and estimation of the dominant finite eigenvalue.

In order to achieve this result we prove a version of Brauer’s theorem for
pencils. This is a generalization of the original one in [8], and a particular case
of [5]. Our formulation allows to transparently deal with the shift of infinity
eigenvalues to 0, which is not achievable directly with the formulations in [5, 8].
To achieve this, we identify the eigenvalues of the pencil with the projective
points in P(C).

Theorem 3.2 (Brauer). Let pA — AB a pencil with eigenvalues (A, i), and
assume that v is a right eigenvector associated to a simple eigenvalue (A, fi+),
i.e.,

(A — A\ B)v = 0.

Let w be the only vector such that Av = A\yw and Bv = p,w. Then, for any
vectors ua and up, the matrix pencil

pA — \B, A:=A+wiky, B:=B+wub

has the same eigenstructure of the original pencil pA — AB with the only excep-
tion of the eigenvalue (A, p1.) which is moved to (M. + uyv, . + uko).

Proof. We notice that the vector w is always well defined, since A, and u, cannot
be zero at the same time. We then consider the Kronecker canonical form of

3In fact, the linearization of Theorem 2.5 has size 2d + 1, but linearizes a polynomial of
degree 2d. This implies that the linear term of the pencil is singular. We refer to [17] for a
details analysis of the eigenstructure of the pencil.
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the pencil given by the upper triangular pencil uTsx — ATp defined as follows
(LA = AB)V =W (uTy — XTp), (6)

with V' and W invertible matrices. Let v := Ve; and wy := Weq, and assume
that we ordered the diagonal elements so that A, and p, are found in position
(1,1) of T4 and Tg. For any choice of us and upg the pencil

/,LTA—/\TB, TA ::TA—|—elu£V, TB ::TB—i-elugV

has the same same eigenvalues of uTy — ATp with the only exception of (A, )
which is moved to (A. + u%v, . + ugv).NRight multiplying (6) by V! after
having replaced T4 and T with T4 and T, respectively, yields

PA = AB =W (uTy — \T)V !
which has the required eigenvalues by construction and is such that
A=A+ wul, B = B +wubk,
as requested. This completes the proof. O

Specializing the above result to eigenvalues of the form (X, 1) gives us the
original Brauer’s theorem from [8]. In our case, if co is an eigenvalue of a pencil
A — AB then (A, ) = (1,0) is an eigenvalue of pA — AB. Thus, we can choose

v v
UpA = — 75 UB = T35
ST, e

so that the modified pencil has (0,1) as an eigenvalue. A simple generalization
of the above result can be used to move an entire Jordan chain by perturbing
it in the Kronecker canonical form. The proof is just more technical but uses
the same ideas, so we omit it. The same result can be obtained by relying on
the theorem in [5] twice, first moving the Jordan chain at infinity to some finite
point and then moving it to zero.

Theorem 3.3. Let pA — AB a pencil with a left and right deflating subspace
spanned by the columns of W and V', that is there exist invertible k x k matrices
My and Mp such that

AV =W Ma, BV =WMpg.
Then, for any Ua,Ug in C*** the modified pencil pA — \B with
A:=A+WUY,  B:=B+4+WU}

has the same eigenstructure of pA — AB except the block corresponding to the
deflating subspaces V. and W, which is replaced by the eigenstructure of the
(small) pencil u(Ma +ULV) = X(Mp +ULV).
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The simplest case of a deflating subspace is to consider an eigenvector and
its image under the multiplication by A and B, and this gives back Theorem 3.2.
However, one might consider also a subspace spanned by the vectors of a Jordan
chain and in this case the above result allows to move it to a completely different
eigenstructure.

In view of the previous results, we assume the pencil A — \B has the infinite
eigenvalue (and the Jordan chain associated, if it exists) shifted to 0. We can
perform some iterations of the form

x(k+1) —_ Bflﬁx(k)

in order to approximate the dominant finite eigenvalue. We can then use that
approximation to select the initial approximations to start the EAI, by putting
them equally distributed on a circle of radius equal to the spectral radius of the
pencil.

In [17] it is shown that the linearizations of sums of rational functions only
have 1 simple infinite eigenvalue, while the ones for sums of polynomials have an
entire Jordan chain linked to infinity. For this reason, Theorem 3.2 is sufficient
for the former case, while Theorem 3.3 is required for the latter. In both cases
the explicit characterization of the Kronecker structure of the infinite eigenvalue
allows to avoid its explicit computation.

8.1.2. Counting the eigenvalues by means of contour integration

Here we study a more refined version of the starting point selection proce-
dure, which is based on the so-called argument principle. We recall its formula-
tion from [15], for which we refer for the definition of a Jordan curve.

Theorem 3.4 (Argument principle, Theorem 4.10a in [15]). Let f(A\) a holo-
morphic function defined on a simply connected region R. Then, for any posi-
tively oriented Jordan curve I that borders in R and does not pass through any

zero of f(A) we have
1w

where N is the number of zeros of f(X) inside T, counted with multiplicities.

The above result applied to the holomorphic function f(\) := det(A — AB)
allows to count the eigenvalues of the pencil A — AB inside a contour I'.

d\=N

Remark 3.5. The integrand of Theorem 3.4 is also called the logarithmic deriva-
tive of f(A). We notice that it is nothing else than the inverse of Newton’s cor-
rection f(\)/f'(\) evaluated at the point A, according to (5). In the following
we will show how to evaluate this function in O(n) flops.

We propose the following strategy to count the roots inside a circle of center
xo and radius r > 0. Let Ix(zo,r) be the approximation of the integral of The-
orem 3.4 obtained by applying the trapezoidal rule with & points, and B(zo,r)
the ball of center ¢ and radius ». We have

. 1 (X
Iao,r) := Hm Ii(wo,r) = 2mi /e)B( ) J;(()\)) .

10
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Since we are integrating a holomorphic function along a circle the trapezoidal
rule converges exponentially fast to the integral thanks to the periodicity of the
function [19] restricted to B(zg,r). We choose k by means of the following
procedure:

1. We evaluate the integrand at k points on the circle of center zy and radius
r. We then compute Ix(xg,r) by appropriately combining the results of
this evaluation.

2. We estimate the error by assuming |I;(zo,7) — Iak(x0,7)| = |Ex(zo,7)|s
where Ey(xg,7) := I(xo,7) — Ix(x0,7). If the absolute error is smaller
than % then we round the result to the nearest integer and exit, otherwise
we go back to the first point doubling k.

3. We continue until convergence.

Notice that doubling the value of &k allows to reuse the previous evaluations,
so the cost for the integration will be O(kn) where k is the minimum power of
2 such that the integration error can be bounded by %

We can then use the above scheme to obtain an algorithm for the choice
of the starting approximations. We first approximate the spectral radius by
evaluating the number of eigenvalues in B(0,27) for various values of j. We find
the smallest j such that all eigenvalues are contained inside B(0,27). Let it be
g2, and let j; the largest j such that B(0,27) does not contain any eigenvalue.

We then count the number of eigenvalues in each circle of radius 27 for
Jj1 < 7 < jo, and select the starting approximations accordingly. In our
implementation we have chosen to place the approximations in each annulus
{2 ]2 < |z| < 27!} on a circle of radius v/2 - 27.

This strategy allows to match the moduli of the approximations to the ones of
the eigenvalues. In order to complete this task one has to evaluate r := jo—7j;+1
integrals, plus the ones needed to find the spectral radius (that could be also
computed with the scheme of the previous subsection).

We assume that the number of evaluations needed for each integral is bounded
by n, in which case this will give a procedure that costs O(rn?). In particular,
the two strategies for the choice of the starting points have a comparable cost.

In Figure 1 an example of starting points obtained with this strategy and
the one of the previous section, along with the correct eigenvalues of the pencil,
are displayed. The strategy relying on Theorem 3.4 is capable of estimating all
the eigenvalues, not only the largest ones, and we will see in Section 5 that this
yields a lower number of iterations for the EAIL

8.2. A suitable stopping criterion

When dealing with iterative methods it is important to understand when to
stop. In order to take this decision we rely on some results of Henrici [15], and
Bini and Noferini [6].

11
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Figure 1: On the left: starting points generated with the algorithm relying on Theorem 3.4.
The empty circles are the eigenvalues, while the stars represent the starting points computed
with the above method. The radii have been chosen in the middle of the annuli containing a
certain amount of eigenvalues. On the right: starting points generated relying on the power
method.

3.2.1. Small Newton correction
The following result relates the modulus of Newton’s correction with the
accuracy of an approximation.

Theorem 3.6 (Corollary 6.4g of [15]). Let p(A\) be a polynomial of degree n.
Then, for any A such that p'(\) # 0, the circle of radius (n — 1) - [p(\)/p'(N)]
and center X contains at least one root of p(\).

We can state the following immediate consequence of the above result, based
on which we will formulate our stopping criterion.

Theorem 3.7. Let p(\) be a polynomial of degree n and A a point in the complex
plane such that |p(A)/p (A)] < |M|e for some € > 0. Then there exists a point £
such that p(§) = 0 and |£ — A\| < (n = 1)|A|e.

The above states that whenever Newton’s correction of det £(A) is of the
order of the machine precision the point A is nearby an eigenvalue of L(\).
Whenever this happens we can then stop our iteration, and this also automati-
cally provides a bound on the forward error of the computed eigenvalue.

8.2.2. Checking the conditioning of the evaluated pencil

Another useful criterion to stop the iteration is checking the condition num-
ber of the matrix A — AB at a point A. Since the pencil is singular whenever A
is an eigenvalue, we can expect the condition number x(A) := || Al|||A™!|| to be
high when A is near an eigenvalue.

12
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Intuitively, one could formulate a stopping condition by asking to stop the
iterations when k(A — AB) > t where t is some chosen threshold and k() is the
matrix condition number. Theorem 3.9 shows that in fact when we choose ¢
to be approximately %, with u being the unit round-off, the above condition is
equivalent to asking that A is an eigenvalue of a slightly modified pencil.

Remark 3.8. We need to be careful with the definition of slightly modified in this
context. In fact, what we would like to have is that a structured modification
makes the pencil singular. Considering unstructured perturbations can cause
the algorithm to stop too early since the unstructured condition number might
be much higher than the structured one.

Here we state the following result, that gives a good stopping criterion for
an unstructured pencil. Then we will rephrase it to make it applicable in our
context so that structured perturbations can be considered instead. We note
that this can be seen as a slight variation of Lemma 3 in [18], where rq(-) is
used to denote the matrix condition number* with respect to the 2-norm.

Theorem 3.9. Let A—AB a pencil. If ka(A—AB) = L then X is an eigenvalue
of a pencil whose coefficients have been perturbed relatively less than 2€ in norm.

Proof. We need to prove that there exist two perturbations d A and ¢ B, of norm
relatively smaller than 2¢ (compared to A and B, respectively), such that A is
an eigenvalue of A+ 0A — A\(B + dB).

Recall that, in the 2-norm, xo(A — AB) = g—i, where o1 > ... > o, are the
singular values of A — AB. Let uy,...,u, and v1,...,v, be the associated left
and right singular vectors. We then have that the matrix A — AB — o, u,v}; is
singular. Moreover, since ||A — AB||s = o1, either ||A|s > 20y or | B2 > %ﬁ
In the first case, we can define §A := —o,u,v), and then we can verify that
A+ 6A — AB is singular. In the second one, we can define 0B := % u,v;,, and
then A — A(B + 0B) is singular.

In both cases, the coefficients of the pencil A — AB can be perturbed with
a perturbation relatively smaller than zil", so smaller than 2¢, so that A is an

eigenvalue. This concludes the proof. O

Notice that measuring the above condition number could be difficult in prac-
tice. However, as already mentioned in the previous remark, we are more inter-
ested in a structured condition number which is also easier to measure in our
context.

Theorem 3.10. Consider an invertible upper triangular matriz with the fol-

4 Here we refer to the standard condition number of the linear system associated to a
certain matrix, that is, ka(A) := ||4]l2 - [|A™1]|2.
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lowing structure:

X X
Dk o F

X % ok *
X X ok ok *

X

X X X X

X

where the entries marked with * and v form a block of rank k which can be
written as UVT for U,V € C"™F. Then there exists a perturbation of norm
smaller than ——2L— at the first order, of U and V' which makes the

VIETUIP+HeT V2’

matriz singular.

Proof. Define the n x k matrices U,V as follows:
U:=U+U, V:=V+V

Since the only element on the diagonal modified by changing U and 0V is ~,
the only way to obtain a singular matrix is to choose them so that

el (U +6U)(V +6V)Te; = 0. (7)

The above shows that all the entries in U and §V which are not on the last
row and first row, respectively, have no effect on the singularity, thus we can set
them to zero (since any other choice will increase the norm of the perturbations).
Let u, du, v and dv be the last and first rows of these matrices. We can rephrase
(7) as follows:

(u + du,v + dv) = 0.

Dropping second order terms one can verify that this is equivalent to finding

the minimum norm solution to
U r ov| _
v sul ~ 7
which is given by

[gﬂ - _||u||21||v||2 m B \/||u||j+ [o][2 <\/||u21+ ]2 [ZD

where we have normalized the vector [} ] to make it of unit norm. The proof is
then concluded since the size of the perturbation is exactly what we were aiming
for. O

Using the above result we can say that if

el
e < UV
[Jwll> + vl

14
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then a structured perturbation which is relatively smaller than € can make the
evaluated pencil singular. We will see in Section 4.3 that the matrix can be
taken in this upper triangular form by means of Givens rotations. This is used
to compute Newton’s correction, so then we can easily check when we have
reached convergence by testing whether |y| < Kul|[UVT|\/[eZU|?2 + [T V]2,
where K is a small constant, depending also on the norm of U and V', and u the
unit round-off. Since all these quantities are available during the computation of
Newton’s correction this condition can be checked almost for free, and provides
an effective stopping criterion.

4. Efficient computation of Newton’s correction

In this section we show how the previous results can be turned into a practical
algorithm. The main issue is the efficient evaluation of Newton’s correction at a
point, which corresponds to computing the trace of the matrix (A—AB)~'B. In
this section we present a strategy that works both for the Newton and Lagrange
linearizations, with some specific results that only cover the Newton case.

4.1. Transformation into Hessenberg structure

As we have seen in Section 2.1 and 2.2, the linearizations that we are inter-
ested in have the following form:

R L?(A)} @

£ = [Lg()\) 0

with L;()), j = 1,2 being rectangular k; x (k; +1) and upper bidiagonal and R
being a rank 2 matrix. Without loss of generality, in the following we assume
that L;(\) and Ly()\) have the same size k x (k + 1) and R = UVT with
U,V e Clt1)x2,

Theorem 4.1. Let L()) be a pencil as in (8). Then there exists a block column
permutation that takes it to upper Hessenberg form. More precisely, we have

that
Ik+1:|

LV = [LlT(A) f

0 L2(N)

is an upper Hessenberg pencil. Moreover, its leading coefficient is lower bidi-
agonal with a zero element on the diagonal in position (k+ 1,k + 1), and the
constant coefficient is the sum of a bidiagonal matriz with an upper triangular
rank 2 matrix.

}::A—)\B, H:[Ik

Proof. Direct consequence of applying II to the pencils defined in Sections 2.1
and 2.2. 0

Something more can be said in the Newton case, where the leading coefficient
is diagonal. Using an additional permutation, the pencil £(\) can be endowed
with an Hessenberg-Triangular structure. This is relevant if one wants to apply
the QZ iteration, since the reduction to upper Hessenberg-Triangular form is

15
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the usual preliminary step in this case. While this is not directly relevant for the
EA approach, it is still a reduction that is interesting so we state the following
result.

Lemma 4.2. Let L()\) the pencil obtained by linearizing the sum (or differ-
ence) of two polynomials expressed in the Newton basis. Then there exist two
permutation matrices 11y and Tly such that

I LIy = A — AB,
with B diagonal and A upper Hessenberyg.

Proof. We already know, thanks to Theorem 4.1, that we can choose Il ; so
that the pencil £(A)IIz; is upper Hessenberg. Let Ji, II1 1 and II; 5 be defined
as follows:

Jr = , i1 = Jiey+1 D@ Iis,s o = Jiy, @ Iigt-
1

Multiplying £(A)II3 1 on the left by II; 1 acts on the first block row as the left
multiplication by Ji, 11 and, analogously, the right multiplication by II; » acts
on the right as Ji,. These transformations preserve the rank of the top-right
block and leave Lo()\) unchanged. Moreover, in the Newton case, Li(\)7T is
given by
OT
LN =H -\ { kl]
Iy,
where H is lower bidiagonal. It can be checked easily that Jy,+1HJy, is still
lower bidiagonal and that

I
Jer41L1(NT Ty = Jry 1 H g, — A {0%1}
1

has the prescribed Hessenberg triangular structure when embedded in the larger
pencil. Setting II; :=II; ; and IIy := Il ;11I; o completes the proof. O

4.2. A Sherman-Morrison based approach

In this section we focus on providing a method involving O(n) flops for
computing the trace of (4 — AB)™!B, i.e., for the evaluation of the Newton
correction of the polynomial det £(A). The method is based on the Sherman-
Morrison formula [14].

Theorem 4.3 (Sherman-Morrison). Let M and M + UVT be two invertible
matrices, where M € C™ ™ and U,V € C"**. Then

M+UvhHY =M1t - MUT+VIMU) VI MTE
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The above formula provides a cheap method to evaluate the inverse of a low
rank correction of a matrix whose inverse is known (or easily computable). This
is exactly our case, since the pencil £(\) can be written in the following form:

A—=AB=MN\+UVT

where M ()) is a lower bidiagonal pencil and U,V € C"*2. Unfortunately, the
above decomposition does not satisfy the hypotheses of Theorem 4.3, since the
bidiagonal matrix M () has a zero diagonal entry (see Theorem 4.1) and is not
invertible.

However, we can rephrase the decomposition by modifying M () and putting
a value o # 0 in position (k + 1,k + 1) and accordingly modify the rank 2
correction to a rank 3 one so that

A= AB=MN+UVT —aepyief,; = M(A) + UV,

In the above formulation the matrix M (M) is invertible and by the Sherman-
Morrison formula we obtain:

(A=AB) ' =MW\ =M\ UI+VIMN)TO)VIMA)™Y,  (9)
which in turn leads to the following result.

Lemma 4.4. Let A— AB be a pencil defined as in Theorem 4.1. Then, for any
A such that A — AB is invertible and for any o # 0,

tr((A = AB)™'B) = tr(M(A) ' B) = tx(VT(\)U (V)
where M(X\),U(N), V(\) are defined as in (9) and
UN) =M\ O +VIMN0)™, V() =BTMW\) TV,
Proof. We can use the decomposition of (9) to get:
(A=AB)'B=MW\)"'B-MNOI+VIMONU)"'VTMO\)'B.

Since the trace is a linear operator, we can split the trace of this sum as the sum
of the traces, and using the fact that the trace of a matrix product is invariant
under cyclic permutation of the factors we get the thesis. O

The trace of a matrix product can be characterized as follows.

Lemma 4.5. Let M, N be two n x k matrices. Then

tr(MNT)= Y (MoN);

0<i,5<n

where o denotes the Hadamard product.
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Remark 4.6. We emphasize that Lemma 4.4 provides an O(n) algorithm for
computing Newton’s correction. In fact, to evaluate the first term of the sum
we can use the relation given by Lemma 4.5:

tr(M(X)7'B) =Y (M()\)~" o B"),;.

4,9

Since BT has only nonzero elements on the diagonal and on the superdiagonal
we have to compute the diagonal and superdiagonal of M (A\)~1, which can be
done in O(n) flops given its bidiagonal structure.

Moreover, the second matrix of which we have to compute the trace is 3 x 3
and can be computed in O(n) flops. These two facts together provide an O(n)
algorithm.

Whilst the above framework is theoretically satisfying, from a numerical
perspective there are still some points that need to be handled carefully. A
natural one is the choice of . While any a # 0 provides a mathematically
correct formula, we are interested in choosing « in order to obtain the best
possible numerical results. In practice we can choose a to be about the norm
of the other diagonal elements, in order to avoid unbalancing in the matrix.

4.3. Using rotations

As we will see in Section 5 the algorithm of Section 4.2 can be unstable. For
this reason, it is of interest to devise an alternative scheme based on unitary
transformations that, as confirmed by numerical experiments in Section 5, is
more robust in practice.

In view of Lemma 4.2 we know that, up to permutations, we can rewrite the
pencil as A — AB where A and B have the following structure:

T T T
A:[B¢ UVy B:[—BM

0 By —Bw,l} ’

where By and B, are (rectangular) bidiagonal matrices containing the inter-
polation nodes. The Newton case is particularly easy to deal with, since the
matrix B is diagonal, with a zero entry in the middle. We have the following.

Lemma 4.7. Let A — AB a linearization for a sum of two scalar polynomials
expressed in two Newton bases as in (3). Then the trace of the matriz (A —
AB)"'B can be expressed as follows:

—1
tr(A=AB)'B)=| Y  [A-ABJ;'
itht1
where k is the degree of the polynomials whose sum is linearized.

Proof. 1t follows by recalling that tr(ABT) = >i;(A o B)ij, where o is the
Hadamard product of the matrices A and B, see Lemma 4.5. O
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An analogous result (which we do not state explicitly) also holds for the
Lagrange case, where the linear combination of the diagonal and superdiagonal
elements has to be done using the barycentric weights as coefficients.

In both cases, to ease the computation, we will split the inverse of A —AB in
two parts. The linearity of the trace operator allows to compute these two parts
separately and then sum the results. More precisely, we look for a decomposition
(A—=AB)~! = M; + Ms, so that we can compute tr((A—AB~!)B) = tr(M B) +
tr(M2B). We rely on the following elementary result.

Lemma 4.8. Let X be an upper bidiagonal matriz, defined as follows:
ar pr

X =
ﬁnfl

Qn

Then it admits a factorization as a sequence of n — 1 Gauss transformations
given by X = X,,_1... X1 where

a1 B .
X, = s and X; = LB

fori>1.
I Q41
n—2

In_i1

Assume ) fixed and set M := A — AB. We want to compute the elements of
M~!. Under the hypotheses above we have:

T T
XI uv

M{O Xy

:| , X¢ c Ckx(k+1), X?l) c (Ck><(k+1)7
where Xy and X, are the bidiagonal matrices relative to the nodes in the bases

¢ and v, respectively. As reported by the following lemma, the above structure
allows for a structured upper triangular factorization of M.

Lemma 4.9. Given a matriz M with the prescribed structure, it is possible to
find two unitary matrices Qu and Qr such that
X¢ U.”L‘l U‘N/T B B
R:=QuMQL = v 2IVT|, X, eCM* X, e CPF a1y € C2
Xy
and X¢ and X}p are upper bidiagonal matrices. Moreover, Qu = Qu,s b Ij
and Qr = I;; ® Qr.s and Qu,s and Qr s can be decomposed as the product of

k Givens rotations. The matrices U and V are defined by U = Qu,sU and
V=QLsV.
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Proof. The proof of the above result is constructive. We define 2k Givens rota-
tions that reduce the top-left and bottom-right blocks to upper triangular form
as reported in the following for the k = 3 case:

X X *x  x k%
X X * Kk  Kx %
X Kk x k%
M = G1G2G3 * ok * * G4G5G6
X X
Qy Q1
X X
X

where the x-es identify the entries of the bidiagonal blocks , the x are the entries
of the low rank block, and G; is a Givens rotation acting on the rows (7,7 + 1).
The rotations can be obtained computing a QR factorization of X4 and an RQ
factorization of X. O

The advantage of the above representation is that it eases the parametriza-
tion of the inverse of R in order compute its trace (even after performing the
rotations). In fact we have the following.

Lemma 4.10. The inverse of R is given by

X;l —*y*lf(glf]xl X
Rfl — ,7—1 —’7_1l'gVTX,L;1
o—1
Xﬂ/)

Moreover, the trace of M—' = QR 'Qu does not depend on the entries that
have been marked with the x symbol.

Proof. The structure of the inverse matrix can be obtained by performing a
block-wise inversion of the upper triangular matrix R. The last claim can be
obtained by decomposing R~ as R™' = Ry + R, ., where Ry, contains the
elements marked with x and R, . the others. The structure if Q; and Qyu
implies that Q@ R« Qu has a zero diagonal, thus giving a null contribution to

the trace.
O

By exploiting the last statement of Lemma 4.10 and the linearity of the trace
operator, we can rephrase the problem as follows for the Newton case.

Lemma 4.11. The trace of M~'B, where M and B have been built starting
from a linearization in the Newton basis, can be written as

tr(M~'B) = —tr(X; 'Qu.s) — tr(Qr.s X, ")

1 _1r 1 - o
+ 5 tr(ef+1QU,sX¢ W) + 5 tr(:ngTXw 'Q1.se1)

All these summands can be computed in O(n) flops.
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The above results allow to devise an O(n) method to evaluate the Newton
correction of det £() at any point in the complex plane.

Remark 4.12. The computation of the @, Qu and the inversion of the upper
triangular matrix, can be all performed by means of backward stable operations.
Moreover, given the structure of A — AB, all the errors are offloaded either on
the nodes or on the low rank part which contains the coefficients of the poly-
nomials. This suggests that the procedure for the computation of Newton’s
correction is structurally backward stable, with respect to the bidiagonal plus
low rank structure. In fact, the final result is the exact one obtained by slight
perturbations on the nodes and on the coefficients. As we will see in the numer-
ical experiments, this leads to a better accuracy with respect to non-structured
backward stable methods, like the QZ algorithm.

5. Numerical experiments

In this section we report the numerical experiments that validate our ap-
proach. We have tested two different aspects of the algorithm: the accuracy
and the asymptotic cost.

Regarding the former, we verified that in many common cases EAT delivers
very accurate results. Moreover, we show that it easily overcomes the problems
related to poor conditioning of the eigenvalues when considering the unstruc-
tured condition number of the eigenvalue problem.

5.1. Accuracy of the method

We consider the problem of finding the roots of a polynomial r(\) described
as 7(A) = p1(A) —p2(A), with p () and pa(\) expressed in the Newton basis. As
nodes for these two interpolation polynomials we have chosen the Chebyshev
points, in order to have a set of points where the interpolation is reasonably
conditioned. We have computed 2k nodes and we have used k of them to
generate the basis for p;(A) and k of them to build the basis for py()), so
they are expressed in a different basis. We have ordered the set of 2k nodes
according to the canonical ordering on R and we have assigned the ones in the
odd positions to the first interpolation basis, and the ones in the even position
to the other, as depicted in Figure 2. The same kind of splitting has been used
for the roots of unity, which have been employed for the numerical experiments
in the Lagrange case reported in Table 3 (in this case they have been ordered
by their angle).

In Table 1 we have reported the absolute forward errors® and the back-
ward errors (on the matrix pencil) for the approximation of the roots using the
Sherman-Morrison based strategy and the one based on Givens rotations. More
precisely, we have computed the backward error err 4 () for each eigenvalue

5 Approximations for the roots with an arbitrary number of digits have been obtained
using MPSolve [7], a multiprecision polynomial solver. The symbolic toolbox of MATLAB to
compute the coefficients of the linearized polynomial.
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Figure 2: On the left, the splitting used to assign the 2k Chebyshev nodes to the first and
second family of nodes, used for p1(A) and p2()), respectively, is reported. On the right, the
same splitting for the roots of unity is shown.

—

e
N

defined as err(4, gy () := 0, (A—AB), where 0, (-) is the smallest singular value.
This can be proven to be the distance (in the Euclidean norm) to the closest
pencil that has A as an eigenvalue. We refer to the work of Tisseur [18] for a
detailed error analysis.

It is clearly visible that the strategy based on rotations does not have stability
issues, while the accuracy of the one based on Sherman-Morrison soon degrades
as the degree increases. For this reason, in the following we will always consider
the strategy based on rotations. The numbers reported are the norms of the
vectors containing the errors for each approximation. For the examples that we
have chosen there is not much difference between absolute and relative errors
since most of the roots have modulus about 1.

Degree Forward SM  Forward Rot Backward SM  Backward Rot

2 2.14-10716  1.87-10716 6.11-10~17 5.18-10~17
5 2.06-10715  1.38-1016 4.54.1016 6.76 - 10~17
10 1.83-1071  1.58-10"16 1.05- 1014 5.66-10~17
15 5.68-10"1  1.23.10716 9.3.10712 3.69-10"17
20 4.01-1079 1.17-10716 3.57-1078 4.22-10717

Table 1: Comparison of the accuracies of the two strategies for the computation of New-
ton’s correction. The columns marked with SM represents the data relative to the Sherman-
Morrison based approach of Section 4.2, while the ones marked with Rot refer to the strategy
based on Givens rotations of Section 4.3.

In Table 2 we have reported both absolute forward errors and backward
errors (on the matrix pencil) for a wider range of degrees, and we have com-
pared it with the QZ algorithm. However, the degradation in the quality of
the approximations given by the QZ iteration is clearly visible. This is due to
the fact that while giving backward stable results, they are backward stable
in an unstructured sense, and they are not guaranteed to correspond to small
perturbations in the polynomials. Since the EAI iteration relies on a structured
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Degree Forward EAI  Forward QZ Backward EAI Backward QZ

10 5.1-10716 3.64-10715 1.02-10716 1.43-10716
20 5.2.10716 5.65-10714 1.55-10~16 1.94.1016
40 7.96-10716  3.59.10°10 2.33-10716 2.66-10716
80 5.93.1016 0.35 3.38.10°16 4.35.10716
160 1.41-1071° 1.09 4.62-10716 6.71-10716

Table 2: Numerical accuracy of the EAI compared to the QZ iteration. We have generated
50 examples of sums of polynomials whose coefficients in the Newton basis are drawn by
Gaussian distribution coefficients. The nodes of the Newton bases are Chebyshev points. The
infinite eigenvalues in the QZ methods have been deflated a posteriori — and have always
been exactly identified by the QZ method. In this cases a posteriori deflation is easy because
of the special structure that the linearization has for degree-graded bases. This is not the case
in general. The accuracies have been averaged over all the experiments. The backward error
reported in the table is the one on the matrix pencil.

Degree Forward EAI  Forward QZ Backward EAT Backward QZ

5 725-10716  2.15.10"1° 1.35.1016 2.21-10716
10 5.85-10716  1.68.10"1° 1.01-10716 2.33.10716
20 1.52-1071% 269-107™ 8.03-10~17 2.02-1016
40 1.58-10"%  1.22.10~™ 4.82.10717 8.37-10717
80 6.8-1071° 6.78 - 10714 2.99-1017 4.56 - 1017

Table 3: Numerical accuracy of the EAI compared to the QZ iteration for sums of rational
functions defined by ratios of Lagrange polynomials. The accuracies have been averaged over
10 runs, and the nodes have been chosen with interlacing properties as in the Newton example
of Table 2 from the roots of unity of appropriate degree.

(and backward stable) solver to compute the Newton correction, evaluating a
slightly perturbed polynomial, it leads to much better results in practice.

5.2. Asymptotic cost of the method

The speed of convergence of the EAI is strictly related to the quality of
the starting approximations. In Section 3.1 we have discussed possible choices
for the starting points, and here we study how these relate to the number of
iterations before the stopping criterion presented in Section 3.2 is met on all the
components.

In particular, we are interested in studying the average number of iterations
per eigenvalue. Since an iteration costs O(n) flops, keeping this number bounded
by a constant makes the asymptotic cost O(n?).

More generally, assuming an instance of EAI has an average number of
iterations equal to ¢ > 0, we have a total cost for the algorithm of O(tn?). Our
aim is to choose the starting points that make ¢ as small as possible. The results
in Figure 3 show that good starting points produce a very slow growth in the
number of iteration, thus providing a practically quadratic method.
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Figure 3: Average number of iterations for different choices of starting points. The tests refer
to the computation of the roots of the sum of two polynomial expressed in the Newton basis
with interlaced Chebyshev nodes as described in Figure 2.

Degree Integration Power method

5 6.42 7.62

10 7.02 10.45
20 7.5 16.86
40 9.16 29.59
60 9.82 41.32
80 11.79 56.67
100 12.28 62.72
120 13.29 76.01
140 15.6 100.51
160 16.38 103.02

Table 4: Average number of iterations with different criterion for the choice of the starting
points.
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To estimate the value of ¢ we have run the following procedure:

1. We have randomly generated a sequence of rational functions, for various
degrees from n = 10 up to n = 160 (here by degree we mean the degree of
the numerator and the denominator). We have chosen the same kind of
Newton basis for all of them and we have drawn random coefficients from
a Gaussian distribution N (0, 1).

2. We have run the EAI on these problems. 50 problems with the same
degree have been tested and we have computed the average number of
iterations for each degree.

The results of these tests are reported in Table 4 and in Figure 3. We have
tested the two methods for the choice of the starting points that have been
discussed in Section 3.1, that is the adapted power method and the integral
approach to counting the number of eigenvalues inside a closed curve. Both
methods manage to deliver the starting points in (at most) O(n?) flops, so they
do not significantly contribute to the total complexity of the method. More pre-
cisely, we have fixed the number of integration points or iterations of the power
method to be bounded by n, so that we have a guaranteed O(n?) complexity
for the computation of the starting points.

Figure 3 shows how, as we have already stressed, even if the contour inte-
gration method still exhibits some growth in the average number of iteration as
n grows, this effect is very mitigated compared to taking points on a circle of
large enough radius.

The degraded performance of putting all the initial approximations on a
circle with radius equal to the spectral radius of the pencil (ignoring infinite
eigenvalues) can be informally explained by the fact that the approximation
have to travel a long distance to reach the roots with smaller modulus.

5.8. Eigenvalues of matriz polynomials

To complete the section we show an application to the computation of eigen-
values of matrix polynomials and rational functions. More precisely, we consider
the nonlinear eigenvalue problem

R(\)v =0, R(\) := PL(N)'Qi(\) + Po(N)Qa( V),

where as usual the matrix polynomials P;(A) and Q(\) are expressed in a
certain basis, and Py(A) and Q2(A) in another one. In this case we assume that
they are both Newton bases, with different nodes.

The same approach of Section 4.3 can be used to evaluate the trace of the
linearization of such a nonlinear eigenvalue problem at a certain point in the
complex plane. Assuming the degree of all the matrix polynomials involved is
d one can reduce the diagonal blocks to upper block bidiagonal form with O(d)
block Givens rotations, and then compute the inverse of the resulting block
upper triangular matrix.
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Degree Forward EAI  Forward QZ Backward EAI Backward QZ

2 1.63-1071  1.04-10713 1.02- 10718 2.4-10"18
4 6.94-10715 1.37-10713 1.11-1018 1.93-1018
6 2.21-10715  2.05-10"13 7.77-10719 1.61-10718
8 1.62-107%  3.26-10713 5.77-10~19 1.2-10718
10 9.39-10716  2.557.10713 7.1-1071° 1.05-10718
12 5.2.10716 3.43-10713 4.98-1019 7.79 10719

14 1.06-1071%  3.29.10°13 5.16 - 10~ 8.17-10~19
16 3.79-107'%  5.07-10"13 5.45-10719 9.03-1071°
18 8.42-10~1%  7.12.10713 7.09-10~19 2.19-10718
20 1.77-10"%  8.62-10"13 4.51-10719 8.61-10~19
22 8.02-10716  1.88-10"12 4.34-1071° 6.06 - 107 1°
24 3.28-10715  7.23.10712 4.96-10~19 6.76 - 10719

Table 5: Numerical accuracy of the EAI compared to the QZ algorithm in the computation of
the eigenvalues of a nonlinear eigenvalue problem expressed as a sum of two rational functions
in the Newton basis. The nodes of the Newton bases are Chebyshev points.

The cost of each evaluation of Newton’s correction is cubic in the size of the
coefficients, leading to a total computational cost of O((dn) - dn?®) = O(dn?),
so this approach is convenient only if the degree is large enough. We have
compared the results obtained using the EA iteration to the QZ on the pencil,
and also in this case one notices that the (forward) accuracy of the EA is much
better than the one of the QZ. However, both algorithms deliver backward stable
approximations, as reported in Table 5.

The coefficients of the matrix polynomials in this example are random 6 x 6
matrices with integer entries between —1000 and 1000. This setup has been
chosen to allow the computation of the eigenvalues symbolically in order to
check the computed results. The backward error computed (which is relative to
the norms of the pencil) is always below the machine precision, and the results
of the QZ algorithm show that the (unstructured) eigenvalue condition number
of the pencil is still quite high compared to the structured one (that is, the one
of the original problem).

6. Conclusions

We have shown the effectiveness of the Ehrlich—Aberth iteration as an ap-
proximation engine for the eigenvalues of some rank structured pencils which
are encountered when linearizing sums of polynomials and rational functions
expressed in Newton Lagrange bases. Our approach allows to treat a broad set
of problems, such as (matrix) polynomials and rational functions expressed as
sums in different bases.

This work has shown that the method is both fast, in the sense of having
a lower asymptotic complexity than the QR and the QZ iterations, and more
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accurate when looking at the forward errors. The gain is obtained by applying
a structured solver that only allows perturbations on the original input data.
Moreover, we have shown that the deflation of infinite eigenvalue is not an
issue in this context, simplifying the analysis. Thus, even when some of the
eigenvalues are ill-conditioned in the pencil no loss of accuracy is encountered
with the EAIL

We have derived suitable strategies and methods for the estimation of the
starting points which have shown to be effective in practice, and we have devised
a practical criterion for the stopping conditions.

We think this proves both the flexibility of the EAI, which has been adapted
to this case with the development of proper tools, and the importance of consid-
ering structured iterations for the approximation of eigenvalues of linearizations.
This is particularly interesting for applications where the data is naturally ex-
pressed in different bases (or the same bases with different nodes), such as the
transfer functions for closed loop linear systems [16], or the clipping problems
in computer aided graphics [12].
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