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Abstract. We consider the discretization of time-space diffusion equations with fractional de-
rivatives in space and either one-dimensional (1D) or 2D spatial domains. The use of an implicit
Euler scheme in time and finite differences or finite elements in space leads to a sequence of dense
large scale linear systems describing the behavior of the solution over a time interval. We prove
that the coefficient matrices arising in the 1D context are rank structured and can be efficiently
represented using hierarchical formats (\scrH -matrices, HODLR). Quantitative estimates for the rank of
the off-diagonal blocks of these matrices are presented. We analyze the use of HODLR arithmetic for
solving the 1D case and we compare this strategy with existing methods that exploit the Toeplitz-like
structure to precondition the GMRES iteration. The numerical tests demonstrate the convenience
of the HODLR format when at least a reasonably low number of time steps is needed. Finally, we
explain how these properties can be leveraged to design fast solvers for problems with 2D spatial
domains that can be reformulated as matrix equations. The experiments show that the approach
based on the use of rank-structured arithmetic is particularly effective and outperforms current state
of the art techniques.
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1. Introduction. Fractional diffusion equations (FDEs) are a generalization of
the classical partial diffusion equations obtained by replacing a standard derivative
with a fractional one. In the last decade, FDEs have gained a lot of attention since
they allow one to model nonlocal behavior, e.g., enhanced diffusivity, which can be
regarded as a realistic representation of specific physical phenomena appearing in
several applications. In finance, this is used to take long time correlations into consid-
eration [40]; in image processing, the use of fractional anisotropic diffusion allows one
to accurately recover images from their corrupted or noisy version---without incurring
the risks of overregularizing the solution and thus losing a significant part of the im-
age such as the edges [2]. The applications in fusion plasma physics concern Tokamak
reactors (like ITER currently under construction in the South of France [1]), which
are magnetic toroidal confinement devices aiming to harvest energy from the fusion
of small atomic nuclei, typically deuterium and tritium, heated to the plasma state.
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Recent experimental and theoretical evidence indicates that transport in Tokamak
reactors deviates from the standard diffusion paradigm. One of the proposed models
that incorporates in a natural, unified way, the unexpected anomalous diffusion phe-
nomena is based on the use of fractional derivative operators [10]. The development
of fast numerical tools for solving the resulting equations is then a key requirement
for controlled thermonuclear fusion, which offers the possibility of clean, sustainable,
and almost limitless energy.

Let us briefly recall how a standard diffusion equation can be ``fractionalized""

by taking as an example the parabolic diffusion equation \partial u(x,t)
\partial t = d(x, t)\partial 

2u(x,t)
\partial x2 ,

where d(x, t) is the diffusion coefficient. Replacing the derivative in time with a
fractional one leads to a time-fractional diffusion equation; in this case, the fractional
derivative order is chosen between 0 and 1. On the other hand, we can consider
a space-fractional diffusion equation by introducing a fractional derivative in space,
with order between 1 and 2. The two approaches (which can also be combined)
lead to similar computational issues. In this paper, we focus on the space fractional
initial-boundary value problem

(1.1)\left\{   
\partial u(x,t)

\partial t = d+(x, t)
\partial \alpha u(x,t)
\partial +x\alpha + d - (x, t)

\partial \alpha u(x,t)
\partial  - x\alpha + f(x, t), (x, t) \in (L,R)\times (0, T ],

u(x, t) = u(x, t) = 0, (x, t) \in \BbbR \setminus (L,R)\times [0, T ],
u(x, 0) = u0(x), x \in [L,R],

where \alpha \in (1, 2) is the fractional derivative order, f(x, t) is the source term, and the
nonnegative functions d\pm (x, t) are the diffusion coefficients. Three of the most famous
definitions of the right-handed (--) and the left-handed (+) fractional derivatives in
(1.1) are due to Riemann--Liouville, Caputo, and Gr\"unwald--Letnikov. We refer the
reader to section 2 for a detailed discussion.

As suggested in [11], in order to guarantee the well-posedness of a space-FDE
problem, the value of the solution on \BbbR \setminus (L,R) must be properly accounted for. In
this view, in (1.1) we fix the so-called absorbing boundary conditions, that is, we
assume that the particles are ``killed"" whenever they leave the domain (L,R).

Analogously, one can generalize high-dimensional differential operators by apply-
ing (possibly different order) fractional derivatives in each coordinate direction. More
explicitly, we consider the two-dimensional (2D) extension of (1.1)

\partial u(x, y, , t)

\partial t
= d1,+(x, t)

\partial \alpha 1u(x, y, t)

\partial +x\alpha 1
+ d1, - (x, t)

\partial \alpha 1u(x, y, t)

\partial  - x\alpha 1

+ d2,+(y, t)
\partial \alpha 2u(x, y, t)

\partial +y\alpha 2
+ d2, - (y, t)

\partial \alpha 2u(x, y, t)

\partial  - y\alpha 2
+ f(x, y, t)

(1.2)

with absorbing boundary conditions. Notice that the diffusion coefficients only depend
on time and on the variable of the corresponding differential operator. This choice
makes it easier to treat a 2D FDE problem as a matrix equation and to design fast
numerical procedures for it (see section 4).

1.1. Existing numerical methods for FDE problems. The nonlocal nature
of fractional differential operators causes the absence of sparsity in the coefficient
matrix of the corresponding discretized problem. This makes FDEs computationally
more demanding than PDEs.

Various numerical discretization methods for FDE problems, e.g., finite differ-
ences, finite volumes, finite elements, have been the subject of many studies [15, 34,
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45]. In the case of regular spatial domains, the discretization matrices often inherit
a Toeplitz-like structure from the space-invariant property of the underlying opera-
tors. Iterative schemes such as multigrid and preconditioned Krylov methods---able
to exploit this structure---can be found in [12, 26, 29, 35, 36, 37, 38, 50]. For both
1D and 2D FDE problems, we mention the structure preserving preconditioning and
the algebraic multigrid methods presented in [12, 35]. Both strategies are based on
the spectral analysis of the coefficient matrices via their spectral symbol. The latter
is a function which provides a compact spectral description of the discretization ma-
trices whose computation relies on the theory of generalized locally Toeplitz (GLT)
matrix-sequences [18].

Only very recently, off-diagonal rank structures have been recognized in finite
element discretizations [52]. Indeed, Zhao et al. proposed the use of hierarchical
matrices for storing the stiffness matrix combined with geometric multigrid (GMG)
for solving the linear system.

It is often the case that 2D problems with piecewise smooth right-hand sides have
piecewise smooth solutions (see, e.g., [9]). A possible way to uncover and leverage
this property is to rephrase the linear system in matrix equation form. This is done,
for instance, in [8], where the authors use the Toeplitz-like structure of the involved
1D FDE matrices in combination with the extended Krylov subspace method to deal
with fine discretizations.

1.2. Motivation and contribution. In this paper, we aim to build a frame-
work for analyzing the low-rank properties of 1D FDE discretizations and to design
fast algorithms for solving 2D FDEs written in a matrix equation form. In detail, the
piecewise smooth property of the right-hand side implies the low-rank structure in the
solution of the matrix equation and enables the use of Krylov subspace methods [8].
This, combined with the technology of hierarchically rank-structured matrices such
as \scrH -matrices and hierarchically off-diagonal low-rank (HODLR) [24], yields a linear-
polylogarithmic computational complexity in the size of the edge of the mesh. For
instance, for a N \times N grid we get a linear polylogarithmic cost in N , in contrast to
\scrO (N2 logN) needed by a multigrid approach or a preconditioned iterative method
applied to linear systems with dense Toeplitz coefficient matrices. Similarly, the stor-
age consumption is reduced from \scrO (N2) to \scrO (N logN). The numerical experiments
demonstrate that our approach, based on the HODLR format, outperforms the one
proposed in [8], although the asymptotic cost is comparable. From the theoretical
side, we provide an analysis of the rank structure in the matrices coming from the
discretization of fractional differential operators. Our main results claim that the off-
diagonal blocks in these matrices have numerical rank \scrO (log(\epsilon  - 1) log(N)), where \epsilon is
the truncation threshold. We highlight that some of these results do not rely on the
Toeplitz structure and apply to more general cases, e.g., stiffness matrices of finite
element methods on nonuniform meshes.

The use of hierarchical matrices for finite element discretization of FDEs has al-
ready been explored in the literature. For instance, the point of view in [52] is similar
to the one we take in section 3.3; however, we wish to highlight two main differ-
ences with our contribution. First, Zhao et al. considered the adaptive geometrically
balanced clustering [21], in place of the HODLR partitioning. As mentioned in the
section 3.4.3, there is only little difference between the off-diagonal ranks of the two
partitionings, and hence HODLR arithmetic turns out to be preferable because it
reduces the storage consumption. Second, they propose the use of GMG for solving
linear systems with the stiffness matrix. In the case of multiple time steps and for
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generating the extended Krylov subspace, precomputing the LU factorization is more
convenient, as we discuss in section 5. To the best of our knowledge, the rank struc-
ture in finite difference discretizations of fractional differential operators has not been
previously noticed.

The paper is organized as follows; in section 2 we recall different definitions of
fractional derivatives and the discretizations proposed in the literature. Section 3
is dedicated to the study of the rank structure arising in the discretizations. More
specifically, in section 3.1 a preliminary qualitative analysis is supported by the GLT
theory, providing a decomposition of each off-diagonal block as the sum of a low-rank
plus a small-norm term. Then, a quantitative analysis is performed in sections 3.2 and
3.3, with different techniques stemming from the framework of structured matrices.
In section 3.4 we introduce the HODLR format and we discuss how to efficiently
construct representations of the matrices of interest. Section 3.5 briefly explains how
to combine these ingredients to solve the 1D problem. In section 4 we reformulate
the 2D problem as a Sylvester matrix equation with structured coefficients and we
illustrate a fast solver. The performances of our approach are tested and compared
in section 5. The conclusion and future outlook are given in section 6.

2. Fractional derivatives and their discretizations.

2.1. Definitions of fractional derivatives. A common definition of fractional
derivatives is given by the Riemann--Liouville formula. For a given function with
absolutely continuous first derivative on [L,R], the right-handed and left-handed
Riemann--Liouville fractional derivatives of order \alpha are defined by

\partial \alpha u(x, t)

\partial RL
+ x\alpha 

=
1

\Gamma (n - \alpha )

\partial n

\partial xn

\int x

L

u(\xi , t)

(x - \xi )\alpha +1 - n
d\xi ,

\partial \alpha u(x, t)

\partial RL
 - x\alpha 

=
( - 1)n

\Gamma (n - \alpha )

\partial n

\partial xn

\int R

x

u(\xi , t)

(\xi  - x)\alpha +1 - n
d\xi ,

(2.1)

where n is the integer such that n - 1 < \alpha \leqslant n and \Gamma (\cdot ) is the Euler gamma function.
Note that the left-handed fractional derivative of the function u(x, t) computed at
x depends on all function values to the left of x, while the right-handed fractional
derivative depends on the ones to the right.

When \alpha = m with m \in \BbbN , then (2.1) reduces to the standard integer derivatives,
i.e.,

\partial mu(x, t)

\partial RL
+ xm

=
\partial mu(x, t)

\partial xm
,

\partial mu(x, t)

\partial RL
 - xm

= ( - 1)m
\partial mu(x, t)

\partial xm
.

An alternative definition is based on the Gr\"unwald--Letnikov formulas:

\partial \alpha u(x, t)

\partial GL
+ x\alpha 

= lim
\Delta x\rightarrow 0+

1

\Delta x\alpha 

\lfloor (x - L)/\Delta x\rfloor \sum 
k=0

g
(\alpha )
k u(x - k\Delta x, t),

\partial \alpha u(x, t)

\partial GL
 - x\alpha 

= lim
\Delta x\rightarrow 0+

1

\Delta x\alpha 

\lfloor (R - x)/\Delta x\rfloor \sum 
k=0

g
(\alpha )
k u(x+ k\Delta x, t),

(2.2)

where \lfloor \cdot \rfloor is the floor function, g(\alpha )k are the alternating fractional binomial coefficients

g
(\alpha )
k = ( - 1)k

\biggl( 
\alpha 

k

\biggr) 
=

( - 1)k

k!
\alpha (\alpha  - 1) \cdot \cdot \cdot (\alpha  - k + 1) k = 1, 2, . . . ,
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and g
(\alpha )
0 = 1. Formula (2.2) can be seen as an extension of the definition of ordinary

derivatives via limit of the difference quotient.
Finally, another common definition of fractional derivative was proposed by Ca-

puto:

\partial \alpha u(x, t)

\partial C
+x\alpha 

=
1

\Gamma (n - \alpha )

\int x

L

\partial n

\partial \xi nu(\xi , t)

(x - \xi )\alpha +1 - n
d\xi ,

\partial \alpha u(x, t)

\partial C
 - x\alpha 

=
( - 1)n

\Gamma (n - \alpha )

\int R

x

\partial n

\partial \xi nu(\xi , t)

(\xi  - x)\alpha +1 - n
d\xi .

(2.3)

Note that (2.3) requires the nth derivative of u(x, t) to be absolutely integrable.
Higher regularity of the solution is typically imposed in time rather than in space;
as a consequence, the Caputo formulation is mainly used for fractional derivatives in
time, while the Riemann--Liouville is preferred for fractional derivatives in space. The
use of Caputo's derivative provides some advantages in the treatment of boundary
conditions when applying the Laplace transform method (see [39, Chapter 2.8]).

The various definitions are equivalent only if u(x, t) is sufficiently regular and/or
vanishes with all its derivatives on the boundary. In detail, the following holds:

\bullet If the nth space derivative of u(x, t) is continuous on [L,R], then

\partial \alpha u(x, t)

\partial RL
+ x\alpha 

=
\partial \alpha u(x, t)

\partial GL
+ x\alpha 

,
\partial \alpha u(x, t)

\partial RL
 - x\alpha 

=
\partial \alpha u(x, t)

\partial GL
 - x\alpha 

.

\bullet If \partial \ell 

\partial x\ell u(L, t) =
\partial \ell 

\partial x\ell u(R, t) = 0 for all \ell = 0, 1, . . . , n - 1, then

\partial \alpha u(x, t)

\partial RL
+ x\alpha 

=
\partial \alpha u(x, t)

\partial C
+x\alpha 

,
\partial \alpha u(x, t)

\partial RL
 - x\alpha 

=
\partial \alpha u(x, t)

\partial C
 - x\alpha 

.

In this work we are concerned with space fractional derivatives so we focus on the
Riemann--Liouville and the Gr\"unwald--Letnikov formulations. However, the analysis
of the structure in the discretizations can be generalized with minor adjustments to
the Caputo case.

2.2. Discretizations of fractional derivatives. We consider two different dis-
cretization schemes for the FDE problem (1.1): finite differences and finite elements.
The first scheme relies on the Gr\"unwald--Letnikov formulation while the second is
derived adopting the Riemann--Liouville definition.

2.2.1. Finite difference scheme using Gr\"unwald--Letnikov formulas. As
suggested in [34], in order to obtain a consistent and unconditionally stable finite dif-
ference scheme for (1.1), we use a shifted version of the Gr\"unwald--Letnikov fractional
derivatives obtained replacing k\Delta x with (k  - 1)\Delta x in (2.2).

Let us fix two positive integers N,M , and define the following partition of [L,R]\times 
[0, T ]:

xi = L+ i\Delta x, \Delta x =
(R - L)

N + 1
, i = 0, . . . , N + 1,(2.4)

tm = m\Delta t, \Delta t =
T

M + 1
, m = 0, . . . ,M + 1.

The idea in [34] is to combine a discretization in time of (1.1) by an implicit Euler
method with a first order discretization in space of the fractional derivatives by a
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shifted Gr\"unwald--Letnikov estimate, i.e.,

u(xi, tm) - u(xi, tm - 1)

\Delta t
= d

(m)
+,i

\partial \alpha u(xi, tm)

\partial GL
+ x\alpha 

+ d
(m)
 - ,i

\partial \alpha u(xi, tm)

\partial GL
 - x\alpha 

+ f
(m)
i +\scrO (\Delta t),

where d
(m)
\pm ,i = d\pm (xi, tm), f

(m)
i := f(xi, tm) and

\partial \alpha u(xi, tm)

\partial GL
+ x\alpha 

=
1

\Delta x\alpha 

i+1\sum 
k=0

g
(\alpha )
k u(xi - k+1, tm) +\scrO (\Delta x),

\partial \alpha u(xi, tm)

\partial GL
 - x\alpha 

=
1

\Delta x\alpha 

N - i+2\sum 
k=0

g
(\alpha )
k u(xi+k - 1, tm) +\scrO (\Delta x).

The resulting finite difference approximation scheme is then

u
(m)
i  - u

(m - 1)
i

\Delta t
=

d
(m)
+,i

\Delta x\alpha 

i+1\sum 
k=0

g
(\alpha )
k u

(m)
i - k+1 +

d
(m)
 - ,i

\Delta x\alpha 

N - i+2\sum 
k=0

g
(\alpha )
k u

(m)
i+k - 1 + f

(m)
i ,

where by u
(m)
i we denote a numerical approximation of u(xi, tm). The previous ap-

proximation scheme can be written in matrix form as (see [49])

(2.5) \scrM \mathrm{F}\mathrm{D},m
\alpha ,N u(m) =

\biggl( 
I +

\Delta t

\Delta x\alpha 
(D

(m)
+ T\alpha ,N +D

(m)
 - TT

\alpha ,N )

\biggr) 
u(m) = u(m - 1) +\Delta tf (m),

u(m) = [u
(m)
1 , . . . , u

(m)
N ]T , f (m) = [f

(m)
1 , . . . , f

(m)
N ]T , D

(m)
\pm = diag(d

(m)
\pm ,1 , . . . , d

(m)
\pm ,N ), I is

the identity matrix of order N , and

(2.6) T\alpha ,N =  - 

\left[            

g
(\alpha )
1 g

(\alpha )
0 0 \cdot \cdot \cdot 0 0

g
(\alpha )
2 g

(\alpha )
1 g

(\alpha )
0 0 \cdot \cdot \cdot 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(\alpha )
N - 1

. . .
. . .

. . . g
(\alpha )
1 g

(\alpha )
0

g
(\alpha )
N g

(\alpha )
N - 1 \cdot \cdot \cdot \cdot \cdot \cdot g

(\alpha )
2 g

(\alpha )
1

\right]            
N\times N

is a lower Hessenberg Toeplitz matrix. Note that\scrM \mathrm{F}\mathrm{D},m
\alpha ,N has a Toeplitz-like structure,

in the sense that it can be expressed as a sum of products between diagonal and dense
Toeplitz matrices. It can be shown that \scrM \mathrm{F}\mathrm{D},m

\alpha ,N is strictly diagonally dominant and
then nonsingular (see [34, 49]) for every choice of the parameters m \geqslant 0, N \geqslant 1,

\alpha \in (1, 2). Moreover, it holds that g
(\alpha )
1 =  - \alpha , g

(\alpha )
0 > g

(\alpha )
2 > g

(\alpha )
3 > \cdot \cdot \cdot > 0 and

g
(\alpha )
k = \scrO (k - \alpha  - 1).

2.2.2. Finite element space discretization. We consider a finite element
discretization for (1.1), using the Riemann--Liouville formulation (2.1). Let \scrB =
\{ \varphi 1, . . . , \varphi N\} be a finite element basis, consisting of positive functions with compact
support that vanish on the boundary. At each time step t, we replace the true solution
u by its finite element approximation u\Delta x

(2.7) u\Delta x =

N\sum 
j=1

uj(t)\varphi j(x),
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Fig. 3.1. Pictorial description of the quasiseparable structure; the off-diagonal blocks can be
represented as low-rank outer products.

and then we formulate a finite element scheme for (1.1). Assuming that the diffusion
coefficients do not depend on t, by means of this formulation we can find the steady-
state solution solving the linear system \scrM \mathrm{F}\mathrm{E}

\alpha ,Nu = f with

(\scrM \mathrm{F}\mathrm{E}
\alpha ,N )ij =

\biggl\langle 
\varphi i(x), d+(x)

\partial \alpha \varphi j(x)

\partial RL
+ x\alpha 

+ d - (x)
\partial \alpha \varphi j(x)

\partial RL
 - x\alpha 

\biggr\rangle 
, fi = \langle  - v(x), \varphi i(x)\rangle .

By linearity, we can decompose \scrM \mathrm{F}\mathrm{E}
\alpha ,N = \scrM \mathrm{F}\mathrm{E},+

\alpha ,N +\scrM \mathrm{F}\mathrm{E}, - 
\alpha ,N , where \scrM \mathrm{F}\mathrm{E},+

\alpha ,N includes the

action of the left-handed derivative, and \scrM \mathrm{F}\mathrm{E}, - 
\alpha ,N the effect of the right-handed one.

The original time-dependent equation (1.1) can be solved by means of a suitable
time discretization (such as the implicit Euler method used in the previous section)
combined with the finite element scheme introduced here (see, e.g., [13, 31]). In the
time-dependent case, the matrix associated with the instant tm will be denoted by
\scrM \mathrm{F}\mathrm{E},m

\alpha ,N , and it has the same structure of \scrM \mathrm{F}\mathrm{E}
\alpha ,N up to a shift by the mass matrix M :

\scrM \mathrm{F}\mathrm{E},m
\alpha ,N = M  - \Delta t\scrM \mathrm{F}\mathrm{E}

\alpha ,N , (M)ij = \langle \varphi i(x), \varphi j(x)\rangle .

The resulting time stepping scheme can be expressed as

\scrM \mathrm{F}\mathrm{E},m
\alpha ,N u(m) = Mu(m - 1) +\Delta tf (m).

We refer the reader to [15, 41] for more details on the finite element discretization
of fractional problems, including a detailed analysis of the spaces used for the basis
functions and convergence properties.

3. Rank structure in the 1D case. The aim of this section is to prove that
different formulations of 1D fractional derivatives generate discretizations with similar
properties. In particular, we are interested in showing that off-diagonal blocks in the
matrix discretization of such operators have a low numerical rank. When these ``off-
diagonal ranks"" are exact (and not just numerical ranks) this structure is sometimes
called quasiseparability, or semiseparability [14, 48]; see also Figure 3.1. Here we recall
the definition and some basic properties.

Definition 3.1. A matrix A \in \BbbC N\times N is quasiseparable of order k (or quasisep-
arable of rank k) if the maximum of the ranks of all its submatrices contained in the
strictly upper or lower part is exactly k.

Lemma 3.2. Let A,B \in \BbbC N\times N be quasiseparable of rank kA and kB, respectively.
1. The quasiseparable rank of both A+B and A \cdot B is at most kA + kB.
2. If A is invertible, then A - 1 has quasiseparable rank kA.

In order to perform the analysis of the off-diagonal blocks we need to formalize
the concept of numerical rank. In the rest of the paper, \| \cdot \| will indicate the Euclidean
norm.
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Table 3.1
Bounds for the \epsilon -qsrank of different discretizations. For finite elements methods with equispaced

basis functions the parameter (R  - L)/\delta \approx N , and k is the number of overlapping basis functions
(see Definition 3.17).

Discretization \epsilon -qsrank Reference

Finite differences 2 + 2
\Bigl\lceil 

2
\pi 2 log

\bigl( 
4
\pi 
N
\bigr) 
log

\bigl( 
32
\epsilon 

\bigr) \Bigr\rceil 
Lem. 3.15, Cor. 3.16

Finite elements k + 2
\Bigl\lceil 
log2

\Bigl( 
R - L

\delta 

\Bigr) \Bigr\rceil 
\cdot 
\Bigl( 
1 +

\Bigl\lceil 
log2

\Bigl( 
(\alpha +1)\cdot 4\alpha +1

\epsilon 

\Bigr) \Bigr\rceil \Bigr) 
Thm. 3.21

Definition 3.3. We say that a matrix X has \epsilon -rank k, and we write rank\epsilon (X) =
k if there exists \delta X such that \| \delta X\| \leqslant \epsilon \| X\| , rank(X + \delta X) = k, and the rank of
X + \delta X \prime is at least k for any other \| \delta X \prime \| \leqslant \epsilon \| X\| . More formally,

rank\epsilon (X) = min
\| \delta X\| \leqslant \epsilon \| X\| 

rank(X + \delta X).

Often we are interested in measuring approximate quasiseparability. We can give
a similar ``approximate"" definition.

Definition 3.4. We say that a matrix X has \epsilon -qsrank k if for any off-diagonal
block Y of X there exists a perturbation \delta Y such that \| \delta Y \| \leqslant \epsilon \| X\| and Y + \delta Y has
rank (at most) k. More formally,

qsrank\epsilon (X) = max
Y \in \mathrm{O}ff(X)

min
\| \delta Y \| \leqslant \epsilon \| X\| 

rank(Y + \delta Y ),

where Off(X) is the set of the off-diagonal blocks of X.

Remark 3.5. As shown in [32], qsrank\epsilon (X) = k implies the existence of a ``global""
perturbation \delta X such that X + \delta X is quasiseparable of rank k and \| \delta X\| \leqslant \epsilon 

\surd 
N .

In addition, the presence of \| X\| in the above definition makes the \epsilon -qsrank invariant
under rescaling, i.e., qsrank\epsilon (A) = qsrank\epsilon (\theta A) for any \theta \in \BbbC \setminus \{ 0\} .

The purpose of the following subsections is to show that the various discretizations
of fractional derivatives provide matrices with small \epsilon -qsrank. The \epsilon -qsrank turns out
to grow asymptotically as \scrO (log(\epsilon  - 1) log(N)); see Table 3.1, which summarizes our
findings.

3.1. Qualitative analysis of the quasiseparable structure through GLT
theory. In the 1D setting the finite difference discretization matrices \scrM \mathrm{F}\mathrm{D},m

\alpha ,N present
a diagonal-times-Toeplitz structure (see (2.5)) where the diagonal matrices are the
discrete counterpart of the diffusion coefficients and the Toeplitz components come
from the fractional derivatives. This structure falls into the GLT class, an algebra
of matrix-sequences obtained as a closure under some algebraic operations (linear
combination, product, inversion, conjugation) of Toeplitz, diagonal, and low-rank
plus small-norm matrix-sequences.

In the remaining part of this section we show that the off-diagonal blocks of
\scrM \mathrm{F}\mathrm{D},m

\alpha ,N can be decomposed as the sum of a low-rank plus a small-norm term. Such
a result is obtained exploiting the properties of some simple GLT sequences, i.e.,
Toeplitz and Hankel sequences associated with a function f \in L1.

Definition 3.6. Let f \in L1([ - \pi , \pi ]) and let \{ fj\} j\in \BbbZ be its Fourier coefficients.

Then the sequence of N \times N matrices \{ TN\} N\in \BbbN with TN = [fi - j ]
N
i,j=1 (resp., \{ HN\} N

with HN = [fi+j - 2]
N
i,j=1) is called the sequence of Toeplitz (resp., Hankel) matrices

generated by f .
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The generating function f provides a description of the spectrum of TN for N
large enough in the sense of the following definition.

Definition 3.7. Let f : [a, b] \rightarrow \BbbC be a measurable function and let \{ AN\} N\in \BbbN be
a sequence of matrices of size N with singular values \sigma j(AN ), j = 1, . . . , N . We say
that \{ AN\} N\in \BbbN is distributed as f over [a, b] in the sense of the singular values, and
we write \{ AN\} N\in \BbbN \sim \sigma (f, [a, b]) if

lim
N\rightarrow \infty 

1

N

N\sum 
j=1

F (\sigma j(AN )) =
1

b - a

\int b

a

F (| f(t)| )dt(3.1)

for every continuous function F with compact support. In this case, we say that f is
the symbol of \{ AN\} N .

In the special case f \equiv 0, we say that \{ AN\} N\in \BbbN is a zero distributed sequence.
The above relation tells us that in the presence of a zero distributed sequence the
singular values of the Nth matrix (weakly) cluster around 0. This can be formalized
by the following result [18].

Proposition 3.8. Let \{ AN\} N be a matrix sequence. Then \{ AN\} N \sim \sigma 0 if and
only if there exist two matrix sequences \{ RN\} N and \{ EN\} N such that AN = RN+EN

and

lim
N\rightarrow \infty 

rank(RN )

N
= 0, lim

N\rightarrow \infty 
\| EN\| = 0.

For our off-diagonal analysis we need to characterize the symbol of Hankel ma-
trices [16].

Proposition 3.9. If \{ HN\} N is an Hankel sequence generated by f \in L1, then
\{ HN\} N \sim \sigma 0.

Theorem 3.10. Let \{ TN\} N be a sequence of Toeplitz matrices generated by f \in 
L1. Then, for every off-diagonal block sequence \{ YN\} N of \{ TN\} N with YN \in \BbbR \^N\times \^M ,
\^N, \^M < N , there exist two sequences \{ \^RN\} N and \{ \^EN\} N such that YN = \^RN + \^EN

and

lim
N\rightarrow \infty 

rank( \^RN )

N
= 0, lim

N\rightarrow \infty 
\| \^EN\| = 0.

Proof. Consider the following partitioning of TN :

TN =

\biggl[ 
T11 T12

T21 T22

\biggr] 
,

where T11 and T22 are square. Without loss of generality, we assume that the off-
diagonal block YN is contained in T21. Denote by \{ HN\} N the Hankel sequence gener-
ated by f , the same function generating \{ TN\} N , and let J be the counteridentity, with
ones on the antidiagonal and zero elsewhere. Then, T21J is a submatrix ofHN . Notice
that HN does not depend on the specific choice of partitioning. In view of Proposi-
tion 3.9 we can write HN = RN+EN , and therefore T21 is a submatrix of RNJ+ENJ .
We denote by \^RN and \^EN these two submatrices; since rank( \^RN ) \leqslant rank(RN ) and
\| \^EN\| \leqslant \| EN\| , we have

lim
N\rightarrow \infty 

rank( \^RN )

N
= 0, lim

N\rightarrow \infty 
\| \^EN\| = 0.

YN is a subblock of either T21 or T12, so the claim follows.
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The above result has an immediate consequence concerning the \epsilon -qsrank of a
sequence of Toeplitz matrices \{ TN\} N , and of \{ TN + ZN\} N , where ZN is any zero
distributed matrix sequence.

Corollary 3.11. Let \{ TN + ZN\} N be a sequence of matrices with TN Toeplitz
generated by f \in L1, and ZN zero distributed. Then, there exists a sequence of positive
numbers \epsilon N \rightarrow 0, such that

lim
N\rightarrow \infty 

qsrank\epsilon N (TN + ZN )

N
= 0.

Corollary 3.11 guarantees that the \epsilon -qsrank will grow slower than N for an infin-
itesimal choice of truncation \epsilon N .

In the finite differences case, the Toeplitz matrix T\alpha ,N for the discretization of
the Gr\"unwald--Letnikov formulas is generated by a function f , which is in L1 as a
consequence of the decaying property of fractional binomial coefficients. Therefore,
we expect the matrix \scrM \mathrm{F}\mathrm{D},m

\alpha ,N in (2.5), defined by diagonal scaling of T\alpha ,N and its
transpose, to have off-diagonal blocks with low numerical rank.

In case of high-order finite elements with maximum regularity defined on uniform
meshes, a technique similar to the one used in [18, Chapter 10.6] can be employed
to prove that the sequence of the coefficient matrices is a low-rank perturbation of a
diagonal-times-Toeplitz sequence---a structure that falls again under the GLT theory.
Corollary 3.11 can then be applied to obtain that the quasiseparable rank of these
discretizations grows slower than N .

3.2. Finite differences discretization. Matrices stemming from finite differ-

ence discretizations have the form \scrM \mathrm{F}\mathrm{D}
\alpha ,N =  - \Delta x - \alpha (D

(m)
+ T\alpha ,N + D

(m)
 - TT

\alpha ,N ) for the

steady state scenario or \scrM \mathrm{F}\mathrm{D},m
\alpha ,N = I - \Delta t\scrM \mathrm{F}\mathrm{D}

\alpha ,N in the time dependent case (see (2.5)).

In order to bound the \epsilon -qsrank of \scrM \mathrm{F}\mathrm{D}
\alpha ,N ,\scrM \mathrm{F}\mathrm{D},m

\alpha ,N we need to look at the off-diagonal
blocks of T\alpha ,N . To this aim, we exploit some recent results on the singular values
decay of structured matrices.

Let us begin by recalling a known fact about Cauchy matrices.

Lemma 3.12 (see [17, Theorem A]). Let x,y two real vectors of length N , with
ascending and descending ordered entries, respectively. Moreover, we denote with
C(x,y) the Cauchy matrix defined by

Cij =
1

xi  - yj
, i, j = 1, . . . , N.

If C(x,y) is symmetric and xi \in [a, b] and yj \in [c, d] with a > d, then C(x,y) is
positive definite.

We combine the previous result with a technique inspired by [6] to prove that a
Hankel matrix built with the binomial coefficients arising in the Gr\"unwald--Letnikov
expansion is positive semidefinite.

Lemma 3.13. Consider the Hankel matrix H defined as

H = (hij), hij = g
(\alpha )
i+j ,

for 1 \leqslant \alpha \leqslant 2. Then, H is positive semidefinite.
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Proof. Observe that for k \geqslant 2 we can rewrite g
(\alpha )
k as follows:

g
(\alpha )
k =

( - 1)k

k!
\alpha (\alpha  - 1) . . . (\alpha  - k + 1)

=
\alpha (\alpha  - 1)

k!
(k  - \alpha  - 1)(k  - \alpha  - 2) . . . (2 - \alpha )

= \alpha (\alpha  - 1)
\Gamma (k  - \alpha )

\Gamma (k + 1)\Gamma (2 - \alpha )
.

By using the Gauss formula for the gamma function,

\Gamma (z) = lim
m\rightarrow \infty 

m!mz

z(z + 1)(z + 2) . . . (z +m)
, z \not = \{ 0, - 1, - 2, . . .\} ,

we can rewrite the entries of the matrix H as

g
(\alpha )
k = \alpha (\alpha  - 1) lim

m\rightarrow \infty 

1

m!m3

m\prod 
p=0

k + 1 + p

k  - \alpha + p
(2 - \alpha + p).

This implies that the matrix H can be seen as the limit of Hadamard products of Han-
kel matrices. Since positive semidefiniteness is preserved by the Hadamard product
(Schur product theorem) and by the limit operation [6], if the Hadamard products

H0 \circ \cdot \cdot \cdot \circ Hm, (Hp)ij =
i+ j + 1 + p

i+ j  - \alpha + p

are positive semidefinite for every m, then H is also positive semidefinite. Notice that
we can write

(Hp)ij =
i+ j + 1 + p

i+ j  - \alpha + p
= 1 +

\alpha + 1

i+ j  - \alpha + p

that can be rephrased in matrix form as follows:

Hp = eeT + (\alpha + 1) \cdot C(x, - x), x =

\left[   1
...
N

\right]   +
p - \alpha 

2
e, e =

\left[   1...
1

\right]   .

All the components of x are positive, since \alpha < 2. This implies, thanks to
Lemma 3.12, that the Cauchy matrix C(x, - x) is positive definite. Summing it with
the positive semidefinite matrix on the left retains this property, so Hp is positive
semidefinite as well.

The next result ensures that positive semidefinite Hankel matrices are numerically
low-rank.

Lemma 3.14 (see [4, Theorem 5.5]). Let H be a positive semidefinite Hankel
matrix of size N . Then, the \epsilon -rank of H is bounded by

rank\epsilon (H) \leqslant 2 + 2

\biggl\lceil 
2

\pi 2
log

\biggl( 
4

\pi 
N

\biggr) 
log

\biggl( 
16

\epsilon 

\biggr) \biggr\rceil 
=: \frakB (N, \epsilon ).

We are now ready to state a bound for the \epsilon -qsrank of T\alpha ,N .

Lemma 3.15. Let T\alpha ,N be the lower Hessenberg Toeplitz matrix defined in (2.6).
Then, for every \epsilon > 0, the \epsilon -qsrank of T\alpha ,N is bounded by

qsrank\epsilon (T\alpha ,N ) \leqslant \frakB 
\Bigl( 
N,

\epsilon 

2

\Bigr) 
= 2 + 2

\biggl\lceil 
2

\pi 2
log

\biggl( 
4

\pi 
N

\biggr) 
log

\biggl( 
32

\epsilon 

\biggr) \biggr\rceil 
.
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Proof. We can verify the claim on the lower triangular part, since every off-
diagonal block in the upper one has rank at most 1. Let Y \in \BbbC s\times t be any lower off-
diagonal block of T\alpha ,N . Without loss of generality we can assume that Y is maximal,
i.e., s + t = N . In fact, if rank(Y + \delta Y ) = k and \| \delta Y \| 2 \leqslant \epsilon \| T\alpha ,N\| 2, then the
submatrices of \delta Y verify the analogous claim for the corresponding submatrices of Y .

The entries of Y are given by Yij =  - g
(\alpha )
1+i - j+t. Let h := max\{ s, t\} , and the h\times h

matrix A defined by Aij :=  - g
(\alpha )
1+i - j+h. It is immediate to verify that Y coincides

with either the last t columns or the first s rows of A. In fact, for every 1 \leqslant i \leqslant s and

1 \leqslant j \leqslant t we have Yij =  - g
(\alpha )
1+i - j+t =  - g

(\alpha )
1+i - (j - t+h)+h = Ai,j - t+h. In particular, Y

is a submatrix of A and therefore \| Y \| 2 \leqslant \| A\| 2. Two possible arrangements of Y and
A are pictorially described by the following figures.

A = Y

A =

Y

In order to estimate \| A\| 2, we perform the following 2\times 2 block partitioning:

A =

\biggl[ 
A(11) A(12)

A(21) A(22)

\biggr] 
, A(ij) \in \BbbC mij\times nij ,

\Biggl\{ 
m1j = ni1 = \lceil h

2 \rceil 
m2j = ni2 = \lfloor h

2 \rfloor .

Recalling that h is the maximum dimension of the block Y , and therefore h \leqslant N  - 1,
this choice yields mij + nij \leqslant N . In passing, we remark that this partitioning is not
necessarily conformal to Y , but is performed with the sole purpose of estimating \| A\| 2
by a constant times the norm of T\alpha ,N . Indeed, we now consider the subdiagonal block
T (ij) of T\alpha ,N defined by (using MATLAB-style notation)

T (ij) := T\alpha ,N (N  - mij + 1 : N,N  - mij  - nij + 1 : N  - mij), i, j = 1, 2

which is of dimension mij\times nij and well defined because mij+nij \leqslant N . These blocks
verify | T (ij)| \geqslant | A(ij)| for every i, j = 1, 2, which can be verified using the property

g
(\alpha )
j > g

(\alpha )
j+1 > 0 for all j \geqslant 2 (see section 2.2.1). Since both T (ij) and A(ij) are

nonpositive, we have for the monotonicity of the 2 norm that \| A(ij)\| 2 \leqslant \| T (ij)\| 2. In
addition, we exploit the relation

\| A\| 2 \leqslant 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A(11)

A(22)

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

+

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A(12)

A(21)

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

= max\{ \| A(11)\| 2, \| A(22)\| 2\} +max\{ \| A(12)\| 2, \| A(21)\| 2\} 

to get \| A\| 2 \leqslant 2\| T\alpha ,N\| 2.
Let J be the h \times h counteridentity; in light of Lemma 3.13, the matrix  - AJ is

Hankel and positive semidefinite. Applying Lemma 3.14 to  - AJ with truncation \epsilon 
2 we

obtain rank \epsilon 
2
(A) = rank \epsilon 

2
(AJ) \leqslant \frakB (N, \epsilon 

2 ). Since Y is a submatrix of A there exists
\delta Y such that \| \delta Y \| 2 \leqslant \epsilon \| T\alpha ,N\| 2 and rank(Y + \delta Y ) \leqslant \frakB (N, \epsilon 

2 ). So, we conclude that
qsrank\epsilon (T\alpha ,N ) \leqslant \frakB (N, \epsilon 

2 ).
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Corollary 3.16. Let \scrM \mathrm{F}\mathrm{D},m
\alpha ,N = I+ \Delta t

\Delta x\alpha (D
(m)
+ T\alpha ,N+D

(m)
 - TT

\alpha ,N ) be defined as in

(2.5), where D
(m)
+ and D

(m)
 - contain the samplings of d+(x, tm) and d - (x, tm). Then

qsrank\epsilon (\scrM 
\mathrm{F}\mathrm{D},m
\alpha ,N ) \leqslant 3 + 2

\biggl\lceil 
2

\pi 2
log

\biggl( 
4

\pi 
N

\biggr) 
log

\biggl( 
32

\^\epsilon 

\biggr) \biggr\rceil 
,

\^\epsilon :=
\| \scrM \mathrm{F}\mathrm{D},m

\alpha ,N \| 

\| T\alpha ,N\| \cdot max\{ \| D(m)
+ \| , \| D(m)

 - \| \} 
\epsilon .

Proof. Clearly, the result is invariant under scaling, so we assume that \Delta t
\Delta x\alpha =

1. Consider a generic off-diagonal block Y of \scrM \mathrm{F}\mathrm{D},m
\alpha ,N , and assume without loss of

generality that it is in the lower triangular part. If Y does not intersect the first

subdiagonal, then Y is a subblock of D
(m)
+ T\alpha ,N , and so we know by Lemma 3.15 that

there exists a perturbation \delta Y with norm bounded by \| \delta Y \| \leqslant \| D(m)
+ \| \| T\alpha ,N\| \cdot \^\epsilon such

that Y +\delta Y has rank at most\frakB (N, \^\epsilon 
2 ). In particular, \delta Y satisfies \| \delta Y \| \leqslant \| \scrM \mathrm{F}\mathrm{D},m

\alpha ,N \| \cdot \epsilon .
Since we have excluded one subdiagonal, for a generic off-diagonal block Y we

can find a perturbation with norm bounded by \| \scrM \mathrm{F}\mathrm{D},m
\alpha ,N \| \cdot \epsilon such that Y + \delta Y has

rank 1 +\frakB (N, \^\epsilon 
2 ).

3.3. Finite element discretization. We consider the left and right-handed
fractional derivatives of order 1 < \alpha < 2 in Riemann--Liouville form, defined as
follows:

\partial \alpha u(x, t)

\partial RL
+ x\alpha 

=
1

\Gamma (2 - \alpha )

\partial 2

\partial x2

\int x

L

u(\xi , t)

(x - \xi )\alpha  - 1
d\xi ,

\partial \alpha u(x, t)

\partial RL
 - x\alpha 

=
1

\Gamma (2 - \alpha )

\partial 2

\partial x2

\int R

x

u(\xi , t)

(\xi  - x)\alpha  - 1
d\xi ,

where \Gamma (\cdot ) is the gamma function. From now on we focus on the discretization of the
left-handed derivative; the results for the right-handed one are completely analogous.
In this section we consider the case of constant diffusion coefficients, but as outlined
in Remark 3.22 this is not restrictive.

Let us discretize the operator \partial \alpha 

\partial RL
+

by using a finite element method. More pre-

cisely, we choose a set of basis functions \scrB := \{ \varphi 1, . . . , \varphi N\} , normalized so that\int R

L
\varphi i(x) dx = 1. This leads to the stiffness matrix \scrM \mathrm{F}\mathrm{E},+

\alpha ,N defined by
(3.2)

(\scrM \mathrm{F}\mathrm{E},+
\alpha ,N )ij =

\biggl\langle 
\varphi i,

\partial \alpha \varphi j

\partial RL
+ x\alpha 

\biggr\rangle 
=

1

\Gamma (2 - \alpha )

\int R

L

\varphi i(x)
\partial 2

\partial x2

\int x

L

\varphi j(y)(x - y) - \alpha +1dy dx.

A key ingredient in our analysis is requiring a separation property for the elements
of the basis. This is formalized in the following definition.

Definition 3.17. We say that the basis \scrB has \delta -overlapping k with \delta \geqslant 0 if for
all j1, j2 \in \{ 1, . . . , N\} such that j2  - j1 \geqslant k, there exists x0 \in [L,R] such that

supp(\varphi j) \subset [L, x0  - \delta ] ; j < j1, supp(\varphi j) \subset [x0 + \delta ,R] ; j > j2.

When \delta = 0 we simply say that \scrB has overlapping k.

The property of being a basis with \delta -overlapping k is described pictorially in
Figure 3.2.
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 - 1 10

x0

Fig. 3.2. A pictorial representation of a basis with \delta -overlapping 2 for any small enough \delta .

Our strategy for proving the presence of the (approximate) quasiseparable struc-

ture in \scrM \mathrm{F}\mathrm{E},+
\alpha ,N is to show that any off-diagonal block can be approximated summing

a few integrals of separable functions. In view of the following result, this implies the
low-rank structure.

Lemma 3.18. Let (gi)
m
i=1, (hj)

n
j=1 be families of functions on [a, b] and [c, d] and

define \Gamma ij(x, y) = gi(x)hj(y) for i = 1, . . . ,m and j = 1, . . . , n. Consider the func-
tional

I(\Gamma ij) =

\int b

a

\int d

c

\Gamma ij(x, y) dx dy.

Then, the matrix X = (xij) with xij := I(\Gamma ij) \in \BbbC m\times n has rank 1.

Proof. For a fixed i, j, we can write

xij = I(\Gamma ij) =

\int b

a

\int d

c

\Gamma ij(x, y) dx dy =

\int b

a

gi(x) dx

\int d

c

hj(y) dy.

Then X = GHT , where the column vectors G,H have entries Gi =
\int b

a
gi(x) dx for

i = 1, . . . ,m and Hj =
\int d

c
hj(y) dy for j = 1, . . . , n, respectively.

The only nonseparable part of (3.2) is the function g(x, y) = (x  - y) - \alpha . A
separable approximation of g(x, y) on [a, b] \times [c, d] with a > d can be obtained by
providing an approximation for (x\prime + y\prime ) - \alpha on [a\prime , b\prime ]2, where a\prime = a - d

2 and b\prime =
max\{ b  - a, d  - c\} + a\prime , by means of the change of variables x\prime = x  - (a + d)/2 and
y\prime = (a + d)/2  - y. Therefore, we state the following result, whose proof follows the
line of a similar statement for \alpha = 1 in [20]. Analogous estimates for other kinds of
kernel functions can be found in [24, Chapter 4].

Lemma 3.19. Let g(x, y) = (x+ y) - \alpha with \alpha > 0 and consider the square I2 with
I = [a, b] and a > 0. Then, for any \epsilon > 0, there exists a function g\epsilon (x, y) satisfying

(3.3) | g(x, y) - g\epsilon (x, y)| \leqslant | g(x, y)| \epsilon , x, y \in I,

and g\epsilon (x, y) is the sum of at most k\epsilon separable functions where

(3.4) k\epsilon = 2

\biggl\lceil 
log2

\biggl( 
b

a

\biggr) \biggr\rceil 
\cdot 
\biggl( 
1 +

\biggl\lceil 
log2

\biggl( 
\alpha \cdot 4\alpha 

\epsilon 

\biggr) \biggr\rceil \biggr) 
.

Proof. Consider the partitioning of the interval I given by I = I0\cup . . .\cup IK , where

Ij =

\Biggl\{ 
[a+ 2 - j - 1\Delta , a+ 2 - j\Delta ], 0 \leqslant j < K,

[a, a+ 2 - K\Delta ], j = K,
\Delta := b - a, K =

\biggl\lceil 
log2

\biggl( 
b

a

\biggr) \biggr\rceil 
,
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and denote by cj the midpoint of Ij . The partitioning can be pictorially described as
follows for K = 4.

a b

I0I1I2I3I4

Notice that the choice of K implies that diam(IK) \leqslant a. In general, the left endpoint
of each subinterval is greater than the diameter, i.e., diam(Ij) \leqslant a + 2 - j - 1\Delta . This
provides the inequality cj \geqslant 3

2diam(Ij) for every Ij .
Starting from the subdivision of I we get the following partitioning of I2:

I0 \times I0

I0 \times \^I0

\^I0 \times I0

I1 \times I1

I1 \times \^I1

\^I1 \times I1

,

where \^Ii =
\bigcup K

j=i+1 Ij . For any of the domains, we can consider the Taylor expansions
of g(x, y) either in the variable x or in the variable y, expanded at the point ci.

gx,i(x, y) :=
\sum 
j\geqslant 0

1

j!

\partial j

\partial xj
g(ci, y)(x - ci)

j , gy,i(x, y) :=
\sum 
j\geqslant 0

1

j!

\partial j

\partial yj
g(x, ci)(y  - ci)

j .

Using the fact that \partial j

\partial xj g(ci, y) =
\Gamma (\alpha +j)
\Gamma (\alpha ) (ci + y) - \alpha  - j (and similarly in the y variable)

we can rephrase the above expansion as follows:

gx,i(x, y) =
\sum 
j\geqslant 0

\Gamma (\alpha + j)

\Gamma (j + 1)\Gamma (\alpha )

\biggl( 
x - ci
ci + y

\biggr) j

(ci + y) - \alpha \underbrace{}  \underbrace{}  
g(ci,y)

and similarly for gy,i(x, y). We now approximate g(x, y) using truncations of the
above expansions on each of the sets in the partitioning of the square. Consider the
sets of the form Ii \times Ii or Ii \times \^Ii. We define

gN,x,i(x, y) =

N\sum 
j=0

\Gamma (\alpha + j)

\Gamma (j + 1)\Gamma (\alpha )

\biggl( 
x - ci
ci + y

\biggr) j

(ci + y) - \alpha .

Observe that since ci is the midpoint of Ii, | x  - ci| \leqslant 1
2diam(Ii). In addition,

since both ci and y are positive we have

| ci + y| = ci + y \geqslant ci \geqslant 
3

2
diam(Ii).

Therefore, we have | x - ci| \leqslant 1
3 (ci + y), so we can bound

| g(x, y) - gN,x,i(x, y)| \leqslant 
| g(ci, y)| 
\Gamma (\alpha )

\sum 
j\geqslant N+1

\Gamma (\alpha + j)

\Gamma (j + 1)

\biggl( 
1

3

\biggr) j

.
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One can easily check that \Gamma (\alpha +j)
\Gamma (j+1) \leqslant (\lfloor \alpha \rfloor +j)!

j! , and hence we can write

\infty \sum 
j=N+1

\Gamma (\alpha + j)

\Gamma (j + 1)

\biggl( 
1

3

\biggr) j

\leqslant 
\infty \sum 

j=N+1

(\lfloor \alpha \rfloor + j)!

j!

1

3j
=

\left(  \infty \sum 
j=N+1

(\lfloor \alpha \rfloor + j)!

j!
xj

\right)  \bigm| \bigm| \bigm| \bigm| \bigm| 
x= 1

3

=

\left(  d\lfloor \alpha \rfloor 

dx\lfloor \alpha \rfloor 

\infty \sum 
j=N+1

x\lfloor \alpha \rfloor +j

\right)  \bigm| \bigm| \bigm| \bigm| \bigm| 
x= 1

3

=

\biggl( 
d\lfloor \alpha \rfloor 

dx\lfloor \alpha \rfloor 
xN+1+\lfloor \alpha \rfloor 

1 - x

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
x= 1

3

.

The last quantity can be bounded using the relation | f (k)(w)| \leqslant k! max| z - w| =r | f(z)| \cdot 
r - k with r being a positive number such that f(w) is analytic for | z  - w| \leqslant r. Note
that | f(z)| assumes the maximum at the rightmost point of the circle | z  - w| = r,
since there we have both the maximum of the numerator and the minimum of the
denominator. Choosing r = 1

6 provides\biggl( 
d\lfloor \alpha \rfloor 

dx\lfloor \alpha \rfloor 
xN+1+\lfloor \alpha \rfloor 

1 - x

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
x= 1

3

\leqslant 3\lfloor \alpha \rfloor \cdot \lfloor \alpha \rfloor ! \cdot 2 - N .

Plugging this back into our bound yields

| g(x, y) - gN,x,i(x, y)| \leqslant 
3\lfloor \alpha \rfloor \cdot \lfloor \alpha \rfloor ! \cdot 2 - N

\Gamma (\alpha )
\cdot | g(ci, y)| .

Moreover, using | x - ci| \leqslant 1
3 (ci + y), we have that

g(x, y) = (x - ci + ci + y) - \alpha \geqslant 

\biggl( 
ci + y

3
+ ci + y

\biggr)  - \alpha 

=

\biggl( 
3

4

\biggr) \alpha 

(ci + y) - \alpha =

\biggl( 
3

4

\biggr) \alpha 

g(ci, y)

for any x \in Ii. Therefore,
(3.5)

| g(x, y) - gN,x,i(x, y)| \leqslant 
\biggl( 
4

3

\biggr) \alpha 
3\lfloor \alpha \rfloor \cdot \lfloor \alpha \rfloor ! \cdot 2 - N

\Gamma (\alpha )
\cdot | g(x, y)| , (x, y) \in (Ii\times Ii)\cup (Ii\times \^Ii).

We can obtain an analogous result for the sets of the form \^Ii \times Ii by considering the
expansion gN,y,i(x, y). We define an approximant to g(x, y) on I2 by combining all
the ones on the partitioning:

gN (x, y) :=

\Biggl\{ 
gN,x,i(x, y) on Ii \times Ii and Ii \times \^Ii,

gN,y,j(x, y) on \^Ii \times Ii.

The function gN (x, y) is obtained summing 2K + 1 separable functions of order
N + 1, which in turn implies that gN (x, y) can be written as a separable function of
order (2K + 1) \cdot (N + 1). Using that 2K + 1 \leqslant 2\lceil log2( ba )\rceil , we have that gN (x, y)

is a 2\lceil log2( ba )\rceil \cdot (N + 1)-separable approximant of g(x, y) on I2. We determine N

such that
\bigl( 
4
3

\bigr) \alpha 3\lfloor \alpha \rfloor \cdot \lfloor \alpha \rfloor !\cdot 2 - N

\Gamma (\alpha ) \leqslant \epsilon . Noting that 3\lfloor \alpha \rfloor  - \alpha \leqslant 1, \lfloor \alpha \rfloor !/\Gamma (\alpha ) \leqslant \alpha , and setting

k\epsilon = 2\lceil log2
\bigl( 
b
a

\bigr) 
\rceil \cdot (N + 1) we retrieve (3.3).
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Remark 3.20. We note that the result of the previous lemma is slightly subopti-
mal, since we have chosen the fixed value of r = 1

6---whereas the optimal one would

be r = argmin\rho \rho 
 - \lfloor \alpha \rfloor \cdot max| z - 1

3 | =\rho | f(z)| . The latter leads to bounding the tail of the

Taylor expansion with a quantity decaying as \scrO (N\lfloor \alpha \rfloor 3 - N ). The advantage of our
formulation is that it allows us to explicitly bound k\epsilon with a multiple of log2(\epsilon 

 - 1).

Lemma 3.19 enables us to study the rank of the off-diagonal blocks in \scrM \mathrm{F}\mathrm{E},+
\alpha ,N .

Here we consider the constant coefficient case; the generalization to variable coeffi-
cients requires little changes as outlined in Remark 3.22.

Theorem 3.21. Let \scrM \mathrm{F}\mathrm{E},+
\alpha ,N \in \BbbC N\times N be the matrix defined in (3.2) with d+(x) \equiv 

1. Assume that \scrB has \delta -overlapping k with \delta > 0 and that the basis functions \varphi i(x) \geqslant 0

are normalized to have
\int R

L
\varphi i(x) dx = 1. Then

qsrank\epsilon (\scrM 
\mathrm{F}\mathrm{E},+
\alpha ,N ) \leqslant k+k\epsilon = k+2

\biggl\lceil 
log2

\biggl( 
R - L

\delta 

\biggr) \biggr\rceil 
\cdot 
\biggl( 
1 +

\biggl\lceil 
log2

\biggl( 
(\alpha + 1) \cdot 4\alpha +1

\epsilon 

\biggr) \biggr\rceil \biggr) 
.

Proof. Let Y be any off-diagonal block of \scrM \mathrm{F}\mathrm{E},+
\alpha ,N which does not involve any

entry of the central 2k + 1 diagonals. Without loss of generality we can assume Y to
be in the lower left corner of \scrM \mathrm{F}\mathrm{E},+

\alpha ,N . In particular, there exist h, \ell such that \ell  - h \geqslant k
and

(3.6) Yij = \langle \varphi i+\ell ,
\partial \alpha 

\partial RL
+

\varphi j\rangle , i = 1, . . . , N  - \ell , j = 1, . . . , h.

Since we are considering a basis with \delta -overlapping k, we can identify x0 such that
the support of \varphi i+\ell is always contained in [x0 + \delta ,R] and the one of \varphi j in [L, x0  - \delta ].
Therefore, expanding the scalar product we obtain

Yij =
1

\Gamma (2 - \alpha )

\int R

L

\varphi i+\ell (x)
\partial 2

\partial x2

\int x

L

\varphi j(y)

(x - y)\alpha  - 1
dy dx

=
1

\Gamma (2 - \alpha )

\int R

x0+\delta 

\varphi i+\ell (x)
\partial 2

\partial x2

\int x0 - \delta 

L

\varphi j(y)

(x - y)\alpha  - 1
dy dx

=
1

\Gamma (2 - \alpha )

\int R

x0+\delta 

\varphi i+\ell (x)

\int x0 - \delta 

L

\partial 2

\partial x2

\varphi j(y)

(x - y)\alpha  - 1
dy dx

=
1

\Gamma (2 - \alpha )

\int R

x0+\delta 

\varphi i+\ell (x)

\int x0 - \delta 

L

\alpha (\alpha  - 1)\varphi j(y)

(x - y)\alpha +1
dy dx

=

\int R

x0+\delta 

\int x0 - \delta 

L

\alpha (\alpha  - 1)

\Gamma (2 - \alpha )

\varphi i+\ell (x)\varphi j(y)

(x - y)\alpha +1
dy dx.

By the change of variable \^x = x - x0, and \^y = x0  - y, we can write

1

(x - y)\alpha +1
=

1

(\^x+ \^y)\alpha +1
,

\Biggl\{ 
\^x \in [\delta ,R - x0] \subseteq [\delta ,R - L],

\^y \in [\delta , x0  - L] \subseteq [\delta ,R - L].

Applying Lemma 3.19 to the right-hand side, on the larger interval [\delta ,R  - L] we
recover a separable approximation of (\^x+ \^y) - \alpha  - 1. Since the change of variable does
not mix x and y, this also gives the relatively accurate separable approximation:

fij(x, y) :=
\alpha (\alpha  - 1)

\Gamma (2 - \alpha )

\varphi i+\ell (x)\varphi j(y)

(x - y)\alpha +1
= sk\epsilon 

(x, y) + rk\epsilon 
(x, y)
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with sk\epsilon 
(x, y) sum of k\epsilon separable functions, with k\epsilon as in (3.4), and | rk\epsilon 

(x, y)| \leqslant 
| fij(x, y)| \cdot \epsilon . Therefore, we can decompose Y as Y = S + E with

Sij =

\int R

x0+\delta 

\int x0 - \delta 

L

sk\epsilon 
(x, y)dx dy

and E defined analogously using rk\epsilon 
(x, y) in place of sk\epsilon 

(x, y). Lemma 3.18 tells us
that the rank of S is bounded by k\epsilon . On the other hand, using that fij(x, y) \geqslant 0, we
obtain

| Eij | =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int R

x0+\delta 

\int x0 - \delta 

L

rk\epsilon (x, y)dx dy

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int R

x0+\delta 

\int x0 - \delta 

L

fij(x, y) dx dy

\bigm| \bigm| \bigm| \bigm| \bigm| \cdot \epsilon \leqslant | Yij | \cdot \epsilon .

This implies that \| E\| \leqslant \| Y \| \cdot \epsilon , so rank\epsilon (Y ) \leqslant k\epsilon . Since we have excluded the

central 2k + 1 diagonals from our analysis, and \| Y \| \leqslant \| \scrM \mathrm{F}\mathrm{E},+
\alpha ,N \| , we conclude that

qsrank\epsilon (\scrM 
\mathrm{F}\mathrm{E},+
\alpha ,N ) \leqslant k\epsilon + k.

Remark 3.22. We notice that the proof of Theorem 3.21 remains unchanged if

in place of (3.6) one considers \langle \varphi i, d+(x, t)
\partial \alpha \varphi j

\partial RL
+ x\alpha \rangle with a positive diffusion coefficient

d+(x, t). This means that the rank structure in \scrM \mathrm{F}\mathrm{E},+
\alpha ,N is present also in the noncon-

stant diffusion case. The analogous statement is true for \scrM \mathrm{F}\mathrm{E}, - 
\alpha ,N .

3.4. Approximating the 1D fractional discretizations in practice. We
have shown in the previous sections that several discretizations of fractional derivative
operators are well-approximated by quasiseparable matrices of low-rank. However, we
have not yet shown how to efficiently represent and compute such matrices. In fact,
to make large scale computations feasible, we need to reduce both the storage and
computational complexity to at most linear polylogarithmic cost. To this aim, we
introduce HODLR matrices.

3.4.1. Hierachically off-diagonal low-rank matrices. Off-diagonal rank
structures are often present in the discretization of PDEs and integral equations;
this can be exploited using Hierarchical matrices (\scrH -matrices) [7, 23, 24] and their
variants HSS, \scrH 2-matrices. The choice of the representation is usually tailored to the
rank structure of the operator. In this work we focus on HODLR matrices, which
allow us to store an N \times N matrix of quasiseparable rank k with \scrO (kN logN) pa-
rameters and to perform arithmetic operations (sum, multiplication, inversion) in
linear-polylogarithmic time.

A representation of a HODLR matrix A is obtained by block partitioning it in
2\times 2 blocks as follows:

(3.7) A =

\biggl[ 
A11 A12

A21 A22

\biggr] 
, A11 \in \BbbC N1\times N1 , A22 \in \BbbC N2\times N2 ,

where N1 := \lfloor N
2 \rfloor and N2 := \lceil N

2 \rceil . The antidiagonal blocks A12 and A21 have rank
at most k, and so can be efficiently stored as outer products, whereas the diagonal
blocks A11 and A22 can be recursively represented as HODLR matrices, until we reach
a minimal dimension. This recursive representation is shown in Figure 3.3. In the
case of numerically quasiseparable matrices, the off-diagonal blocks are compressed
according to the norm of the matrix, i.e., we drop the components of their SVDs,
whose magnitude is less than \epsilon \| A\| 2. We will call truncation tolerance the parameter
\epsilon .
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Fig. 3.3. Pictorial representation of the HODLR structure.

In order to efficiently construct the HODLR representation of a matrix, the crucial
step is to compute a factorized approximation of the off-diagonal blocks. We look for
procedures whose complexity does not exceed the cost of some arithmetic operations
in the HODLR format, i.e., matrix-vector multiplication (which requires \scrO (kN logN)
flops) and solving linear systems (requiring \scrO (k2N log2 N) flops).

3.4.2. HODLR representation for finite differences method. Our task is

to retrieve a HODLR representation of \scrM \mathrm{F}\mathrm{D},m
\alpha ,N = I + \Delta t

\Delta x\alpha (D
(m)
+ T\alpha ,N + D

(m)
 - TT

\alpha ,N )
defined in (2.5). It is easy to see that the tricky part is to compress T\alpha ,N ; in fact,
performing a diagonal scaling is equivalent to scaling the left or right factor in the
outer products, as well as the full diagonal blocks. Finally, the shift with the identity
only affects the dense diagonal blocks.

Assume we have partitioned T\alpha ,N as in (3.7); observe that the block A21 contains
all the subdiagonal blocks at the lower levels, thanks to the Toeplitz structure. A
similar statement holds for A12. Therefore, once we compress A21 and A12 at the
top-level, we can obtain all the needed representations just by restriction. Moreover,
the compression of A12 is particularly easy, since it has only one nonzero element.

Thus, we have reduced the problem to finding a low-rank representation for a
Toeplitz matrix (which we know to be numerically low-rank). We deal with this issue
with the two-sided Lanczos method [19, 42]. This requires us to perform a few matrix
vector products, which can be performed, exploiting FFT, in \scrO (kN logN + Nk2)
time.

We remark that the computation of the coefficients g
(\alpha )
k can be carried out effi-

ciently by recursion using the following formulas:

g
(\alpha )
0 = 1, g

(\alpha )
1 =  - \alpha , g

(\alpha )
k+1 = g

(\alpha )
k \cdot 

\biggl( 
k  - \alpha 

k + 1

\biggr) 
.

3.4.3. HODLR representation for finite elements discretizations. The
proof of Theorem 3.21 combined with Lemma 3.19 directly provides a construction
for the low-rank representations of the off-diagonal blocks in\scrM \mathrm{F}\mathrm{E}

\alpha ,N defined in (3.2). At
the heart of this machinery, it is required to sample the truncated Taylor expansions of
(x+y) - (\alpha +1). Alternatively, separable approximations of this function on the domains
corresponding to the off-diagonal blocks can be retrieved using \ttc \tth \tte \ttb \ttf \ttu \ttn \tttwo [47].

However, often the choice of the basis consists of shifted copies of the same func-
tion on an equispaced grid of points. When this is the case, the discretization matrix
turns out to have Toeplitz plus low-rank structure in the constant coefficient case.
In this situation, the same approximation strategy used for finite differences can be
applied. This happens in the problem presented in section 5.2 and considered orig-
inally in [52]. The authors of the latter proposed to represent the stiffness matrix
with a different Hierarchical format. In Figure 3.4 we compare the distribution of the
off-diagonal ranks obtained with the two partitioning. Since there is not a dramatic
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Fig. 3.4. Rank distribution in the HODLR partitioning (left) and in the geometrical clustering
(right) for the stiffness matrix of section 5.2. The size of the matrix is N = 4096 and the truncation
tolerance is \epsilon = 10 - 8.

difference between the ranks obtained with the two choices, our approach turns out to
be preferable because it provides a lower storage consumption and a better complexity
for computing the LU decomposition and solving the linear system [24].

3.5. Solving the problem in the 1D case. As we have shown in the previous
section, the 1D discretization of the differential equation

\partial u(x, t)

\partial t
= d+(x, t)

\partial \alpha u(x, t)

\partial +x\alpha 
+ d - (x, t)

\partial \alpha u(x, t)

\partial  - x\alpha 
+ f(x, t),

using either finite differences or finite elements, yields a coefficient matrix with HODLR
structure, and we have described efficient procedures to compute its representation.
As analyzed in [34], discretizing the above equation in time, using implicit Euler,
yields

u(x, tm+1) - u(x, tm)

\Delta t
= d+(x, tm+1)

\partial \alpha u(x, tm+1)

\partial +x\alpha 

+ d - (x, tm+1)
\partial \alpha u(x, tm+1)

\partial  - x\alpha 
+ f(x, tm) +\scrO (\Delta t).

This leads to a sequence of linear systems \scrA u(m) = b(m), where u(m) contains either
the samplings on the grid (for finite differences) or the coordinates in the chosen basis
(for finite elements) of u(x, tm) and b(m) depends on f(x, tm) and u(x, tm - 1). The

matrix \scrA is either \scrM \mathrm{F}\mathrm{D},m
\alpha ,N or \scrM \mathrm{F}\mathrm{E},m

\alpha ,N .
To solve the resulting linear system, we rely on fast solvers for matrices in the

HODLR format, as described in [24]. In more detail, we first compute a structured
LU factorization of the coefficient matrix and then perform back substitution. The
quasiseparable property ensures that the off-diagonal rank of the factors of the LU
factorization does not differ from the one of the coefficient matrix \scrA . Computation
of LU is the bottleneck and provides an overall complexity of \scrO (k2N log2 N). Our
implementation is based on the \tth \ttm -\ttt \tto \tto \ttl \ttb \tto \ttx [33].

3.6. Numerical results for 1D finite differences. In this section we compare
the use of HODLR arithmetic with a preconditioning technique, recently introduced in
[12], for the treatment of certain 1D problems with nonconstant diffusion coefficients.
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Table 3.2
Performances of the preconditioned GMRES and of the HODLR solver in the case \alpha = 1.8.

PGMRES HODLR
N Time its Res Time Res Time (LU) qsrank\epsilon 

8,192 4.59 \cdot 10 - 2 9 1.45 \cdot 10 - 8 1.22 \cdot 10 - 2 1.26 \cdot 10 - 9 0.24 11
16,384 7.85 \cdot 10 - 2 9 1.30 \cdot 10 - 8 2.64 \cdot 10 - 2 1.34 \cdot 10 - 8 0.58 11
32,768 0.14 9 1.11 \cdot 10 - 8 5.51 \cdot 10 - 2 7.83 \cdot 10 - 9 1.49 11
65,536 0.31 10 2.67 \cdot 10 - 9 0.11 7.77 \cdot 10 - 9 3.63 12

131,072 0.58 10 2.23 \cdot 10 - 9 0.23 7.99 \cdot 10 - 9 9.06 12

Table 3.3
Performances of the preconditioned GMRES and of the HODLR solver in the case \alpha = 1.2.

PGMRES HODLR
N Time its Res Time Res Time (LU) qsrank\epsilon 

8,192 4.70 \cdot 10 - 2 9 1.08 \cdot 10 - 8 1.27 \cdot 10 - 2 2.87 \cdot 10 - 9 0.23 11
16,384 7.03 \cdot 10 - 2 9 1.08 \cdot 10 - 8 3.27 \cdot 10 - 2 3.78 \cdot 10 - 9 0.74 11
32,768 0.14 9 1.11 \cdot 10 - 8 6.54 \cdot 10 - 2 5.29 \cdot 10 - 9 1.83 11
65,536 0.26 9 1.20 \cdot 10 - 8 0.11 6.89 \cdot 10 - 9 3.53 12

131,072 1.01 9 1.30 \cdot 10 - 8 0.23 7.92 \cdot 10 - 9 10.47 12

We consider the sequence of linear systems \scrA u(m) = b(m) arising from the dis-
cretization of (1.1) with finite differences. In particular, \scrA and b(m) are defined as
in (2.5), where we have chosen \alpha \in \{ 1.2, 1.8\} , d+(x, t) = \Gamma (3 - \alpha )x\alpha , and d - (x, t) =
\Gamma (3  - \alpha )(2  - x)\alpha . The spatial domain is [L,R] = [0, 2] and we set \Delta x = \Delta t = 1

N+2

for increasing values of N . The right-hand side b(m) \in \BbbR N is chosen as in [12].
In [12, Example 1], the authors propose two tridiagonal structure preserving pre-

conditioners, defined depending on the value of \alpha and used for speeding up the con-
vergence of GMRES. In particular, such preconditioners (P1 and P2 in the notation
of [12]) are obtained replacing the Toeplitz matrix T\alpha ,N in (2.5) with the central
difference approximation of the first and the second derivative.

The truncation tolerance has been set to 10 - 8 and the dimension of the minimal
blocks in the HODLR format is 256. The thresholds for the stopping criterion of the
GMRES have been set to 10 - 7 and 10 - 6 in the cases with \alpha = 1.2 and \alpha = 1.8,
respectively, as this provided comparable accuracies with the HODLR solver. We
compare the time consumption of this method with the one proposed in section 3.5
for solving one linear system. The time for computing the LU factorization and for
performing the back substitution are kept separate. In fact, for this example the
diffusion coefficients do not depend on time, so in the case of multiple time steps the
LU can be computed only once at the beginning saving computing resources.

The results reported in Tables 3.2--3.3 refer to the performances of the two ap-
proaches for a fixed time step (the first one). With Res we indicate the relative
residue \| \scrA x  - b(m)\| 2/\| x\| 2, where x is the computed solution, while its denotes the
number of iterations needed by the preconditioned GMRES to converge. We note that
both strategies scale nicely with respect to the dimension. Once the LU is available,
HODLR back substitution provides a significant saving of execution time with respect
to preconditioned GMRES. In particular, at dimension N = 131,072 our approach is
faster whenever we need to compute more than about 13 time steps (\alpha = 1.2) or 25
time steps (\alpha = 1.8). The column denoted by qsrank\epsilon indicates the quasiseparable
rank of the discretization matrices.
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This example highlights the convenience of the HODLR strategy when used for
solving several linear systems endowed with the same coefficient matrix. As shown in
the next section, such a benefit is particularly advantageous in the 2D setting when
the HODLR format is used in combination with Krylov projection schemes for solving
FDE problems rephrased as matrix equations.

4. Spatial 2D problems with piecewise smooth right-hand side. We now
describe how to efficiently solve 2D fractional differential equations leveraging the rank
properties that we have identified in the 1D discretizations.

More precisely, we are interested in solving the equation

\partial u

\partial t
= d1,+(x, t)

\partial \alpha 1u

\partial +x\alpha 1
+ d1, - (x, t)

\partial \alpha 1u

\partial  - x\alpha 1
+ d2,+(y, t)

\partial \alpha 2u

\partial +y\alpha 2
+ d2, - (y, t)

\partial \alpha 2u

\partial  - y\alpha 2
+ f,

(4.1)

where (x, y) \in [a, b]\times [c, d], t \geqslant 0 and imposing absorbing boundary conditions.
We discretize (4.1) in the time variable using implicit Euler, and we obtain

u(x, y, tm+1) - u(x, y, tm)

\Delta t

= d1,+(x, tm+1)
\partial \alpha 1u(x, y, tm+1)

\partial +x\alpha 1
+ d1, - (x, tm+1)

\partial \alpha 1u(x, y, tm+1)

\partial  - x\alpha 1

+ d2,+(y, tm+1)
\partial \alpha 2u(x, y, tm+1)

\partial +y\alpha 2
+ d2, - (y,m+1 )

\partial \alpha 2u(x, y, tm+1)

\partial  - y\alpha 2

+ f(x, y, tm+1) +\scrO (\Delta t).

(4.2)

Then, we discretize the space derivative by considering a tensorized form of a 1D
discretization. In the finite differences case, we consider a grid of nodes obtained
as the product of equispaced points on [a, b] and [c, d], respectively. In the finite
elements case, we assume that the basis is formed using products of basis elements in
the coordinates x and y. This leads to linear systems of the form

\scrA vec(U (m+1)) = vec(U (m)) + vec(F (m+1)),

where we used the operator vec(\cdot ) because, as we will discuss later, it is useful to
reshape these objects into matrices conformally to the discretization grid.

Remark 4.1. In the formulation of (4.1), the diffusion coefficients multiplying
the differential operator only depend on time and on the variable involved in the
differentiation. This is not by accident, since it makes it faster to rephrase the problem
in matrix equation form as we will do in section 4.2. Indeed, these assumptions are
also present in [8], where the connection with matrix equations has been introduced
for fractional differential equations.

4.1. Regularity and rank structure in the right-hand side. When the
source term f(x, y, t) is smooth in the spatial variables at every time step, the matrix
F (m+1) turns out to be numerically low-rank. This can be justified in several ways.
For instance, one can consider the truncated expansion of f(x, y, tm+1) in any of
the spatial variables, similarly to what is done in the proof of Lemma 3.19. This
provides a separable approximation of the function, which corresponds to a low-rank
approximation of F (m+1). Another interesting point of view relies on introducing
SVD for bivariate functions [46].
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In practice, one can recover a low-rank approximation of F (m+1) by performing
a bivariate polynomial expansion, for instance, using \ttc \tth \tte \ttb \ttf \ttu \ttn \tttwo [47]. For elliptic dif-
ferential equations, the solution often inherits the same regularity of the right-hand
side, and therefore the same low-rank properties are found in U (m) at every time step.
Once low-rank representations of F (m+1) and U (m) are available, it is advisable to
recompress their sum. If the latter has rank k \ll N , this can be performed in \scrO (Nk2)
flops, relying on reduced QR factorizations of the outer factors, followed by an SVD
of a k \times k matrix (see the recompression procedure in [24, Algorithm 2.17]).

The same machinery applies when f is piecewise smooth, by decomposing it into
a short sum f1 + \cdot \cdot \cdot + fs, where each fj is smooth in a box that contains its support.

4.2. Linear systems as matrix equations. We consider equations as in (4.1).
Note that the two differential operators in x and y act independently on the two
variables. Because of this and exploiting the assumption on the diffusion coefficients
highlighted in Remark 4.1, the matrix \scrA can be written either as

I \otimes 
\biggl( 
1

2
I  - \Delta t\scrM \mathrm{F}\mathrm{D}

\alpha 1,N

\biggr) 
+

\biggl( 
1

2
I  - \Delta t\scrM \mathrm{F}\mathrm{D}

\alpha 2,N

\biggr) 
\otimes I,

in the finite difference case, or as

M \otimes 
\biggl( 
1

2
M  - \Delta t\scrM \mathrm{F}\mathrm{E}

\alpha 1,N

\biggr) 
+

\biggl( 
1

2
M  - \Delta t\scrM \mathrm{F}\mathrm{E}

\alpha 2,N

\biggr) 
\otimes M,

in the finite element case, where M is the 1D mass matrix. Using the well-known
relation vec(AXB) = (BT \otimes A)vec(X) we get the Sylvester equation

(4.3)

\biggl( 
1

2
I  - \Delta t\scrM \mathrm{F}\mathrm{D}

\alpha 1,N

\biggr) 
U (m+1) + U (m+1)

\biggl( 
1

2
I  - \Delta t\scrM \mathrm{F}\mathrm{D}

\alpha 2,N

\biggr) T

= F (m+1) + U (m)

for the finite difference case, where U (m) is the solution approximated at the time
step m, and F (m) contains the sampling of the function f(x, y, tm+1) on the grid. In
the case of finite elements, instead, one obtains the generalized Sylvester equation\biggl( 

1

2
M  - \Delta t\scrM \mathrm{F}\mathrm{E}

\alpha 1,N

\biggr) 
U (m+1)M +MU (m+1)

\biggl( 
1

2
M  - \Delta t\scrM \mathrm{F}\mathrm{E}

\alpha 2,N

\biggr) T

(4.4)

= MF (m+1)M +MU (m)M.

We can obtain the same structure of (4.3) by inverting M , if it is well-conditioned,
or treat the problem directly considering the pencils 1

2M  - \Delta t\scrM \mathrm{F}\mathrm{E}
\alpha 1,N

 - \lambda M and
1
2M  - \Delta t\scrM \mathrm{F}\mathrm{E}

\alpha 2,N
 - \lambda M [44]. In the experiment of section 5.2, we rely on the first

approach.
In light of the properties of F (m+1) and U (m), we have reformulated a space

discretization of (4.2) as a matrix equation of the form

AX +XB = UV T , U, V \in \BbbC N\times k,

where A and B are square and k \ll N . From now on, we assume the spectra of A and
 - B to be separated by a line. This ensures that the sought solution has numerical
low-rank [4].
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4.3. Fast methods for linear matrix equations. Linear matrix equations
are well-studied since they arise in several areas, from control theory to PDEs. In
our case the right-hand side is low-rank, and the structure in the matrices A and B
allows us to perform fast matrix vector multiplications and system solutions. For this
reason, we choose to apply the extended Krylov subspace method introduced in [43].

This procedure constructs orthonormal bases Us and Vs for the subspaces

\scrE \scrK s(A,U) = span\{ U,A - 1U,AU, . . . , As - 1U,A1 - sU\} ,
\scrE \scrK s(B

T , V ) = span\{ V,B - TV,BTV, . . . , (BT )s - 1V, (BT )1 - sV \} ,

by means of two extended block Arnoldi processes [25]. Then, the compressed equation\widetilde AsXs + Xs
\widetilde Bs = \widetilde U \widetilde V T is solved, where \widetilde As = U\ast 

sAUs, \widetilde Bs = V \ast 
s BVs, \widetilde U = U\ast 

sU , and\widetilde V = V \ast 
s V . The latter equation is small scale (s \times s with s \ll n) and can be solved

using dense linear algebra. An approximation of the solution is finally provided by
UsXsV

\ast 
s .

The complexity of the procedure depends on the convergence of the extended
Krylov subspace method, which is related to the spectral properties of A and B [3, 27].
Under the simplified assumption that the Krylov method converges in a constant
number of iterations, the overall complexity is determined by the precomputation of
the LU factorization of A and B, i.e., \scrO (N log2 N).

A robust and efficient implementation of this technique requires some care, es-
pecially in the case where the rank in the right-hand side is larger than 1. We refer
to [22, 43] for an overview of the numerical issues.

5. Numerical results and comparisons. All the results in this section have
been run on MATLAB R2017a, using a laptop with multithreaded Intel MKL BLAS
and a i7-920 CPU with 18GB of RAM. The implementation of the fast HODLR
arithmetic and the extended Krylov method can be found in \tth \ttm -\ttt \tto \tto \ttl \ttb \tto \ttx [33]. The
block Arnoldi process is taken from \ttr \ttk \ttt \tto \tto \ttl \ttb \tto \ttx [5].

The codes used for the tests are available at https://github.com/numpi/fme.
They are organized as MATLAB m-files to allow replicating the results in this sec-
tions. We thank the authors of [8], who made their code public, allowing us to easily
reproduce their results.

5.1. 2D time-dependent equation with finite difference scheme. In this
section we compare the use of rank-structured arithmetic embedded in the extended
Krylov solver with the use of an appropriately preconditioned GMRES as proposed
in [8] by Breiten, Simoncini, and Stoll. For the sake of simplicity, from now on we
refer to the former method with the shorthand HODLR, and to the latter as BSS.
This notation is also used in figures and tables where the performances are compared.

The test problem is taken directly from [8]. The equation under consideration is
(4.1) with absorbing boundary conditions. The spatial domain is the square [0, 1]2,
and the source term f is chosen as follows:

f(x, y, t) = 100 \cdot (sin(10\pi x) cos(\pi y) + sin(10t) sin(\pi x) \cdot y(1 - y)) .

We consider two instances of this problem. The first one is a constant coefficient case,
i.e., the diffusion coefficients (d1,\pm and d2,\pm ) are all equal to the constant 1. In the
second, instead, we choose them as follows:

d1,+(x) = \Gamma (1.2)(1 + x)\alpha 1 , d1, - (x) = \Gamma (1.2)(2 - x)\alpha 1 ,

d2,+(y) = \Gamma (1.2)(1 + y)\alpha 2 , d2, - (y) = \Gamma (1.2)(2 - y)\alpha 2 .
(5.1)
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Table 5.1
Timings for the solution of the problem (4.1) in the constant coefficient case using the HODLR

solver and the approach presented in [8]. The exponents are set to \alpha 1 = 1.3 and \alpha 2 = 1.7. The
times reported are expressed in seconds.

N tHODLR tBSS rank\epsilon qsrank\epsilon 

512 0.45 3.43 15 11
1,024 0.77 5.81 15 11
2,048 1.34 10.38 15 12
4,096 2.44 28.18 16 12
8,192 4.28 45.73 16 13
16,384 8.53 89.8 16 13
32,768 19.32 196.72 16 14
65,536 44.3 434.82 16 14

103 104 105

100

101

102

N

T
im

e
(s
)

HODLR

BSS

Table 5.2
Timings for the solution of the problem (4.1) with constant coefficients as in (5.1) using the

HODLR solver and the approach presented in [8]. The exponents are set to \alpha 1 = 1.7 and \alpha 2 = 1.9.

N tHODLR tBSS rank\epsilon qsrank\epsilon 

512 0.63 2.53 18 10
1,024 1.05 4.21 19 10
2,048 1.97 7.5 20 11
4,096 4.19 18.34 21 11
8,192 7.24 31.9 21 11
16,384 17.05 55.86 21 11
32,768 32.48 107.85 22 11
65,536 79.25 221.83 23 11

103 104 105

100

101

102

N

T
im

e
(s
)

HODLR

BSS

According to our discussion in section 4, we know how to recast the space-time dis-
cretization in matrix equation form. More precisely, we consider the implicit Euler
scheme in time with \Delta t = 1, and the Gr\"unwald--Letnikov shifted finite difference
scheme for the space discretization, with a space step \Delta x = \Delta y = 1

N+2 . This yields
a time stepping scheme that requires the solution of a Sylvester equation in the form
(4.3) at each step. In particular, we note that the sampling of f(x, y, t) on the dis-
cretization grid is of rank (at most) 2 independently of the time. We performed 8
time steps, coherently with the setup for the experiments used in [8].

The timings of the two approaches for the constant coefficient case are reported
in Table 5.1 for \alpha 1 = 1.3, \alpha 2 = 1.7, and in Table 5.2 for \alpha 1 = 1.7, \alpha 2 = 1.9. The same
tests in the nonconstant coefficients setting have been performed, and the results are
reported in Tables 5.3 and 5.4.

The stopping criterion for the extended Krylov method has been set to \epsilon := 10 - 6;
this guarantees that the residual of the linear system will be smaller than \epsilon . The
stopping criterion with the relative residual for GMRES has been chosen as 10 - 7 and
the truncation tolerance for the operation in HODLR arithmetic (only used when
assembling the matrices) as 10 - 8.

In Figure 5.1 we report a plot of the final solution of the constant coefficient prob-
lem at time 7; the parameters in the figure are \alpha 1 = 1.3 and \alpha 2 = 1.7. The field rank\epsilon 
indicates the numerical rank of the solution, whereas qsrank\epsilon denotes the numerical
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Table 5.3
Timings for the solution of the problem (4.1) with variable coefficients as in (5.1) using the

HODLR solver and the approach presented in [8]. The exponents are set to \alpha 1 = 1.3 and \alpha 2 = 1.7.
The times reported are expressed in seconds.

N tHODLR tBSS rank\epsilon qsrank\epsilon 

512 0.34 3.84 14 10
1,024 0.61 6.43 14 11
2,048 1.14 11.68 16 12
4,096 2.59 30.15 16 12
8,192 4.86 51.19 16 13
16,384 8.79 84.68 17 13
32,768 19.24 153.98 15 14
65,536 46.13 282.35 15 14

103 104 105

100

101

102

N

T
im

e
(s
)

HODLR

BSS

Table 5.4
Timings for the solution of the problem (4.1) with variable coefficients as in (5.1) using the

HODLR solver and the approach presented in [8]. The exponents are set to \alpha 1 = 1.7 and \alpha 2 = 1.9.

N tHODLR tBSS rank\epsilon qsrank\epsilon 

512 0.6 2.68 18 10
1,024 1.01 4.36 19 10
2,048 2.03 7.69 21 11
4,096 4.06 16.85 22 11
8,192 8.52 28.27 22 11
16,384 17.73 48.64 22 11
32,768 36.82 88.81 24 12
65,536 95.43 170.94 25 12

103 104 105

100

101

102

N

T
im

e
(s
)

HODLR

BSS

Fig. 5.1. Solutions of the problem (4.1) in the constant coefficient case. On the left, the problem
with \alpha 1 = 1.7, \alpha 2 = 1.9. On the right, the one with \alpha 1 = 1.3, \alpha 2 = 1.7. The solutions are plotted at
the final time step t = 7.

quasiseparable rank of the discretization matrices. The latter increase proportionally
to log(N), in this and in the following examples, as predicted by the theory.

We note that the HODLR solver outperforms the BSS approach in all our tests,
although the advantage is slightly reduced when N increases. For solving Toeplitz
linear systems, we have used the preconditioner in [12], which turned out to perform
better than the circulant one. However, when considering the nonconstant coefficients
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Table 5.5
Timings for the solution of the problem (4.1) using a finite element discretization. The expo-

nents are set to \alpha 1 = 1.3 and \alpha 2 = 1.7.

N tHODLR tBSS rank\epsilon qsrank\epsilon 

512 0.22 1.45 10 13
1,024 0.42 2.01 11 14
2,048 0.8 5.52 12 13
4,096 1.8 7.91 13 13
8,192 3.05 22.53 13 14
16,384 7.18 42.35 14 14
32,768 12.88 84.94 15 15
65,536 31.66 122.62 14 15

103 104 105

100

101

102

N

T
im

e
(s
)

HODLR

BSS

case, a small growth in the number of iterations can be seen as N increases. In
particular, the preconditioner based on the first derivative P1 seems to be less robust,
while P2 is less sensitive to changes in the coefficients, the time step, and other
parameters. In this example, it turned out that P2 is always the most efficient choice,
even when \alpha 1 is as low as 1.3, and therefore it is the one employed in the tests of the
BSS method.

Note that in the case with \alpha 1 = 1.3 the preconditioner P2 works well (the number
of iterations does not increase with N), but the number of iterations is not particularly
low (typical figures are in the range of 15 to 20, sometimes more); therefore, this case
is particularly favorable to the HODLR approach, which indeed outperforms BSS by
a factor of about 6 in time at the larger tested size, N = 65,536. The results are
reported in Tables 5.1 and 5.3.

5.2. A 2D finite element discretization. The example considered in this
section is given by problem (4.1) on the domain [0, 1]2 in the constant coefficients
case and with source term, and solution at time 0 defined as follows:

f(x, y, t) =

\Biggl\{ 
1 (x, y) \in H,

0 otherwise,
u(x, y, 0) = f(x, y, 0), H =

\biggl\{ 
3

8
\leqslant x, y \leqslant 

5

8

\biggr\} 
,

similarly to what is done in [13]. The fractional exponents are chosen as \alpha 1 = 1.3 and
\alpha 2 = 1.7. We used the piecewise linear functions described in [13] as a basis for the
finite element discretization. For simplicity, we consider a uniform grid for the nodes
defining the hat functions, which yields a Toeplitz matrix whose symbol is explicitly1

given in [30]. Therefore, the same strategy used in the previous section can be used to
recover a rank structured representation of the matrix, which is guaranteed to exist
thanks to Theorem 3.21.

We consider the time step of \Delta t = 0.1, and the discretization in time is done
by the backward Euler method. The truncation thresholds are set exactly as in the
previous example. We have performed tests changing the number of grid points used
in each direction, and the timings are reported in Table 5.5.

1The formula given in [30] is not numerically stable and gives rise to severe cancellation errors
if used to compute element far from the diagonal. However, it can be easily stabilized performing
a series expansion of the terms involved and removing the terms that are known to cancel out; this
yields an expression as a convergent series. The latter can be efficiently evaluated by truncation, and
this is what we have done in our implementation.
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We notice that the timings behave linearly, and the rank of the solution stabilizes
around 14. Since the matrix equation has Toeplitz coefficients, we can directly com-
pare with the approach by Breiten, Simoncini, and Stoll in [8]. A spectral reasoning
similar to the one in [12] justifies the use of preconditioner P2 for solving Toeplitz
linear systems also in the finite elements setting. As for the finite differences, the use
of rank structures turns out to be more efficient. However, we stress that our method
remains applicable without modifications even if one considers nonuniform grids, in
contrast to the BSS approach. The only difference is in the construction of the rank
structured representation, which needs to be performed relying on Theorem 3.21.

6. Conclusions and outlook. In this paper we have presented a rigorous the-
oretical analysis of the rank of the off-diagonal blocks in 1D discretizations of frac-
tional differential operators. We have analyzed different formulations, namely, the
Gr\"unwald--Letnikov (shifted and nonshifted) finite difference schemes, as well as fi-
nite element approaches. In the latter class, we have shown that the stiffness matrix
of the finite element discretization is rank structured under mild hypotheses on the
finite element basis.

We have then shown that it is possible to obtain parametrizations of such rank
structures very efficiently in the HODLR format, and this can be used to solve 1D
fractional differential equations (possibly with time dependence), as well as to analyze
a broad range of 2D problems where the differential operator is separable, and thus
the equation can be recast in matrix form [8]. This includes, but is not limited to,
fractional diffusion equations.

In our numerical experiments we have shown that HODLR-based solvers often
outperform previous approaches relying on Toeplitz-structured preconditioners. This
is particularly advantageous in the 2D setting, where in the projection scheme used
to deal with the matrix equation one needs to solve several linear systems, and the
computation of the LU factorization in HODLR format can be amortized among more
operations.

The machinery extends to 2D equations whose associated matrix equation has
a right-hand side in the HODLR format. In this case, it is necessary to replace the
extended Krylov method with the divide and conquer technique presented in [28].

Further improvements can be achieved replacing the HODLR format with more
sophisticated structures that rely on nested bases for the representation of the off-
diagonal blocks, as HSS and \scrH 2 matrices [24, 51]. This would remove some log
factors from the asymptotic complexity of time and memory consumption and might
be the subject of future work.

Acknowledgment. The authors wish to thank the CIRM (Centre International
de Rencontres Math\'ematiques) in Luminy, France, which supported a ``Research in
Pairs"" on the topic of fast methods for fractional differential equations. Part of the
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