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Abstract

We analyze the problem of carrying out an efficient iteration to approximate the
eigenvalues of some rank structured pencils obtained as linearization of sums of
polynomials and rational functions expressed in (possibly different) interpolation
bases. The class of linearizations that we consider has been introduced by Robol,
Vandebril and Van Dooren in [17]. We show that a traditional QZ iteration on
the pencil is both asymptotically slow (since it is a cubic algorithm in the size of
the matrices) and sometimes not accurate (since in some cases the deflation of
artificially introduced infinite eigenvalues is numerically difficult). To solve these
issues we propose to use a specifically designed Ehrlich–Aberth iteration that
can approximate the eigenvalues in O(kn2) flops, where k is the average number
of iterations per eigenvalue, and n the degree of the linearized polynomial. We
suggest possible strategies for the choice of the initial starting points that make k
asymptotically smaller than O(n), thus making this method less expensive than
the QZ iteration. Moreover, we show in the numerical experiments that this
approach does not suffer of numerical issues, and accurate results are obtained.
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1. Introduction

Polynomials and rational functions are used extensively in mathematics and
engineering, for modeling and as approximations of smooth functions [2, 3, 21].
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A particularly relevant application is the analysis of closed loop linear systems,
which involves also matrices of rational functions when MIMO systems are con-
sidered [16]. Often one is interested in finding the roots of sums of polynomials
or rational functions that are expressed in different bases, such as interpola-
tion bases with distinct nodes. Robol, Vandebril and Van Dooren introduced a
framework [17] that provides the possibility to linearize2 rational functions of
the form:

f(λ) =
p1(λ)

q1(λ)
+
p2(λ)

q2(λ)
,

where pi(λ) and qi(x) can be expressed in different polynomial bases. More
general forms with more than 2 summands are possible (see [17] for further
details). The linearizations obtained in this setting, as we will see in Section 2,
have particular rank structures, which suggests that a fast method for finding5

their eigenvalues might be formulated. This is precisely the aim of this work.
We will concentrate on the case where pi(λ) and qi(λ) are expressed in

interpolation bases, namely the Newton and Lagrange ones. The framework
can be extended to cover the case of rational and polynomial eigenproblems,
that is to the problem of finding the values of λ that make the matrix

F (λ) := P1(λ)−1Q1(λ) + P2(λ)Q−1
2 (λ) (1)

singular, even when the bases in which the Pi(λ) and the Qi(λ) are represented
do not match. This problem arises, for example, when one wants to verify
that a transfer function associated to a linear time invariant system has all the
eigenvalues in the left plane, thus ensuring that the associated system is stable10

[16]. When the factors of the transfer functions have been computed using
different interpolation nodes the problem fits precisely in the framework that
we are describing.

Linearizations are widely used to find roots of polynomials and matrix poly-
nomials. Given a polynomial p(λ) one usually constructs a pencil L(λ) := A−λB15

such that detL(λ) = p(λ), and then computes its eigenvalues using an approx-
imation method. This strategy has the advantage of relying on well-tested and
efficient numerical software for the approximation of eigenvalues, usually the
QZ iteration (or the QR when the pencil is monic).

However, there are some drawbacks to this approach. Since we rephrase20

the rootfinding problem as an eigenvalue one, applying an unstructured method
leads to a cubic computational cost in the degree and possibly to a higher con-
dition number. In fact, once the coefficients of the polynomial are embedded
in a companion matrix the set of possible perturbations becomes larger, and
the condition number of the eigenvalue problem can grow due to this fact [10].25

Motivated by the introduction of a new class of linearizations for sums of poly-
nomials and rational functions in [17], we develop a class of structured iterations
for the approximation of the eigenvalues of such pencils.

2Here by linearize we mean constructing a linear pencil whose eigenvalues are the solution
of the given nonlinear equation.
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Our approach is based on the Ehrlich–Aberth method, which is a functional
iteration for the approximation of roots of polynomials [1, 11]. We will shorten30

it as EAI in the following. One advantage is that, even if the linearizations can
have spurious infinite eigenvalues, the EAI can implicitly deflate them at no
additional cost and without introducing numerical errors. In contrast, the QZ
iteration would need an explicit deflation step (either a priori or a posteriori).
Moreover, the EAI relies on the original input data at each step of the iteration,35

unlike the QR algorithms, making it much easier to exploit the structure of the
problem.

The advantage of this approach compared to just running the EAI on the
scalar polynomial is that it provides a backward stable evaluation method. This
can be transparently applied to any polynomial basis with a two-term recurrence40

relation (like monomials, Newton and Lagrange, which are described here —
and with small adaptations could also be extended to three terms recurrence
relations). Moreover, the matrix polynomial and rational case of (1) can be
handled with minimal modifications.

In Section 2 we briefly review the structure and the construction of the45

pencils A − λB introduced in [17]. In Section 3, we recap the definition of the
Ehrlich–Aberth iteration and we provide efficient strategies for the selection of
the starting points. In Section 3 we show that computing the Newton correction
is the main ingredient in order to apply the EAI. In Section 4, we show how such
structure can be exploited to compute it in a fast and accurate way. Finally,50

numerical experiments are reported in Section 5.

2. Linearizing interpolation polynomials

It is shown in [17] that linearizations for sums of polynomials and rational
functions can be realized easily if one knows the so-called dual bases related to
the polynomial bases of interest. We will briefly recall these concepts and then55

show how the construction can be performed in the Newton and Lagrange cases.
These definitions, which are here adapted for our needs, go back to the work of
Forney [13].

Definition 2.1. Let φ0(λ), . . . , φk(λ) be a basis for the vector space of scalar
polynomials of degree at most k. We say that a k× (k+ 1) linear pencil A−λB
is dual to the polynomial basis φj(λ), j = 0, . . . , k, if

(A− λB)

φk(λ)
...

φ0(λ)

 = 0. (2)

In the following we will use πφ(λ) to denote the column vector containing
φk(λ) . . . φ0(λ).60

The concept of duality introduced in [13] is much more general than what is
described here, since it handles bases with different sizes and degrees. Another
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important concept defined by Forney is the one of minimality. For its definition
we rely on the row-degree, which can be defined as the maximum of the degrees
of the entries in a row. As an example, the row-degrees of[

λ λ2 − 1 1
1 λ 0

]
are 2 and 1.

Definition 2.2. We say that a matrix polynomial P (λ) =
∑d
i=0 Piλ

i ∈ C[λ]k1×k2

is minimal if its rows form a basis of a subspace of C(λ)k2 , the vector space of
k2-tuples of rational functions, and the sum of its row-degrees is minimal among
all the possible polynomial bases for that subspace.65

The above definition is often difficult to check in practice, so that the fol-
lowing characterization will be useful.

Lemma 2.3. A matrix polynomial P (λ) =
∑d
i=0 Piλ

i is minimal if and only if

• its row rank is maximal for every λ ∈ C;

• the matrix whose rows are the highest degree coefficients of the polynomial70

rows of P (λ) has full row rank;

Remark 2.4. It is immediate to verify that the row vector πTφ (λ) containing the
elements of a polynomial basis φj(λ) is always minimal according to the above
definition. In fact, its highest degree coefficient is eT1 , and so different from zero,
and thus has rank 1. Moreover, if w is the column vector with the coordinates75

of 1 in the given basis then πTφ (λ)w = 1 independently of λ, thus proving the
rank 1 property for every λ.

The same can not be said of the pencils dual to πTφ (λ). However, when the
minimality property holds, we say that the pencil is minimal and dual to φj(λ).
Here we state a general result, adapted from the framework of [17], which eases80

the construction of linearizations for rational functions.

Theorem 2.5. Let pi(λ), qi(λ) for i = 1, 2 be polynomials of degree d with no
common factors. Denote by pi, qi the vectors of their coefficients in two bases
which are dual to Lφ(λ) and Lψ(λ), respectively. Then the matrix pencil

L(λ) :=

[
p1q

T
2 − p2q

T
1 LTφ (λ)

Lψ(λ) 0

]
∈ C(2d+1)×(2d+1)[λ]

is a linearization for the polynomial p1(λ)q2(λ) − p2(λ)q1(λ) so, in particular,
has as finite eigenvalues the solutions of the rational equation

p1(λ)

q1(λ)
=
p2(λ)

q2(λ)
.

Remark 2.6. When pi(λ) and qi(λ) share a common factor the above construc-
tion is still a linearization for p1(λ)q2(λ) − p2(λ)q1(λ). In this case, however,
the common factors might appear as additional eigenvalues which are not roots
of the rational equation.85
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The above result can be used to linearize sums of rational functions defined
as quotient of polynomials expressed in different bases. We show that, when a
certain structure is present in the matrices Lφ(λ) and Lψ(λ), one can apply a
fast and stable functional iteration to approximate all the solutions.

The results that follow do not strictly depend on the rank 2 in the top-left
block, and they are generalizable to rank k blocks with some k 6 d. One can
check then that the obtained pencils are linearizations of polynomials of the
form

p(λ) =

k∑
i=1

pi(λ)qi(λ).

Moreover, it is possible to formulate a block version of the above result which
yields linearizations of the form

L(λ) :=

[
p1q

T
2 − p2q

T
1 LTφ (λ)⊗ Ik

Lψ(λ)⊗ Ik 0

]
, pi, qi ∈ Cdk×k, (3)

whose eigenvalues coincides with the ones of the nonlinear matrix function

F (λ) := P1(λ)−1Q1(λ) + P2(λ)Q−1
2 (λ).

2.1. Newton linearizations90

Let Σ = {σ1, . . . , σk} be a (ordered) set of interpolation nodes in the complex
plane. Then the Newton basis related to Σ is defined as follows:

nΣ,j(λ) =
∏
i6j

(λ− σi), j = 1, . . . , k.

Given a function f(λ) or, more generally, a set of points fj for j = 1, . . . , k, we
can construct the interpolating polynomial p(λ) such that p(σj) = fj by com-
puting the so-called divided differences. This is a classical topic in interpolation
theory, for which we refer to [22].

The following result gives a concrete recipe to construct a dual basis for the95

Newton case. The proof can be found in [17].

Lemma 2.7 (Section 3.6 of [17]). The linear pencil LΣ,k(λ) of size k× (k + 1)
for the nodes σ1, . . . , σk defined as follows

LΣ,k(λ) :=

1 −(λ− σk)
. . .

. . .

1 −(λ− σ1)

 .
is dual to the Newton basis associated with σ1, . . . , σk.
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2.2. Lagrange linearizations

A construction for the Lagrange case can be given in a similar way. This case
is also treated in [17], but we prefer to introduce a slight variation that makes100

the dual basis equal to the one used in [20] to linearize Lagrange polynomials.
Given a set of nodes σ1, . . . , σk we consider the set of (scaled) Lagrange

polynomials defined as:

`j(λ) := θj

k∏
i=1
i 6=j

λ− σi
σj − σi

, j = 1, . . . , k (4)

Lemma 2.8. Given a set of nodes σj, j = 1, . . . , k, the following matrix pencil
is dual to the scaled Lagrange basis defined in (4) for any choice of non-zero θj:

Lk,φ(λ) =

(λ− σk) −(λ− σk−1) θk
θk−1

. . .
. . .

(λ− σ1) −(λ− σ0) θ1θ0

 .
Proof. It is easy to check that Lk,φ(λ)πφ(λ) = 0. Moreover, the pencil Lk,φ(λ)
is a row and column scaling of the one introduced in [17], and so it has the same
property of maximal rank for any λ.

In order to keep the growth of the coefficients under control it is often con-105

venient to choose the parameter θj as the the barycentric weights of the nodes
σj . We refer to [20] for the details concerning this choice.

3. The Ehrlich–Aberth iteration

The Ehrlich–Aberth method [1, 11] is a functional iteration that simulta-
neously approximates all the roots of a scalar polynomial p(λ). It works by
updating a set of d approximations λ1, . . . , λd, where d is the degree of p(λ), by
means of the following formula:

λ
(k+1)
i = λ

(k)
i −

N(λi)

1−
∑
j 6=i

1

λ
(k)
i −λ

(k)
j

·N(λi)
, N(λ) =

p(λ)

p′(λ)
,

where N(λ) is Newton’s correction of the polynomial at the point λ. This
iteration can be seen as Newton’s correction computed on the rational functions

Ri(λ) =
p(λ)∏

j 6=i(λi − λj)
, i = 1, . . . d.

Whenever the approximations λ
(k)
i are near the roots of the polynomial for i 6= j,

then Rj(λ) is almost linear in a neighborhood of λ
(k)
j , and so Newton’s method110

converges fast. In fact, it is possible to prove that the Ehrlich–Aberth iteration
is locally cubically convergent on simple roots, and linearly on multiple ones [1].
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In this work we discuss the applicability of the Ehrlich–Aberth method to
the computation of the eigenvalues of a square n× n pencil A− λB. A similar
idea has been previosuly considered by Bini, Gemignani, and Tisseur in [4] and115

by Bini and Noferini in [6]. We know that (if no infinite eigenvalues are present)
the degree of det(A−λB) is equal to n, and its eigenvalues are the roots of this
polynomial. We recall that computing the coefficients of the scalar polynomial
p(λ) := det(A − λB) starting from the matrices A and B is an ill-conditioned
operation in general [9]. For this reason, we rely on the following formula for120

the application of the EAI.

Theorem 3.1 (Jacobi’s formula). Let A(λ) be a C1 matrix function. Then

d

dλ
detA(λ) = tr

(
adjA(λ) · d

dλ
A(λ)

)
,

where adj(·) is the adjugate operator.

Theorem 3.1 can be exploited to compute Newton’s correction of p(λ) :=
detL(λ). We have, in fact,

N(λ) =

(
tr

(
A(λ)−1 d

dλ
A(λ)

))−1

.

Applying the above formula to the pencil L(λ) := A− λB yields the relation

N(λ) = −
(
tr
(
(A− λB)−1B

))−1
. (5)

In Section 4 we will see how to exploit the structure to compute Newton’s
correction in a fast way.

3.1. Choosing the starting points125

A non-trivial task in the implementation of the Ehrlich–Aberth iteration is
the choice of the starting points. As suggested by Aberth in [1], a strategy
that works well in most cases is to put them on a circle whose radius is slightly
larger than the maximum modulus of all the roots. In order to do this we
need to estimate the spectral radius of the pencil A − λB. However, we have130

emphasized at the beginning that our pencil might have infinite eigenvalues,
which we want to ignore. From now on, whenever we will mention the spectral
radius of A−λB, we will mean the maximum modulus of the finite eigenvalues.

We present two different strategies to provide starting points. The first is
based on an adaptation of the power method, while the other relies on contour135

integration.

3.1.1. Power method

Given a pencil A − λB one can estimate the spectral radius by running
a certain number of iterations of an adapted power method. Recall that, in
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the standard eigenvalue problem setting, the power method associated with a
matrix M is obtained by performing the iteration

x(k+1) = Mx(k).

Assuming there exist a unique and simple dominant eigenvalue λ1 so that |λj | <
|λ1| for any j > 1, the ratio between the entries of x(k+1) and x(k) converges
to λ1 as k → ∞. Renormalization of x(k) might be needed after some steps in140

order to avoid overflow or underflow situations.
This method can be generalized easily to a pencil when B is invertible by

running the iteration
x(k+1) = B−1Ax(k)

which is equivalent to the above when setting M = B−1A. Notice, however, the
explicit computation of the matrix M is not needed and one can perform the
iteration by solving a certain number of linear systems.

In our case, however, B is singular3, so we make use of Brauer’s theorem,145

which is a simple yet powerful tool that allows one to move a specified eigenvalue
of a matrix [8] and, more generally, of matrix functions expressed as Laurent
series [5]. In our case we are interested in shifting an entire Jordan chain from
the infinite eigenvalue to a zero one, such that it will not interfere with the
power iteration and estimation of the dominant finite eigenvalue.150

In order to achieve this result we prove a version of Brauer’s theorem for
pencils. This is a generalization of the original one in [8], and a particular case
of [5]. Our formulation allows to transparently deal with the shift of infinity
eigenvalues to 0, which is not achievable directly with the formulations in [5, 8].
To achieve this, we identify the eigenvalues of the pencil with the projective155

points in P1(C).

Theorem 3.2 (Brauer). Let µA − λB a pencil with eigenvalues (λi, µi), and
assume that v is a right eigenvector associated to a simple eigenvalue (λ∗, µ∗),
i.e.,

(µ∗A− λ∗B)v = 0.

Let w be the only vector such that Av = λ∗w and Bv = µ∗w. Then, for any
vectors uA and uB, the matrix pencil

µÃ− λB̃, Ã := A+ wuTA, B̃ := B + wuTB

has the same eigenstructure of the original pencil µA− λB with the only excep-
tion of the eigenvalue (λ∗, µ∗) which is moved to (λ∗ + uTAv, µ∗ + uTBv).

Proof. We notice that the vector w is always well defined, since λ∗ and µ∗ cannot
be zero at the same time. We then consider the Kronecker canonical form of

3In fact, the linearization of Theorem 2.5 has size 2d + 1, but linearizes a polynomial of
degree 2d. This implies that the linear term of the pencil is singular. We refer to [17] for a
details analysis of the eigenstructure of the pencil.
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the pencil given by the upper triangular pencil µTA − λTB defined as follows

(µA− λB)V = W (µTA − λTB), (6)

with V and W invertible matrices. Let v1 := V e1 and w1 := We1, and assume
that we ordered the diagonal elements so that λ∗ and µ∗ are found in position
(1, 1) of TA and TB . For any choice of uA and uB the pencil

µT̃A − λT̃B , T̃A := TA + e1u
T
AV, T̃B := TB + e1u

T
BV

has the same same eigenvalues of µTA−λTB with the only exception of (λ∗, µ∗)
which is moved to (λ∗ + uTAv, µ∗ + uTBv). Right multiplying (6) by V −1 after
having replaced TA and TB with T̃A and T̃B , respectively, yields

µÃ− λB̃ := W (µT̃A − λT̃B)V −1

which has the required eigenvalues by construction and is such that

Ã = A+ wuTA, B̃ = B + wuTB ,

as requested. This completes the proof.

Specializing the above result to eigenvalues of the form (λ, 1) gives us the
original Brauer’s theorem from [8]. In our case, if∞ is an eigenvalue of a pencil
A− λB then (λ, µ) = (1, 0) is an eigenvalue of µA− λB. Thus, we can choose

uA = − v

‖v‖2
, uB =

v

‖v‖2

so that the modified pencil has (0, 1) as an eigenvalue. A simple generalization160

of the above result can be used to move an entire Jordan chain by perturbing
it in the Kronecker canonical form. The proof is just more technical but uses
the same ideas, so we omit it. The same result can be obtained by relying on
the theorem in [5] twice, first moving the Jordan chain at infinity to some finite
point and then moving it to zero.165

Theorem 3.3. Let µA − λB a pencil with a left and right deflating subspace
spanned by the columns of W and V , that is there exist invertible k×k matrices
MA and MB such that

AV = WMA, BV = WMB .

Then, for any UA, UB in Cn×k the modified pencil µÃ− λB̃ with

Ã := A+WUTA , B̃ := B +WUTB

has the same eigenstructure of µA − λB except the block corresponding to the
deflating subspaces V and W , which is replaced by the eigenstructure of the
(small) pencil µ(MA + UTAV )− λ(MB + UTBV ).
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The simplest case of a deflating subspace is to consider an eigenvector and
its image under the multiplication by A and B, and this gives back Theorem 3.2.170

However, one might consider also a subspace spanned by the vectors of a Jordan
chain and in this case the above result allows to move it to a completely different
eigenstructure.

In view of the previous results, we assume the pencil Ã−λB̃ has the infinite
eigenvalue (and the Jordan chain associated, if it exists) shifted to 0. We can
perform some iterations of the form

x(k+1) = B̃−1Ãx(k)

in order to approximate the dominant finite eigenvalue. We can then use that
approximation to select the initial approximations to start the EAI, by putting175

them equally distributed on a circle of radius equal to the spectral radius of the
pencil.

In [17] it is shown that the linearizations of sums of rational functions only
have 1 simple infinite eigenvalue, while the ones for sums of polynomials have an
entire Jordan chain linked to infinity. For this reason, Theorem 3.2 is sufficient180

for the former case, while Theorem 3.3 is required for the latter. In both cases
the explicit characterization of the Kronecker structure of the infinite eigenvalue
allows to avoid its explicit computation.

3.1.2. Counting the eigenvalues by means of contour integration

Here we study a more refined version of the starting point selection proce-185

dure, which is based on the so-called argument principle. We recall its formula-
tion from [15], for which we refer for the definition of a Jordan curve.

Theorem 3.4 (Argument principle, Theorem 4.10a in [15]). Let f(λ) a holo-
morphic function defined on a simply connected region R. Then, for any posi-
tively oriented Jordan curve Γ that borders in R and does not pass through any
zero of f(λ) we have

1

2πi

∫
Γ

f ′(λ)

f(λ)
dλ = N

where N is the number of zeros of f(λ) inside Γ, counted with multiplicities.

The above result applied to the holomorphic function f(λ) := det(A− λB)
allows to count the eigenvalues of the pencil A− λB inside a contour Γ.190

Remark 3.5. The integrand of Theorem 3.4 is also called the logarithmic deriva-
tive of f(λ). We notice that it is nothing else than the inverse of Newton’s cor-
rection f(λ)/f ′(λ) evaluated at the point λ, according to (5). In the following
we will show how to evaluate this function in O(n) flops.

We propose the following strategy to count the roots inside a circle of center
x0 and radius r > 0. Let Ik(x0, r) be the approximation of the integral of The-
orem 3.4 obtained by applying the trapezoidal rule with k points, and B(x0, r)
the ball of center x0 and radius r. We have

I(x0, r) := lim
k→∞

Ik(x0, r) =
1

2πi

∫
∂B(x0,r)

f ′(λ)

f(λ)
dλ.

10



Since we are integrating a holomorphic function along a circle the trapezoidal195

rule converges exponentially fast to the integral thanks to the periodicity of the
function [19] restricted to ∂B(x0, r). We choose k by means of the following
procedure:

1. We evaluate the integrand at k points on the circle of center x0 and radius
r. We then compute Ik(x0, r) by appropriately combining the results of200

this evaluation.

2. We estimate the error by assuming |Ik(x0, r) − I2k(x0, r)| ≈ |Ek(x0, r)|,
where Ek(x0, r) := I(x0, r) − Ik(x0, r). If the absolute error is smaller
than 1

2 then we round the result to the nearest integer and exit, otherwise
we go back to the first point doubling k.205

3. We continue until convergence.

Notice that doubling the value of k allows to reuse the previous evaluations,
so the cost for the integration will be O(kn) where k is the minimum power of
2 such that the integration error can be bounded by 1

2 .
We can then use the above scheme to obtain an algorithm for the choice210

of the starting approximations. We first approximate the spectral radius by
evaluating the number of eigenvalues in B(0, 2j) for various values of j. We find
the smallest j such that all eigenvalues are contained inside B(0, 2j). Let it be
j2, and let j1 the largest j such that B(0, 2j) does not contain any eigenvalue.

We then count the number of eigenvalues in each circle of radius 2j for215

j1 < j < j2, and select the starting approximations accordingly. In our
implementation we have chosen to place the approximations in each annulus
{z | 2j 6 |z| 6 2j+1} on a circle of radius

√
2 · 2j .

This strategy allows to match the moduli of the approximations to the ones of
the eigenvalues. In order to complete this task one has to evaluate r := j2−j1+1220

integrals, plus the ones needed to find the spectral radius (that could be also
computed with the scheme of the previous subsection).

We assume that the number of evaluations needed for each integral is bounded
by n, in which case this will give a procedure that costs O(rn2). In particular,
the two strategies for the choice of the starting points have a comparable cost.225

In Figure 1 an example of starting points obtained with this strategy and
the one of the previous section, along with the correct eigenvalues of the pencil,
are displayed. The strategy relying on Theorem 3.4 is capable of estimating all
the eigenvalues, not only the largest ones, and we will see in Section 5 that this
yields a lower number of iterations for the EAI.230

3.2. A suitable stopping criterion

When dealing with iterative methods it is important to understand when to
stop. In order to take this decision we rely on some results of Henrici [15], and
Bini and Noferini [6].
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Figure 1: On the left: starting points generated with the algorithm relying on Theorem 3.4.
The empty circles are the eigenvalues, while the stars represent the starting points computed
with the above method. The radii have been chosen in the middle of the annuli containing a
certain amount of eigenvalues. On the right: starting points generated relying on the power
method.

3.2.1. Small Newton correction235

The following result relates the modulus of Newton’s correction with the
accuracy of an approximation.

Theorem 3.6 (Corollary 6.4g of [15]). Let p(λ) be a polynomial of degree n.
Then, for any λ such that p′(λ) 6= 0, the circle of radius (n − 1) · |p(λ)/p′(λ)|
and center λ contains at least one root of p(λ).240

We can state the following immediate consequence of the above result, based
on which we will formulate our stopping criterion.

Theorem 3.7. Let p(λ) be a polynomial of degree n and λ a point in the complex
plane such that |p(λ)/p′(λ)| 6 |λ|ε for some ε > 0. Then there exists a point ξ
such that p(ξ) = 0 and |ξ − λ| 6 (n− 1)|λ|ε.245

The above states that whenever Newton’s correction of detL(λ) is of the
order of the machine precision the point λ is nearby an eigenvalue of L(λ).
Whenever this happens we can then stop our iteration, and this also automati-
cally provides a bound on the forward error of the computed eigenvalue.

3.2.2. Checking the conditioning of the evaluated pencil250

Another useful criterion to stop the iteration is checking the condition num-
ber of the matrix A− λB at a point λ. Since the pencil is singular whenever λ
is an eigenvalue, we can expect the condition number κ(A) := ‖A‖‖A−1‖ to be
high when λ is near an eigenvalue.
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Intuitively, one could formulate a stopping condition by asking to stop the255

iterations when κ(A− λB) > t where t is some chosen threshold and κ(·) is the
matrix condition number. Theorem 3.9 shows that in fact when we choose t
to be approximately 1

u , with u being the unit round-off, the above condition is
equivalent to asking that λ is an eigenvalue of a slightly modified pencil.

Remark 3.8. We need to be careful with the definition of slightly modified in this260

context. In fact, what we would like to have is that a structured modification
makes the pencil singular. Considering unstructured perturbations can cause
the algorithm to stop too early since the unstructured condition number might
be much higher than the structured one.

Here we state the following result, that gives a good stopping criterion for265

an unstructured pencil. Then we will rephrase it to make it applicable in our
context so that structured perturbations can be considered instead. We note
that this can be seen as a slight variation of Lemma 3 in [18], where κ2(·) is
used to denote the matrix condition number4 with respect to the 2-norm.

Theorem 3.9. Let A−λB a pencil. If κ2(A−λB) > 1
ε then λ is an eigenvalue270

of a pencil whose coefficients have been perturbed relatively less than 2ε in norm.

Proof. We need to prove that there exist two perturbations δA and δB, of norm
relatively smaller than 2ε (compared to A and B, respectively), such that λ is
an eigenvalue of A+ δA− λ(B + δB).

Recall that, in the 2-norm, κ2(A − λB) = σ1

σn
, where σ1 > . . . > σn are the275

singular values of A − λB. Let u1, . . . , un and v1, . . . , vn be the associated left
and right singular vectors. We then have that the matrix A − λB − σnunv∗n is
singular. Moreover, since ‖A− λB‖2 = σ1, either ‖A‖2 > 1

2σ1 or ‖B‖2 > 1
2
σ1

|λ| .

In the first case, we can define δA := −σnunv∗n, and then we can verify that
A+ δA− λB is singular. In the second one, we can define δB := σn

λ unv
∗
n, and280

then A− λ(B + δB) is singular.
In both cases, the coefficients of the pencil A − λB can be perturbed with

a perturbation relatively smaller than 2σn

σ1
, so smaller than 2ε, so that λ is an

eigenvalue. This concludes the proof.

Notice that measuring the above condition number could be difficult in prac-285

tice. However, as already mentioned in the previous remark, we are more inter-
ested in a structured condition number which is also easier to measure in our
context.

Theorem 3.10. Consider an invertible upper triangular matrix with the fol-

4 Here we refer to the standard condition number of the linear system associated to a
certain matrix, that is, κ2(A) := ‖A‖2 · ‖A−1‖2.
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lowing structure:

M =

×
×
×

×
×
? ? ? ?
? ? ? ?
? ? ? ?
? ? ?γ
×
×
×

×
×

,

where the entries marked with ? and γ form a block of rank k which can be
written as UV T for U, V ∈ Cn×k. Then there exists a perturbation of norm290

smaller than |γ|√
‖eTnU‖2+‖eT1 V ‖2

, at the first order, of U and V which makes the

matrix singular.

Proof. Define the n× k matrices Ũ , Ṽ as follows:

Ũ := U + δU, Ṽ := V + δV

Since the only element on the diagonal modified by changing δU and δV is γ,
the only way to obtain a singular matrix is to choose them so that

eTn (U + δU)(V + δV )T e1 = 0. (7)

The above shows that all the entries in δU and δV which are not on the last
row and first row, respectively, have no effect on the singularity, thus we can set
them to zero (since any other choice will increase the norm of the perturbations).
Let u, δu, v and δv be the last and first rows of these matrices. We can rephrase
(7) as follows:

〈u+ δu, v + δv〉 = 0.

Dropping second order terms one can verify that this is equivalent to finding
the minimum norm solution to [

u
v

]T [
δv
δu

]
= −γ

which is given by[
δv
δu

]
= − γ

‖u‖2 + ‖v‖2

[
u
v

]
=

−γ√
‖u‖2 + ‖v‖2

(
1√

‖u‖2 + ‖v‖2

[
u
v

])
.

where we have normalized the vector [ uv ] to make it of unit norm. The proof is
then concluded since the size of the perturbation is exactly what we were aiming
for.295

Using the above result we can say that if

|γ|√
‖u‖2 + ‖v‖2

6 ε‖UV T ‖
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then a structured perturbation which is relatively smaller than ε can make the
evaluated pencil singular. We will see in Section 4.3 that the matrix can be
taken in this upper triangular form by means of Givens rotations. This is used
to compute Newton’s correction, so then we can easily check when we have
reached convergence by testing whether |γ| 6 Ku‖UV T ‖

√
‖eTnU‖2 + ‖eT1 V ‖2,300

where K is a small constant, depending also on the norm of U and V , and u the
unit round-off. Since all these quantities are available during the computation of
Newton’s correction this condition can be checked almost for free, and provides
an effective stopping criterion.

4. Efficient computation of Newton’s correction305

In this section we show how the previous results can be turned into a practical
algorithm. The main issue is the efficient evaluation of Newton’s correction at a
point, which corresponds to computing the trace of the matrix (A−λB)−1B. In
this section we present a strategy that works both for the Newton and Lagrange
linearizations, with some specific results that only cover the Newton case.310

4.1. Transformation into Hessenberg structure

As we have seen in Section 2.1 and 2.2, the linearizations that we are inter-
ested in have the following form:

L(λ) =

[
R LT1 (λ)

L2(λ) 0

]
(8)

with Lj(λ), j = 1, 2 being rectangular kj × (kj + 1) and upper bidiagonal and R
being a rank 2 matrix. Without loss of generality, in the following we assume
that L1(λ) and L2(λ) have the same size k × (k + 1) and R = UV T with
U, V ∈ C(k+1)×2.315

Theorem 4.1. Let L(λ) be a pencil as in (8). Then there exists a block column
permutation that takes it to upper Hessenberg form. More precisely, we have
that

L(λ)Π =

[
LT1 (λ) R

0 L2(λ)

]
=: Ã− λB̃, Π =

[
Ik+1

Ik

]
is an upper Hessenberg pencil. Moreover, its leading coefficient is lower bidi-
agonal with a zero element on the diagonal in position (k + 1, k + 1), and the
constant coefficient is the sum of a bidiagonal matrix with an upper triangular
rank 2 matrix.

Proof. Direct consequence of applying Π to the pencils defined in Sections 2.1320

and 2.2.

Something more can be said in the Newton case, where the leading coefficient
is diagonal. Using an additional permutation, the pencil L(λ) can be endowed
with an Hessenberg-Triangular structure. This is relevant if one wants to apply
the QZ iteration, since the reduction to upper Hessenberg-Triangular form is325
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the usual preliminary step in this case. While this is not directly relevant for the
EA approach, it is still a reduction that is interesting so we state the following
result.

Lemma 4.2. Let L(λ) the pencil obtained by linearizing the sum (or differ-
ence) of two polynomials expressed in the Newton basis. Then there exist two
permutation matrices Π1 and Π2 such that

Π1L(λ)Π2 = A− λB,

with B diagonal and A upper Hessenberg.

Proof. We already know, thanks to Theorem 4.1, that we can choose Π2,1 so
that the pencil L(λ)Π2,1 is upper Hessenberg. Let Jk, Π1,1 and Π1,2 be defined
as follows:

Jk =

 1

. .
.

1

 , Π1,1 = Jk1+1 ⊕ Ik2 , Π1,2 = Jk1 ⊕ Ik2+1.

Multiplying L(λ)Π2,1 on the left by Π1,1 acts on the first block row as the left
multiplication by Jk1+1 and, analogously, the right multiplication by Π1,2 acts
on the right as Jk1 . These transformations preserve the rank of the top-right
block and leave L2(λ) unchanged. Moreover, in the Newton case, L1(λ)T is
given by

L1(λ)T = H − λ
[
0Tk1
Ik1

]
where H is lower bidiagonal. It can be checked easily that Jk1+1HJk1 is still
lower bidiagonal and that

Jk1+1L1(λ)T Jk1 = Jk1+1HJk1 − λ
[
Ik1
0Tk1

]
has the prescribed Hessenberg triangular structure when embedded in the larger330

pencil. Setting Π1 := Π1,1 and Π2 := Π2,1Π1,2 completes the proof.

4.2. A Sherman-Morrison based approach

In this section we focus on providing a method involving O(n) flops for
computing the trace of (A − λB)−1B, i.e., for the evaluation of the Newton
correction of the polynomial detL(λ). The method is based on the Sherman-335

Morrison formula [14].

Theorem 4.3 (Sherman-Morrison). Let M and M + UV T be two invertible
matrices, where M ∈ Cn×n and U, V ∈ Cn×k. Then

(M + UV T )−1 = M−1 −M−1U(I + V TM−1U)−1V TM−1.
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The above formula provides a cheap method to evaluate the inverse of a low
rank correction of a matrix whose inverse is known (or easily computable). This
is exactly our case, since the pencil L(λ) can be written in the following form:

A− λB = M(λ) + UV T

where M(λ) is a lower bidiagonal pencil and U, V ∈ Cn×2. Unfortunately, the
above decomposition does not satisfy the hypotheses of Theorem 4.3, since the
bidiagonal matrix M(λ) has a zero diagonal entry (see Theorem 4.1) and is not
invertible.340

However, we can rephrase the decomposition by modifying M(λ) and putting
a value α 6= 0 in position (k + 1, k + 1) and accordingly modify the rank 2
correction to a rank 3 one so that

A− λB = M̃(λ) + UV T − αek+1e
T
k+1 = M̃(λ) + Ũ Ṽ T .

In the above formulation the matrix M̃(λ) is invertible and by the Sherman-
Morrison formula we obtain:

(A− λB)−1 = M̃(λ)−1 − M̃(λ)−1Ũ(I + Ṽ T M̃(λ)−1Ũ)−1Ṽ T M̃(λ)−1, (9)

which in turn leads to the following result.

Lemma 4.4. Let A−λB be a pencil defined as in Theorem 4.1. Then, for any
λ such that A− λB is invertible and for any α 6= 0,

tr((A− λB)−1B) = tr(M̃(λ)−1B)− tr(V̂ T (λ)Û(λ))

where M̃(λ), Ũ(λ), Ṽ (λ) are defined as in (9) and

Û(λ) := M̃(λ)−1Ũ(I + Ṽ T M̃(λ)−1Ũ)−1, V̂ (λ) = BT M̃(λ)−T Ṽ .

Proof. We can use the decomposition of (9) to get:

(A− λB)−1B = M̃(λ)−1B − M̃(λ)−1Ũ(I + Ṽ T M̃(λ)−1Ũ)−1Ṽ T M̃(λ)−1B.

Since the trace is a linear operator, we can split the trace of this sum as the sum
of the traces, and using the fact that the trace of a matrix product is invariant
under cyclic permutation of the factors we get the thesis.

The trace of a matrix product can be characterized as follows.345

Lemma 4.5. Let M,N be two n× k matrices. Then

tr(MNT ) =
∑

06i,j6n

(M ◦N)ij

where ◦ denotes the Hadamard product.
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Remark 4.6. We emphasize that Lemma 4.4 provides an O(n) algorithm for
computing Newton’s correction. In fact, to evaluate the first term of the sum
we can use the relation given by Lemma 4.5:

tr(M̃(λ)−1B) =
∑
i,j

(M̃(λ)−1 ◦BT )ij .

Since BT has only nonzero elements on the diagonal and on the superdiagonal
we have to compute the diagonal and superdiagonal of M̃(λ)−1, which can be
done in O(n) flops given its bidiagonal structure.

Moreover, the second matrix of which we have to compute the trace is 3× 3350

and can be computed in O(n) flops. These two facts together provide an O(n)
algorithm.

Whilst the above framework is theoretically satisfying, from a numerical
perspective there are still some points that need to be handled carefully. A
natural one is the choice of α. While any α 6= 0 provides a mathematically355

correct formula, we are interested in choosing α in order to obtain the best
possible numerical results. In practice we can choose α to be about the norm
of the other diagonal elements, in order to avoid unbalancing in the matrix.

4.3. Using rotations

As we will see in Section 5 the algorithm of Section 4.2 can be unstable. For360

this reason, it is of interest to devise an alternative scheme based on unitary
transformations that, as confirmed by numerical experiments in Section 5, is
more robust in practice.

In view of Lemma 4.2 we know that, up to permutations, we can rewrite the
pencil as A− λB where A and B have the following structure:

A =

[
BTφ UV T

0 Bψ

]
, B =

[
−BTφ,1

−Bψ,1

]
,

where Bφ and Bψ are (rectangular) bidiagonal matrices containing the inter-
polation nodes. The Newton case is particularly easy to deal with, since the365

matrix B is diagonal, with a zero entry in the middle. We have the following.

Lemma 4.7. Let A − λB a linearization for a sum of two scalar polynomials
expressed in two Newton bases as in (3). Then the trace of the matrix (A −
λB)−1B can be expressed as follows:

tr
(
(A− λB)−1B

)
=

 n∑
i=1
i 6=k+1

[A− λB]
−1
ii


−1

where k is the degree of the polynomials whose sum is linearized.

Proof. It follows by recalling that tr(ABT ) =
∑
i,j(A ◦ B)ij , where ◦ is the

Hadamard product of the matrices A and B, see Lemma 4.5.
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An analogous result (which we do not state explicitly) also holds for the370

Lagrange case, where the linear combination of the diagonal and superdiagonal
elements has to be done using the barycentric weights as coefficients.

In both cases, to ease the computation, we will split the inverse of A−λB in
two parts. The linearity of the trace operator allows to compute these two parts
separately and then sum the results. More precisely, we look for a decomposition375

(A−λB)−1 = M1 +M2, so that we can compute tr((A−λB−1)B) = tr(M1B)+
tr(M2B). We rely on the following elementary result.

Lemma 4.8. Let X be an upper bidiagonal matrix, defined as follows:

X =


α1 β1

. . .
. . .

. . . βn−1

αn

 .
Then it admits a factorization as a sequence of n − 1 Gauss transformations
given by X = Xn−1 . . . X1 where

X1 =

α1 β1

α2

In−2

 and Xi =


Ii−1

1 βi
αi+1

In−i−1

 for i > 1.

Assume λ fixed and set M := A−λB. We want to compute the elements of
M−1. Under the hypotheses above we have:

M =

[
XT
φ UV T

0 Xψ

]
, Xφ ∈ Ck×(k+1), Xψ ∈ Ck×(k+1),

where Xφ and Xψ are the bidiagonal matrices relative to the nodes in the bases
φ and ψ, respectively. As reported by the following lemma, the above structure
allows for a structured upper triangular factorization of M .380

Lemma 4.9. Given a matrix M with the prescribed structure, it is possible to
find two unitary matrices QU and QL such that

R := QUMQL =

X̃φ Ũx1 Ũ Ṽ T

γ xT2 Ṽ
T

X̃ψ

 , X̃φ ∈ Ck×k, X̃ψ ∈ Ck×k, x1, x2 ∈ C2.

and X̃φ and X̃ψ are upper bidiagonal matrices. Moreover, QU = QU,S ⊕ Ik
and QL = Ik ⊕ QL,S and QU,S and QL,S can be decomposed as the product of

k Givens rotations. The matrices Ũ and Ṽ are defined by Ũ = QU,SU and

Ṽ = QL,SV .
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Proof. The proof of the above result is constructive. We define 2k Givens rota-
tions that reduce the top-left and bottom-right blocks to upper triangular form
as reported in the following for the k = 3 case:

M = G1G2G3︸ ︷︷ ︸
Q∗U



× × ? ? ? ?
× × ? ? ? ?
× ? ? ? ?

? ? ? ?
× ×
× ×
×


G4G5G6︸ ︷︷ ︸

Q∗L

where the ×-es identify the entries of the bidiagonal blocks , the ? are the entries385

of the low rank block, and Gi is a Givens rotation acting on the rows (i, i+ 1).
The rotations can be obtained computing a QR factorization of Xφ and an RQ
factorization of Xψ.

The advantage of the above representation is that it eases the parametriza-
tion of the inverse of R in order compute its trace (even after performing the390

rotations). In fact we have the following.

Lemma 4.10. The inverse of R is given by

R−1 =

X̃
−1
φ −γ−1X̃−1

φ Ũx1 ×
γ−1 −γ−1xT2 Ṽ

T X̃−1
ψ

X̃−1
ψ

 .
Moreover, the trace of M−1 = QLR

−1QU does not depend on the entries that
have been marked with the × symbol.

Proof. The structure of the inverse matrix can be obtained by performing a
block-wise inversion of the upper triangular matrix R. The last claim can be395

obtained by decomposing R−1 as R−1 = R× + R×⊥ , where R× contains the
elements marked with × and R×⊥ the others. The structure if QL and QU
implies that QLR×QU has a zero diagonal, thus giving a null contribution to
the trace.

400

By exploiting the last statement of Lemma 4.10 and the linearity of the trace
operator, we can rephrase the problem as follows for the Newton case.

Lemma 4.11. The trace of M−1B, where M and B have been built starting
from a linearization in the Newton basis, can be written as

tr(M−1B) = − tr(X̃−1
φ QU,S)− tr(QL,SX̃

−1
ψ )

+
1

γ
tr(eTk+1QU,SX

−1
φ Ũx1) +

1

γ
tr(xT2 Ṽ

T X̃−1
ψ QL,Se1)

All these summands can be computed in O(n) flops.
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The above results allow to devise an O(n) method to evaluate the Newton
correction of detL(λ) at any point in the complex plane.405

Remark 4.12. The computation of the QL, QU and the inversion of the upper
triangular matrix, can be all performed by means of backward stable operations.
Moreover, given the structure of A − λB, all the errors are offloaded either on
the nodes or on the low rank part which contains the coefficients of the poly-
nomials. This suggests that the procedure for the computation of Newton’s410

correction is structurally backward stable, with respect to the bidiagonal plus
low rank structure. In fact, the final result is the exact one obtained by slight
perturbations on the nodes and on the coefficients. As we will see in the numer-
ical experiments, this leads to a better accuracy with respect to non-structured
backward stable methods, like the QZ algorithm.415

5. Numerical experiments

In this section we report the numerical experiments that validate our ap-
proach. We have tested two different aspects of the algorithm: the accuracy
and the asymptotic cost.

Regarding the former, we verified that in many common cases EAI delivers420

very accurate results. Moreover, we show that it easily overcomes the problems
related to poor conditioning of the eigenvalues when considering the unstruc-
tured condition number of the eigenvalue problem.

5.1. Accuracy of the method

We consider the problem of finding the roots of a polynomial r(λ) described425

as r(λ) = p1(λ)−p2(λ), with p1(λ) and p2(λ) expressed in the Newton basis. As
nodes for these two interpolation polynomials we have chosen the Chebyshev
points, in order to have a set of points where the interpolation is reasonably
conditioned. We have computed 2k nodes and we have used k of them to
generate the basis for p1(λ) and k of them to build the basis for p2(λ), so430

they are expressed in a different basis. We have ordered the set of 2k nodes
according to the canonical ordering on R and we have assigned the ones in the
odd positions to the first interpolation basis, and the ones in the even position
to the other, as depicted in Figure 2. The same kind of splitting has been used
for the roots of unity, which have been employed for the numerical experiments435

in the Lagrange case reported in Table 3 (in this case they have been ordered
by their angle).

In Table 1 we have reported the absolute forward errors5 and the back-
ward errors (on the matrix pencil) for the approximation of the roots using the
Sherman-Morrison based strategy and the one based on Givens rotations. More440

precisely, we have computed the backward error err(A,B)(λ) for each eigenvalue

5Approximations for the roots with an arbitrary number of digits have been obtained
using MPSolve [7], a multiprecision polynomial solver. The symbolic toolbox of MATLAB to
compute the coefficients of the linearized polynomial.
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−1 1

Figure 2: On the left, the splitting used to assign the 2k Chebyshev nodes to the first and
second family of nodes, used for p1(λ) and p2(λ), respectively, is reported. On the right, the
same splitting for the roots of unity is shown.

defined as err(A,B)(λ) := σn(A−λB), where σn(·) is the smallest singular value.
This can be proven to be the distance (in the Euclidean norm) to the closest
pencil that has λ as an eigenvalue. We refer to the work of Tisseur [18] for a
detailed error analysis.445

It is clearly visible that the strategy based on rotations does not have stability
issues, while the accuracy of the one based on Sherman-Morrison soon degrades
as the degree increases. For this reason, in the following we will always consider
the strategy based on rotations. The numbers reported are the norms of the
vectors containing the errors for each approximation. For the examples that we450

have chosen there is not much difference between absolute and relative errors
since most of the roots have modulus about 1.

Degree Forward SM Forward Rot Backward SM Backward Rot

2 2.14 · 10−16 1.87 · 10−16 6.11 · 10−17 5.18 · 10−17

5 2.06 · 10−15 1.38 · 10−16 4.54 · 10−16 6.76 · 10−17

10 1.83 · 10−13 1.58 · 10−16 1.05 · 10−14 5.66 · 10−17

15 5.68 · 10−11 1.23 · 10−16 9.3 · 10−12 3.69 · 10−17

20 4.01 · 10−6 1.17 · 10−16 3.57 · 10−8 4.22 · 10−17

Table 1: Comparison of the accuracies of the two strategies for the computation of New-
ton’s correction. The columns marked with SM represents the data relative to the Sherman-
Morrison based approach of Section 4.2, while the ones marked with Rot refer to the strategy
based on Givens rotations of Section 4.3.

In Table 2 we have reported both absolute forward errors and backward
errors (on the matrix pencil) for a wider range of degrees, and we have com-
pared it with the QZ algorithm. However, the degradation in the quality of455

the approximations given by the QZ iteration is clearly visible. This is due to
the fact that while giving backward stable results, they are backward stable
in an unstructured sense, and they are not guaranteed to correspond to small
perturbations in the polynomials. Since the EAI iteration relies on a structured
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Degree Forward EAI Forward QZ Backward EAI Backward QZ

10 5.1 · 10−16 3.64 · 10−15 1.02 · 10−16 1.43 · 10−16

20 5.2 · 10−16 5.65 · 10−14 1.55 · 10−16 1.94 · 10−16

40 7.96 · 10−16 3.59 · 10−10 2.33 · 10−16 2.66 · 10−16

80 5.93 · 10−16 0.35 3.38 · 10−16 4.35 · 10−16

160 1.41 · 10−15 1.09 4.62 · 10−16 6.71 · 10−16

Table 2: Numerical accuracy of the EAI compared to the QZ iteration. We have generated
50 examples of sums of polynomials whose coefficients in the Newton basis are drawn by
Gaussian distribution coefficients. The nodes of the Newton bases are Chebyshev points. The
infinite eigenvalues in the QZ methods have been deflated a posteriori — and have always
been exactly identified by the QZ method. In this cases a posteriori deflation is easy because
of the special structure that the linearization has for degree-graded bases. This is not the case
in general. The accuracies have been averaged over all the experiments. The backward error
reported in the table is the one on the matrix pencil.

Degree Forward EAI Forward QZ Backward EAI Backward QZ

5 7.25 · 10−16 2.15 · 10−15 1.35 · 10−16 2.21 · 10−16

10 5.85 · 10−16 1.68 · 10−15 1.01 · 10−16 2.33 · 10−16

20 1.52 · 10−14 2.69 · 10−14 8.03 · 10−17 2.02 · 10−16

40 1.58 · 10−15 1.22 · 10−14 4.82 · 10−17 8.37 · 10−17

80 6.8 · 10−15 6.78 · 10−14 2.99 · 10−17 4.56 · 10−17

Table 3: Numerical accuracy of the EAI compared to the QZ iteration for sums of rational
functions defined by ratios of Lagrange polynomials. The accuracies have been averaged over
10 runs, and the nodes have been chosen with interlacing properties as in the Newton example
of Table 2 from the roots of unity of appropriate degree.

(and backward stable) solver to compute the Newton correction, evaluating a460

slightly perturbed polynomial, it leads to much better results in practice.

5.2. Asymptotic cost of the method

The speed of convergence of the EAI is strictly related to the quality of
the starting approximations. In Section 3.1 we have discussed possible choices
for the starting points, and here we study how these relate to the number of465

iterations before the stopping criterion presented in Section 3.2 is met on all the
components.

In particular, we are interested in studying the average number of iterations
per eigenvalue. Since an iteration costs O(n) flops, keeping this number bounded
by a constant makes the asymptotic cost O(n2).470

More generally, assuming an instance of EAI has an average number of
iterations equal to t > 0, we have a total cost for the algorithm of O(tn2). Our
aim is to choose the starting points that make t as small as possible. The results
in Figure 3 show that good starting points produce a very slow growth in the
number of iteration, thus providing a practically quadratic method.475

23



0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

Degree

A
ve

ra
g
e

it
er

at
io

n
s

p
er

ro
ot

Contour integration
Power method

Figure 3: Average number of iterations for different choices of starting points. The tests refer
to the computation of the roots of the sum of two polynomial expressed in the Newton basis
with interlaced Chebyshev nodes as described in Figure 2.

Degree Integration Power method

5 6.42 7.62
10 7.02 10.45
20 7.5 16.86
40 9.16 29.59
60 9.82 41.32
80 11.79 56.67
100 12.28 62.72
120 13.29 76.01
140 15.6 100.51
160 16.38 103.02

Table 4: Average number of iterations with different criterion for the choice of the starting
points.
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To estimate the value of t we have run the following procedure:

1. We have randomly generated a sequence of rational functions, for various
degrees from n = 10 up to n = 160 (here by degree we mean the degree of
the numerator and the denominator). We have chosen the same kind of
Newton basis for all of them and we have drawn random coefficients from480

a Gaussian distribution N(0, 1).

2. We have run the EAI on these problems. 50 problems with the same
degree have been tested and we have computed the average number of
iterations for each degree.

The results of these tests are reported in Table 4 and in Figure 3. We have485

tested the two methods for the choice of the starting points that have been
discussed in Section 3.1, that is the adapted power method and the integral
approach to counting the number of eigenvalues inside a closed curve. Both
methods manage to deliver the starting points in (at most) O(n2) flops, so they
do not significantly contribute to the total complexity of the method. More pre-490

cisely, we have fixed the number of integration points or iterations of the power
method to be bounded by n, so that we have a guaranteed O(n2) complexity
for the computation of the starting points.

Figure 3 shows how, as we have already stressed, even if the contour inte-
gration method still exhibits some growth in the average number of iteration as495

n grows, this effect is very mitigated compared to taking points on a circle of
large enough radius.

The degraded performance of putting all the initial approximations on a
circle with radius equal to the spectral radius of the pencil (ignoring infinite
eigenvalues) can be informally explained by the fact that the approximation500

have to travel a long distance to reach the roots with smaller modulus.

5.3. Eigenvalues of matrix polynomials

To complete the section we show an application to the computation of eigen-
values of matrix polynomials and rational functions. More precisely, we consider
the nonlinear eigenvalue problem

R(λ)v = 0, R(λ) := P1(λ)−1Q1(λ) + P2(λ)Q2(λ)−1,

where as usual the matrix polynomials P1(λ) and Q1(λ) are expressed in a
certain basis, and P2(λ) and Q2(λ) in another one. In this case we assume that
they are both Newton bases, with different nodes.505

The same approach of Section 4.3 can be used to evaluate the trace of the
linearization of such a nonlinear eigenvalue problem at a certain point in the
complex plane. Assuming the degree of all the matrix polynomials involved is
d one can reduce the diagonal blocks to upper block bidiagonal form with O(d)
block Givens rotations, and then compute the inverse of the resulting block510

upper triangular matrix.
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Degree Forward EAI Forward QZ Backward EAI Backward QZ

2 1.63 · 10−15 1.04 · 10−13 1.02 · 10−18 2.4 · 10−18

4 6.94 · 10−15 1.37 · 10−13 1.11 · 10−18 1.93 · 10−18

6 2.21 · 10−15 2.05 · 10−13 7.77 · 10−19 1.61 · 10−18

8 1.62 · 10−15 3.26 · 10−13 5.77 · 10−19 1.2 · 10−18

10 9.39 · 10−16 2.57 · 10−13 7.1 · 10−19 1.05 · 10−18

12 5.2 · 10−16 3.43 · 10−13 4.98 · 10−19 7.79 · 10−19

14 1.06 · 10−15 3.29 · 10−13 5.16 · 10−19 8.17 · 10−19

16 3.79 · 10−15 5.07 · 10−13 5.45 · 10−19 9.03 · 10−19

18 8.42 · 10−15 7.12 · 10−13 7.09 · 10−19 2.19 · 10−18

20 1.77 · 10−15 8.62 · 10−13 4.51 · 10−19 8.61 · 10−19

22 8.02 · 10−16 1.88 · 10−12 4.34 · 10−19 6.06 · 10−19

24 3.28 · 10−15 7.23 · 10−12 4.96 · 10−19 6.76 · 10−19

Table 5: Numerical accuracy of the EAI compared to the QZ algorithm in the computation of
the eigenvalues of a nonlinear eigenvalue problem expressed as a sum of two rational functions
in the Newton basis. The nodes of the Newton bases are Chebyshev points.

The cost of each evaluation of Newton’s correction is cubic in the size of the
coefficients, leading to a total computational cost of O((dn) · dn3) = O(dn4),
so this approach is convenient only if the degree is large enough. We have
compared the results obtained using the EA iteration to the QZ on the pencil,515

and also in this case one notices that the (forward) accuracy of the EA is much
better than the one of the QZ. However, both algorithms deliver backward stable
approximations, as reported in Table 5.

The coefficients of the matrix polynomials in this example are random 6× 6
matrices with integer entries between −1000 and 1000. This setup has been520

chosen to allow the computation of the eigenvalues symbolically in order to
check the computed results. The backward error computed (which is relative to
the norms of the pencil) is always below the machine precision, and the results
of the QZ algorithm show that the (unstructured) eigenvalue condition number
of the pencil is still quite high compared to the structured one (that is, the one525

of the original problem).

6. Conclusions

We have shown the effectiveness of the Ehrlich–Aberth iteration as an ap-
proximation engine for the eigenvalues of some rank structured pencils which
are encountered when linearizing sums of polynomials and rational functions530

expressed in Newton Lagrange bases. Our approach allows to treat a broad set
of problems, such as (matrix) polynomials and rational functions expressed as
sums in different bases.

This work has shown that the method is both fast, in the sense of having
a lower asymptotic complexity than the QR and the QZ iterations, and more535
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accurate when looking at the forward errors. The gain is obtained by applying
a structured solver that only allows perturbations on the original input data.
Moreover, we have shown that the deflation of infinite eigenvalue is not an
issue in this context, simplifying the analysis. Thus, even when some of the
eigenvalues are ill-conditioned in the pencil no loss of accuracy is encountered540

with the EAI.
We have derived suitable strategies and methods for the estimation of the

starting points which have shown to be effective in practice, and we have devised
a practical criterion for the stopping conditions.

We think this proves both the flexibility of the EAI, which has been adapted545

to this case with the development of proper tools, and the importance of consid-
ering structured iterations for the approximation of eigenvalues of linearizations.
This is particularly interesting for applications where the data is naturally ex-
pressed in different bases (or the same bases with different nodes), such as the
transfer functions for closed loop linear systems [16], or the clipping problems550

in computer aided graphics [12].
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