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Abstract

Given a nonlinear matrix-valued function F(\) and approximate eigenpairs (\i, v;), we
discuss how to determine the smallest perturbation §F such that [F 4+ §F](\i)v; = 0; we call
the distance between the F' and F'+0F the backward error for this set of approximate eigen-
pairs. We focus on the case where F'()\) is given as a linear combination of scalar functions
multiplying matrix coefficients F;, and the perturbation is done on the matrix coefficients.
We provide inexpensive upper bounds, and a way to accurately compute the backward er-
ror by means of direct computations or through Riemannian optimization. We also discuss
how the backward error can be determined when the F; have particular structures (such
as symmetry, sparsity, or low-rank), and the perturbations are required to preserve them.
For special cases (such as for symmetric coefficients), explicit and inexpensive formulas to
compute the 6 F; are also given.

1 Introduction

We consider matrix-valued functions F' : C — C™*™ and the related nonlinear eigenvalue prob-
lem, that consists in finding A € C and v such that

F(A\v =0, veC”\{0}.

The pair (\,v) is called eigenpair, and A\, v are an eigenvalue and an eigenvector for F(\),
respectively. Quite often, the matrix-valued function F(\) is given in split form as a linear
combination of matrix coefficients multiplied by analytic functions:

FA) = iNFL+ ...+ fu(A\) F. (1)

The coefficients F; frequently encode data coming from the underlying application (for instance,
the coefficients of a stiffness or damping matrix in the PDE setting). A few representative cases
of this application can be found in [5]; for instance see the quadratic eigenvalue problem spring
associated with a damped mass-spring system |21, Example 2]. It is often useful to consider
non-polynomial scalar functions f;, such as exponentials. This kind of matrix-valued functions
arise in the context of constant-coefficients delay differential equations, see for instance [§8]. We
will only consider nonlinear eigenvalue problems of the form in this work.

Nonlinear eigenvalue problems arise in a wide set of applications; a large collection of examples
can be found in the MATLAB package nlevp [5]. Several algorithms have been developed for

*Division of Mathematics, Gran Sasso Science Institute, L’Aquila, Italy (miryam.gnazzo@gssi.it).
TDipartimento di Matematica, Universita di Pisa, Italy (leonardo.robol@unipi.it).


mailto:miryam.gnazzo@gssi.it
mailto:leonardo.robol@unipi.it

the numerical solution of nonlinear eigenvalue problems, see for instance [12] for a survey on the
nonlinear eigenvalue problem. An implementation of possible solvers for this problem is available
in the Julia package NEP-PACK [15]. Moreover, recent solvers employ a variant of the AAA
algorithm for the solution of the nonlinear eigenvalue problem [17].

Selected instances of this problem have been thoroughly studied in the literature: when
fiN) = M1 we obtain a polynomial eigenvalue problem. For instance a complete review on the
quadratic eigenvalue problem can be found in [22]. In the case k = 2 we get a matrix pencil, or
a standard eigenvalue problem.

In numerical linear algebra, the standard way to assess the quality of computed eigenvalues
and eigenvectors is to determine their backward error; the latter is defined as the distance from
the closest eigenvalue problem for which the computed eigenvalues (and eigenvectors) are exact.

For standard eigenvalue problems, we have explicit formulas that relate the residual norm
|IE(A)v]l2 to the backward error, and that are part of any numerical linear algebra textbook;
similar results can be given for polynomial eigenvalue problems [21]. Moreover in [9] the authors
proposed a backward error analysis for the solution of the polynomial eigenvalue problems and
complete polynomial eigenproblems, via block Kronecker linearizations. Some results can be
found for more general nonlinear eigenvalue problems as well. In [3|, a formulation for the
backward error of a given eigenpair has been proposed in the context of homogeneous nonlinear
eigenvalue problems, with particular attention to structured matrix-valued functions F. For
rational eigenvalue problems, in [19] the authors derive formulae for the symmetric backward error
of one eigenvalue. In [16] the authors develop a characterization for the backward error associated
with a set of eigenvalues for a matrix-valued analytic function. Their bound however does not
relate with the split form of , but rather focus on finding a small functional perturbation.

The contribution of this work is twofold:

1. We provide computable and inexpensive bounds for the backward error of a set of eigenval-
ues and eigenvectors (or for just the eigenvalues, if no eigenvectors have been computed).

2. We give numerical procedures based on Riemannian optimization that compute the back-
ward error accurately, and that do so retaining any structure found in the coefficients Fj
(such as sparsity, low-rank, symmetries, .. .).

We also provide computable bounds for the backward error in the structured case, but these will
be inexpensive only for the case of symmetric nonlinear eigenvalue problems. For more general
structures, we found that directly computing the backward error is often the best way to proceed.

A previous attempt at characterizing structured backward errors for nonlinear eigenvalue
problems can be found in (3], where the authors focus on only one eigenpair. Our bounds will
reduce to the one in this work when considering a set with a single eigenpair.

We remark that it may be temping to use results for a single eigenpair to draw conclusions
on the accuracy of a set of eigenpairs, but this can be misleading. Indeed, it may happen that
the backward errors of two different approximate eigenvalues A1, As are small, but there is no
close-by nonlinear eigenvalue problem that has both as eigenvalues. An example showcasing this
possibility may be found in Section 6.2 in [16].

A similar discussion of considering a set of eigenvalues at once for standard eigenvalue prob-
lems can be found in [20], together with a complete survey on structured normwise backward
errors for a set of eigenpairs. Following [20], we define the backward error associated with a set
of p eigenpairs (5\17 ;) as follows:

k
0 =min { || [5FL, ..., 6F] || r ] S () + 6F)i =0, 1<i<p
j=1



This measure does not take into account possible additional structures on the coefficient matrices
F;. Nevertheless it may be useful to include structures into account, for instance in situations
where we would like to exploit the structure of the problem and therefore the sensitivity of
the solution of the nonlinear eigenvalue problem should be measured with respect to the same
structure. This is done for instance in [10] where the authors propose a computable structured
condition number for the class of parametrized quasiseparable matrices. Results on condition
numbers of structured matrix polynomials, such symmetric and palindromic, have been developed
by Adhikari et al. in [2]. In addition, the authors analyze the relations with the condition number
of structured linearizations of the matrix polynomials. For all contexts where the coefficient
belong to prescribed classes of structured matrices, we will also introduce a structured backward
error 7)s defined analogously, but with the constraint of F; 4 0F} sharing the same structure
of F;. We will discuss in detail the cases of an assigned sparsity pattern, a maximum rank,
and symmetries. The proposed algorithm will be able to deal with different structures for each
coefficient, and also multiple structures at once with no modifications.

The paper is organized as follows. In Section we analyze the unstructured backward
error for the nonlinear eigenvalue problem and provide several computable upper bounds for it.
In Section [3] we present an overview of structured backward errors for a set of approximated
eigenpairs. For the case of general linear structures, we provide a formula for the backward error.
Then we specialize the results for the symmetry structure, providing a cheaper computable upper
bound for the backward error. In the end, we consider nonlinear structures, such as low-rank ones,
for which we are able to provide an upper bound computed through the use of a Riemannian
optimization-based technique. In Section [4 a few numerical tests and examples conclude the

paper.

2 Backward errors for nonlinear eigenvalue problems

We consider matrix-valued functions F' : C — C"*™ in split form , that is F(\) := Zle F;fi(\),
where F; € C"*™ and f; : C — C analytic functions for j = 1,..., k. Observe that given a gen-
eral matrix-valued function, it is always possible to write it in split form, decomposing it as
[F()\)]ij eiejT, for 4,5 = 1,...,n, where e;,e; are vectors of the canonical basis, so this is not
restrictive. On the other hand, nonlinear eigenvalue problems arising in applications are often
naturally given in this form with a small k [5/15]. In particular, the formulation also includes
matrix polynomials of degree k — 1.

2.1 Backward errors for given eigenpairs

Consider the nonlinear eigenvalue problem F(A)v = 0, and assume that we have identified p
approximate eigenpairs, for which we have the relations

k
j=1

The vectors r; are the residuals. We provide the formal definition of backward errors for these
approximate eigenpairs.

Definition 2.1. Given a nonlinear matrix-valued function F()), consider p approximate eigen-
pairs (A;,0;), for i = 1,...,p. We define the backward error of the eigenpairs (A;, ;) as

k
n= min{ [6Fy, ..., 0Fllp | Y fi(N)(Fy + 6F;)i; = 0,1 < i gp}.

Jj=1



Remark 2.2. We note that a trivial solution always exists by taking 0F; = —Fj, so the minimum
is taken on a non-empty set, and that the backward error is always well-defined.

In some frameworks it is important to assign weights to the perturbations. In our setting,
this can be achieved considering a weighted matrix-valued function:

041f1()\)F1 +...+ Oékfk(/\)Fk,

and assigning different values to the weights «;. For simplicity, we do not include this variant in
our results, but a scale of this form is possible.

The backward error 1 depends on the approximate eigenpairs. We do not explicitly report
this dependence to ease the notation, and we assume that they have been fixed throughout this
section. We now give an explicit characterization of 7.

Theorem 2.3. Let G,V be the following matrices:
AG) e i)
G := s V= ’lA]l e ﬁp s
AW f(y)

and denote by GOT VT the Khatri-Rao transpose product between G and VT'. Then the backward
error 1 is equal to

n= HR[(GQT VT)T]THF’ Ri:zk:Fijj(A%

j=1
where we define the matriz
A= € CPxP,
Ay
In particular n < o3(G ©T V)7 R|| ¢, where p is the rank of G T VT,
Proof. The definition of 7 involves perturbations dF; such that the relation 25:1 £ (Fy +

0F;)0; =0 holds for ¢ = 1,...,p. This is a linear relation in §F;, which can be written in matrix
form as follows:

f1 (5\1)’0? . fk(;\l)ﬁ{ VGC((SFl) Z?:l fj (Xl)Fjﬁl

: : ®1In : == : : (2)
fl(;\p) AZ s fk(j‘p){)g VeC((st) Z§:1 fj(;\p)ij’p

GeTVT

In view of Remark [2:2] the above linear system admits at least a non-trivial solution. The
minimum Euclidean norm solution is given by

vec(dFy) Z?=1 fj(j‘l)Fjﬁl
: = — [(G oT VT)T ® I"] r, wherer := : . (3)
vec(dFy) Z?:l i (Ap) Fyiy



Using the properties of the Kronecker product, we may write

vec(dFy)
= —vec(R [(G T VT)T]T).
vec(0Fy,)

Relation gives the following upper bound on the backward error 7:

d0F)
n= <G TV @ Llz|rllz = 03(G " VI) T R||r,
OF] || -
where p is the rank of G ©T V7. O

The following result shows that the minimal norm perturbations ¢ F; have a low-rank structure
whenever the number of eigenpairs considered is small, that is p < n.

Lemma 2.4. The minimal norm backward errors 6F; of Theorem can be expressed as 6F; =
—RM]T, for appropriate n X p matrices M;, where R is the n X p residual matriz

] M
R=> FVfjA), A=
j=1 j\p

Proof. We denote by M := (G ©T V), and we partition its pseudoinverse MT in n x 1 blocks

as follows:
mi1 . mip

Mt = , mg; € c™.
mg1 ... Mkp
Then, we use the relation (m ® I,,)s = vec(sm?)
get

and by substituting in the above relation we

k
0Fj = — (rmfy +...+rpml), 1= fi(A)Fyi;
j=1
Hence, all § F; are of rank at most p, and can be rewritten as 6F; = —RM JT for appropriate n x p
matrices M;. O

Note that the fact that the 6F; are low-rank allows to easily compute their Frobenius and
spectral norms (for instance by means of a reduced QR factorization of R and M;). In addition,
the fact that they all share the same left factor R implies that any linear combination of the 6 F}
still has rank at most p.

2.2 Backward errors for the eigenvalues

If the eigenvectors are not computed or not available, we may give another definition of backward
error as follows:

k
n:i= én;%min {| [0F1,....,0F] ||lr ‘ 35Fj,ij(5x¢)(Fj + 0F;)0; = 0}_
i =



This definition coincides with minimizing Definition [2.1| over all possible choices of eigenvectors

0;, since we are looking for the closest nonlinear eigenvalue problem with prescribed eigenvalues,

and no constrained on the eigenvectors. Using a small abuse of notation, we denote by 7 the

backward error associated with the eigenvalues 5\2-, even when the eigenvectors are not computed.
We may provide a version of Theorem suited to this scenario.

Theorem 2.5. Fori=1,...,p, denote by i;,v; respectively the left and right singular vectors
of the matriz Z?:i fi(Ni)Ej, associated with the smallest singular value, denoted by 6;. Let G
be the matriz defined in Theorem[2.3 and V' be the following matrix:

Vi=|0w ... p

If G T VT has rank p, then we have the following upper and lower bounds for n:

gi
“max

i=1,...,p ~ 12
Vi | H )

Proof. We start by proving the upper bound for 1. We consider the matrix relation

<n <0G of VT)_l\/ﬁ _max Gi.
i=1,...,p

vec(dFy) _25:1 fj(j\l)Fj{’l
: =-[Ge" VeI, :
vec(0Fy) _Z§:1 [ (Xp)Fjﬁp
(61
=—[(GoTVD)eL] | : |,
[Gplp
from which we have the following upper bound:
o1y P
vzncorviyt|| || —eer vy |$or
Gplip] ||, =t

<op(GoT VT)*I\/ﬁi:nllz}.)'(p Gi.

For each i = 1,...,p, starting from the relation Z?Zl fj(j\i)éij)i = —0;1;, we have that:

k k
b= |30 0| < 30| 5G] 16E 1k
j=1 P J=1
k 2 k
< Z‘fj()\i) > lI6F I3
j=1 Jj=1
W —
< Z‘fj()‘i) n.
Jj=1




Then maximazing over ¢ = 1,...,p, we obtain the following lower bound for 7:

G
7 > 1max :

—i=1,..., NNE
Y s

For the case p = 1, we obtain an explicit expression for the backward error 7, which coincides
with the one proposed by Ahmad and Mehrmann (Proposition 2.2, [3]).

O

Corollary 2.6. For the case p =1, we have an explicit expression for the backward error

g1

Jzemof

where &1 denotes the smallest singular value of the matriz 2?21 fi (5\1)Fj.

Proof. Let 07 be the right singular vector associated with the singular value 61. Then the upper
bound for n proposed in Theorem may be written as

01

JEnenf

2.3 Explicit upper bounds for the backward errors

Omin(GOT 01 )Mo = |G@ ] |]3'61 = ||Gll3 61 =

The backward errors depend on the norm of the pseudoinverse G 7 VT, which is not necessarily
easy or cheap to compute. In this section, we provide some upper bounds that can be used in
place of computing the norm explicitly.

Lemma 2.7. Let G be a p X k matriz and V' be a n X p matriz, with V scaled to have |Ve;||a =1
fori=1,...,p, where e; is the i-th vector of the canonical basis. The following bounds for the
norm of [|(G @T VT)T||y hold:

o Ifp <kn, then (GO V)2 < 0p(G) " ha(V),
o Ifp <k, then ||(GOT VT)I|s < 0,(G)71,
where K(V) = 01(V)/op(V) is the condition number of V.

Proof. Let us denote by M := G &7 VT, We first prove that if p < kn, then |[|[MT|y <
0,(G)"1ka(V). The condition p < kn implies that | M|y = o,(M)~1.
Let us denote by J the p x p? submatrix of I,2 such that J(G® V') = G ®T VT then, we

have
ap(M) = 0, (J(GRVT)) > 0,2 (G@VT) = 0,(G)oy(V),

where we have used the J is a unitary projection and therefore for any W it holds oy, (JW) >
omin (W), and the properties of the Kronecker product. Since we assumed that ||[Ve;||2 = 1 which
implies ||[V||2 > 1, we have 0,(V) > ka(V) ™!, and we conclude.



To prove the second inequality, consider a QR factorization of GT, which has the form

Q []ﬂ = GT for a k x k matrix @ and an upper triangular R. We then define X as follows:

R

GT:QM’ X:Q{R_T 0

O'p(G)_llk;_p — GX == [Ip O} .

We now right multiply M by X ® I,,, which yields a matrix with the following block structure:

T
U1
M=MX&I,)=[I, 0o"Vvl= :
v
where we have used the notation v; := Ve;. We have the following relation between singular

values of M and M:

oi(M) > o;(M)oy(X 1) = 03(M)oy(X) ™ = 0:(M) oy (G).

We now prove that o,(M) > 1, which concludes the proof. By the variational characterization
of the singular values, we may write

op(M) := Hfﬁi& wT M|, = |[wiv] ... wpol x ... X]HQ
P P
> foed o wprg ], = | Do lwilllill3 = | D lwil? =1,
i=1 i=1

where in the last steps we have used ||v;|l2 = 1 and |Jw||s = 1.
O

Remark 2.8. Note that in principle it may happen (V) = oo or 0,(G) = 0. In both cases, the
statement of Lemma still holds and yields [|[(G T V)| < co.

3 Structured nonlinear eigenvalue problems

In this section we propose an extension of our analysis that deals with the case when the coeffi-
cients F}; have a specific structure that should be preserved in the backward error. For instance,
they could be symmetric, Toeplitz, with a given sparsity pattern, or low-rank. Depending on the
structure that we consider, we may need to provide a different approach for the computation of
the backward error. More specifically, we make the assumption that F; € S; € C**", where S;
is a set of matrices with a particular structure.

We assume that S; are at least differentiable manifolds that includes the zero. It is convenient
to distinguish two cases:

1. For linear structures, when all the §; are linear subspaces, we provide a formula for the
structured backward error associated with a set of approximate eigenpairs; we will describe
this case in Section We will provide some results that hold for symmetric matrices in

Section 3.2

2. For nonlinear structures (such as fixed rank matrices), we propose an approximate upper
bound, computed employing a Riemannian optimization-based approach; we will describe
it in Section 3.3



3.1 Structured coefficients in linear subspaces

If the sets S; are linear subspaces of C"*", then we can write the F}; in an appropriate basis:
d;j
F; = Z 5fP(i’j), Sj = span(P(Lj), e P(df’j)).
i=1

From now on, we will assume that the basis given by the P(/) are orthogonal with respect to
the Frobenius inner product, and normalized to have Frobenius norm equal to 1. This implies
that the matrix

PO = |vec(PMLD)), .. vec(P(5:9)

has orthonormal columns. We denote by P the block diagonal matrix collecting all P), defined

as follows:
P

P = . . (4)
pk)

Note that since the PU) are not square, the above matrix is rectangular as well, and has or-
thonormal columns. Throughout this section, particular results for the unstructured case can be
obtained simply choosing P = I.

Definition 3.1. Given F; € §;, for j = 1,...,k, where §; are linear subspaces of C"*",
consider (V, A), defined as in Theorern approximate eigenpairs for the matrix-valued function

F(\) = 2521 [i(N)Fj. The structured backward error associated with (V,A) is defined as:

k
ns =minQ | [§F1,...6F] |p: > (Fj+6F) Vfi(A) =0, 6F; €S;forj=1,... .k
j=1

We prove the structured analogue of Theorem [2.3

Theorem 3.2. Let (V,A) approzimate eigenpairs for the nonlinear eigenvalue problem with
structured coefficients F(X), such that

k
R=) FV[h)
j=1
and let G be defined as in Theorem[2.3 Then, the structured backward error ns is equal to
ns = | [((GOTVT)@ L) P rlls, = vec(R),

where P is defined as in . In particular, we have the upper bound

s < omin(((G " V) @ L) P) YR .
Proof. Starting with relation provided in Theorem we get

vec(dFY)
(G viyen)| @ |=-r
vec(0Fy)



o , , T
We observe that vec(6F;) = PU)§7, where 67 = [5{ 5(31]} , for j = 1,...,k and therefore

|6F;||F = ||67]|2. Then we may write the previous relation as
5t
(o™ VvheIL,)Ps=-r, 6=|:
Sk
Since ||6]|2 = || [6Fy ... 6Fk] ||r, we conclude the proof. The upper bound for ns follows from:
0F,
. T _
10l = || : <[ [((Ge" V) @ L) P]" [l2llrll2 = omin(((G " VT) @ L) P) | R p.
dFy,

F

3.1.1 Invariant pairs

It is possible to provide a generalization of Theorem [3.2] using the notion of invariant pairs. Given
a nonlinear matrix-valued function F'(A) = 2?21 F; f;(X), we say that (V, M) is an invariant pair
if the following relation holds:

k
S FV (M) =0.
j=1

Note that this implies that A(M) is a subset of the spectrum of F()A) and that the associated
eigenvectors belong to the column span of V. Besides being useful for analyzing (for instance)
stable subspaces, this also allows to maintain real arithmetic in case of complex conjugate eigen-
values.

In this setting, denoting by

k
G=[ADT o R(T],  Ri= Y BV(M),

j=1
and proceeding as in the proof of Theorem we have that:

, r = vec(R),

ws=|[((Ewovn)en) ]|

and consequently the upper bound
ns < owin(((CL @ V")) @ L) P R e

Even though Theorem [3.2] provides an explicit formula for the backward error, the linear
system that needs to be solved is much larger than the one in the non-structured case. Hence, it
is sometimes convenient to obtain the backward error through the same optimization procedures
that we will describe for nonlinear structures in Section 3.3

3.2 Symmetric backward errors

For particular choices of S;, we can provide a more detailed analysis. We now focus on the case
of real symmetric coeflicients F; = F jT. For the standard eigenvalue problem, in [20] Tisseur

10



provides a complete survey on structured backward errors associated with multiple approximate
eigenpairs. In particular, a formula is provided for computing the symmetric backward error,
using the result on structured matrix problems in |20, Lemma 2.3]. Our result is a generalization
to the context of nonlinear eigenvalue problems with symmetric coefficients.

For simplicity, we only discuss the case of eigenvalues and eigenvectors, even though the
same analysis can be generalized to invariant pairs with a moderate effort. The problem can be
stated as, given a n X p matrix V and a diagonal matrix A, finding real symmetric perturbations
0F; = 5F]-T such that

k
>_(Fy +F)V f;(A) = 0. (5)

Theorem 3.3. Let F; be real symmetric matrices, and (V, A) approzimate eigenpairs with a diag-

onal matriz A such that R = Z§:1 F;Vfi(A). Let V = QT be an economy size QR factorization
of V., and define

T 1,

Tf1(A)

T = ) MS = 7 . ’
Tfr(A) ' o 7.

P, p

where II, , is the (p,p) commutation matriz (or perfect shuffle, see [24]). Then, there exist
symmetric real perturbations F; such that (V,A) are eigenpairs for Z?:1(Fj +6F;)f;(N), and

) \T
A44) AW

0F=Q |1 (21) Q7,
Asy 0(n—p)x (n—p)

where Agjl) and Aéjl) solve the equations:

vec (A(lll) ) vee E)Bl )
[Agl) o AP =BTt and Mg ; - : :
N :
VeC(A§1)) 0

where we denote by By, By the p X p and (n — p) X p blocks of [gl} = —QTR, respectively.
2

Proof. We note that choosing 6F; = —F} gives a valid solution to the linear system; hence, we
know a-priori that the set of all solutions is non-empty, and we look for the minimum norm one.
As a preliminary step, we choose a unitary matrix ¢ such that

T}

O(n—p)xp

Vi(A) = QT —Q[ ] T, e CP,

with upper triangular matrices Tj. Since f;(A) is diagonal, such @ can be constructed from a

QR factorization of V. We now left multiply by QT obtaining

k k

Y QTRQT = =) QTFQT; = -Q"R,

Jj=1 Jj=1

11



where we have used QT'V f;(A) = T}. By partitioning Q76 F;Q as follows
AR (agh” T [Br
) 7Q R= B2 ’

QTsF;Q = |1 .
AR AR

we can rewrite the previous equation as

(j) (A(j))T 7 k AW ] B
QTOF;QT; = 2L { } = T [ 1} :
; gz; 21 Aéé) Otn—p)x z:: A(2J1 b By

The only condition to have a symmetric solution is to ensure that A(j ) = (Ag))T for all j =
1,...,k, and the above equatlon decouples in the 1ndependent linear systems

ZA T; = By, ZA T; = Bo. (6)

Note that 0 ) o)
1QT 6 F; Q% = 1A 17 + 201457 7 + 1455 1%

Since we are looking for the minimum norm solution, we can choose AQJQ) =0, and A(1) as the

minimum norm solution of the right equation in @:
T

1 k F I I
(A oA =B T (7)

Tk,

To determine Aﬁ), we write a linear system with the left equation in @ together with the

symmetry condition AY) = (AV)T . This yields

i
T' ®1I, vec(Agll)) vec(By)
I, — Ip2 . 0
. : = : ) (8)
x .
1, — I, vee(Ajy) 0
=:Mg

where II,, , is the commutation matrix (or perfect shuffle) such that II, ,vec(X) = vec(X7T) |24].
We know that the system is solvable, so we can characterize the minimum norm solution by
taking the pseudoinverse of the matrix on the left. O

Corollary 3.4. Under the hypotheses and the notation of Theorem [3.3, we have the following
upper bound for the structured backward error associated with the approximate eigenpairs (V,A):
n < IRI (I3 + 20715

Proof. Consider the minimum solution §Fj, given by Theorem The relation yields to the
upper bound || A |12 + ... + [ A® )2 < ||B1|2 - [|M]]|2.. Combining this and the expression on
AS) in (7)), we obtain

k k k
SO I8FIE = - 1Q7FQIE = 3 (AR 13 + 20145113
j=1 j=1 j=1
< IRIE (IMEIE + 21713 ) - 0

12



Remark 3.5. In Corollary[3.4] a bound for the backward error can be computed cheaply, whenever
p is small. Indeed, the matrices Mg and T can be computed with O(np? + p°k3). A lower
complexity in p may be achieved exploiting the structure of Mg. The dominant term is np? as
long as p*k® < n, which is realistic in large scale applications where only a few eigenmodes are
necessary.

3.3 Nonlinear structures

In this section we describe the more general case of coefficients F; belonging to a differentiable
manifold, which may not be a linear subspace. One of the most relevant examples is taking
F; e Rﬁjxn, where we denote by R}'*™ the set of real matrices of rank r; and size n x n.

In this context, we may not write the perturbations dF} as linear combinations of a set of
matrices P ..., P4 In this case, we have that each matrix coefficient F; and each perturbed
coefficient F; 4+ 0F; belong to a manifold §; € R™*"™. Given F; € §;, we can rephrase the
definition of backward error in the following way:

k
7ns = min || [(5F1,...,(5Fk] ||F Z(FJ—F(SFJ)VfJ(A):O, (Fj"F(SFj)ESj s

j=1

where (V; A) contains approximate eigenpairs, as defined as in Subsection

Remark 3.6. Note that the previous definition coincides with the one provided in Subsection [3.1
for linear structures, where we have that 6F; € S;.

In this setting, we may not provide an explicit formula for the structured backward error,
as in Subsection Nevertheless, we may numerically approximate an upper bound for the
structured backward error, employing Riemannian optimization. Denote by F} := F; + 6 Fj, for

j=1,... k. Consider a p > 0, we may define the functional
f:81x...x8—R (9)
k
PP B ) m IS BVEWI+ul [ - F o BB I3
j=1

The parameter p is needed to force the optimization algorithm to find a minimum norm solution.
Therefore, an upper bound for the structured backward error may be obtained minimizing the
functional f on the product manifold & := &; X ... X Sg. This setting allows us to employ
Riemannian optimization, minimizing the function f on the product manifold S. We chose to
implement this idea relying on manopt, a MATLAB package for Riemannian optimization |7], and
in particular its implementation of the Riemannian trust region method. To this end, we recall a
few results on the product manifolds and perform the computation of the Riemannian gradient
and the Riemannian Hessian on S, which we need for the trust-region method on Riemannian
manifolds [1].

The product manifold S can be treated working separately on the manifolds S;. Indeed, the
tangent space of S can be defined as

Tihy, i) (8) = T, (S1) x . x T, (Sk),

and the scalar product that we consider on it is the one inherited from the products on S; for
j=1,...k, that is:

S S
((ugy ... ug), (wr,. .. ,wk)>(ﬁlw’l;ﬂk) = <u1,w1>1;{ + ..+ <uk,wk>ﬁ’; ,



where (uq,...,ug), (w1,...,w) € T(ﬁlﬁk) (S) and (-,-)¥ is the product associated with S;.

In this setting, we consider only embedded manifolds §; € R®*" for j = 1,...,k, then the
product is the real inner product (u,v) := trace (uTv).

Both the Riemannian gradient and the Riemannian Hessian for the function f can be com-
puted starting from the Euclidean ones. In particular, the Riemannian gradient is obtained
computing the orthogonal projection of the Euclidean gradient of f (here we denote by f the
smooth extension of the functional (9 to the ambient space) onto the tangent space T'(S). The
computation of the Riemannian Hessian of f needs both the Euclidean gradient and the Eu-
clidean Hessian for f and it can be obtained through the Weingarten map (see [6, Section 5] for
the details).

Even though the projection of both the gradient and the Hessian on the product manifold S
is handled automatically in manopt, we will need to implement this carefully to make it efficient.
To this end, we first need to derive the Euclidean gradient and the Euclidean Hessian of the
functional f.

It is convenient to write the functional as

f(Fl,...,Fk):<FW,FW>+LL<F7F,F—F>,

where
Vfi(A)
F:=[F F], F=[F ... F]andW:= :
V fr(A)
In order to compute the Euclidean gradient of the functional f, we perform the directional
derivative of f:

L d - - . .
DA(FNE] =  f(Fy+tE,.. Fy +tE)|
t=0

in the direction F := [El e Ek] In this case, we may write

d

%f(pl +tEy, ..., Fy +tEy)

where where W; is the j-th block row of W and we used the circulant property of the trace in
the last step. Then using that the Euclidean gradient is the unique vector such that

VE,E € R™"™ x ... x R"™"  Df(F)[E] = <E,gradf(ﬁ)> ,

we conclude that gradf(F) = 2FWWT + 2u(F — F). In the implementation of the Euclidean
gradient in manopt, it is useful to split the contributions for each term of the product manifold.
Then we may consider gradﬁ,jf(F) = 2FWW] + 2u(F; — Fy).

The Euclidean Hessian of the function f: R™*" x ... x R™*" — R at the point (Fl, . Fk)

is defined as the directional derivative of the Euclidean gradient grad f

Hess f(F)[E] = D grad f(F)[B] = lim &2 (F +tE) — grad f(F)

t—0 t ’
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where E € R™ ™ x ... x R"*"_ Note that here we denote by f both the functional @ and its
smooth extension to the ambient space. Inside the Riemannian Trust Region scheme, we only
need to evaluate the Euclidean Hessian along a specified direction E = (El, ce Ek), which is
given by the directional derivative

d . . . -
—gradf(Fy +tEy, ..., Fx + tEy)

o = 2EWWT 4 2uF.

t=0

Moreover, observing that
D grad f(F)[E] := (Dgradg, f(F)[E], .., Dgradg, f(F)[E]),

we may split the contributions of the different terms of the product manifold for the implemen-
tation in manopt, obtaining that

Dgradg f(F)[E] = 2EWW] + 2uE;.

Note that both the (Euclidean) gradient and the (Euclidean) Hessian have a first term which
is low-rank. Indeed both 2FWW7T and 2EWWT are expressed in a low-rank format, therefore
for several choices of manifolds we may compute their projection directly in an efficient way.

In Subsection [£.3] we test this approach for a selected number of structures. In particular,
we consider the case of sparse matrices, multiples of the identity and fixed rank matrices. For
these structures, once we have computed the matrix FW, we handle the projection of the term
F WW]-T as follows:

1. S; is the set of sparse matrices in R"*™: let 7 C {1, ... ,n}” the set of indices corresponding
to the nonzero entries of Sj;, then the matrix-matrix multiplication between F'W and WjT

as ~
SR 3 (FW ) ) (W) ey (a0) €T
(FWW] )(a,b) = { 1 0 J (a7b) ¢ T

The complexity for this product is O(p |T|).

2. §; is the set of matrices multiple of the identity in R™*": we can perform the projec-
tion of the matrix F' WWJT onto the tangent space of this manifold simply computing the
%traee(ﬁ‘WW]T), for which the computational cost is O(np? + n);

3. §; is the set of matrices of fixed rank r; in R™*™: a rank p matrix is represented as
USVT by storing a structure with three fields U,V € R"*P, § € RP*XP, where U, V' are
orthonormal and the matrix S is any diagonal or full-rank matrix. The term F WWJ-T can

be represented in this way by the matrices FIW, W; and I, respectively. The latter can
be projected on the tangent space of R?jxn by manopt using an economy-size SVD, which
requires O(nr;j(p+ r;)) flops.

The same procedures can be repeated for handling the projection of the matrix EWWJ-T, for
these three manifolds.

In the numerical implementation of the method, we successively solve minimization problems
in the form @[), for different choices of the parameter p. This approach, also known in opti-
mization theory as penalization method, consists in solving the problem for smaller and smaller
choices of the parameter p, using the solution of one step as initial point for the following one.
An overview on these call of solvers for constrained optimization is contained in [4, Section 4],
while results on their generalization to Riemannian manifolds can be found in [18].

We describe the approach in Algorithm (I} where each minimization problem needs to be
solved using the Riemannian based-method proposed in this Section.
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Algorithm 1 Riemannian optimization-based algorithm

Input: Matrices F' := [F} --- Fi|, manifold S, functions f;, (V,A) approximate eigenpairs,
desired accuracy €
Output: ns upper bound for the structured backward error, decrease factor p

1: Begin

2 Set u=1

3 Set starting point F = F

4 while /i1 > ¢ do

5 F + argminpes f, in (@
6: p <= pp

7 end while

s s« |F—Fllp

9: End

Remark 3.7. In Line 6 of Algorithm[I] we suggest decreasing the parameter p by a constant factor
p at each step. Our choice for the factor p and additional implementation details are available
at the Github repository https://github.com/miryamgnazzo/backward-error-nonlinear.

It is common to measure the backward errors using the Euclidean distance, which means
computing the norm H [f‘l - F ... l?'k - Fk} H
F
some situations it is possible to measure the distance between points on the manifold, using
the Riemannian distance. Following the idea in [14, Theorem 3.1], we could rephrase our upper
bounds, working directly on the distance between points on the manifold. Since this result employ
lower bounds on sectional curvatures, it strictly depends on the geometry of the manifold we
use. Indeed, while for flat manifolds the sectional curvature is zero, for different manifolds it can
be derived from principal curvatures. In particular, for the case of manifolds of matrices of fixed
rank, it can be obtained using [11, Theorem 24].

, as we propose in our analysis. However, in

4 Numerical experiments

This section is devoted to assessing the quality of the theoretical bounds, and to check the
effectiveness of the Riemannian optimization scheme in computing the backward errors. We also
include tests for symmetric nonlinear eigenvalue problems as described in Section For the
case of nonlinear structures, our implementation of pseudocode [I]in MATLAB is freely available
at https://github.com/miryamgnazzo/backward-error-nonlinear, together with the codes
for the bounds in Section [2] and Subsections

Throughout this section, all nonlinear problems for which we need a few eigenvalues to test
have been solved with the Newton method initialized with different starting points. The experi-
ments were run using MATLAB 2022b on Intel Core i7-1070H.

4.1 Unstructured tests
4.1.1 The Hadeler problem

We consider the nonlinear eigenvalue problem in the form:

F(A)w = [(e* = 1) Ay + N4, — ado| v =0, (10)

16


https://github.com/miryamgnazzo/backward-error-nonlinear
https://github.com/miryamgnazzo/backward-error-nonlinear

where the coefficient matrices A; € R8%® are symmetric and o = 100. This example is known
as the Hadeler problem and it is part of the collection of nonlinear eigenvalue problems in
the MATLAB package nlvep . We consider a set of p = 3 approximate eigenpairs of
and randomly generate a set of 1000 perturbation matrices dA4; for j = 0,1,2. Then we may
compute the backward errors using the formula in Theorem and test the upper bounds for
the unstructured backward error provided in Theorem and Lemma [2.7]

Backward error for the Hadeler problem

10_1E T T T T T T T T T T \;\\\\\E
Eloe Backward error L=77 - |
Ll a@ R et ]
10770 === 0p(G) 'R (V) IR el e E
Fl--- O’ﬁ(G@T VT)—IHRHF fffff'{/ .-' . '..”o. o’ 1
10_3§ j E
10741 E
107° b . 4
L | | | L1
104 1073 1072 10°1

1Rl 7

Figure 1: Comparison among the upper bounds for the unstructured backward error in Theorem
and Lemma applied to the Hadeler problem .

4.1.2 The beam problem

We consider the delay eigenvalue problem obtained through the finite difference discretization of
a one-dimensional beam with delayed stabilizing feedback, as described in [23]:

D) = —A, + Ao +e 41, n = 1000, (11)
where we have
T
Ag = [ A } , A=tridiag(1,-2,1) e R"=DX0=D 1y = [0 .. 1] e R
—nw n

and A; = eneg with e,, the n-th vector of the canonical basis in R™. The coefficient matrices for
this problem can be found in the example gallery presented in the NEP-PACK collection . In
Figure[2] we provide a comparison among the upper bounds for the unstructured backward error
provided in Theorem [2:3]and Lemma [2.7} It is worth noting that the first two upper bounds for
the case p = 3 do not coincide, however this is not perceptible on the figure. Observe that for
the case p = 10, we may not use the first upper bound provided in Lemma
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Backward error beam p = 3 Backward error beam p = 10
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Figure 2: Comparison of the upper bounds for the unstructured backward error for the beam
problem in . On the left: we consider p = 3 approximated eigenpairs. On the right: we
consider p = 10 approximated eigenpairs.

4.1.3 Test on randomly generated problems

We now generate a set of random problems of the form
F(\) = Ao+ A1 + X1 + e B + e 2B, (12)

where Ag, Ay, By, Eo are randomly symmetric generated matrices. We fix a set of matrices
Ao, A1, By, By € RY¥28¥128 of random matrices and a set of approximate eigenpairs (\;, ;) for
i=1,...,p. Then we generate 1000 random perturbed matrix-valued function in the form:

F()\) = AO + )\Al + /\Qf + e_)‘El + G_QAEQ,

and compute the backward error for the approximate eigenpairs (5\i, ¥;) of the nonlinear eigen-
value problem associated with F()\). Then we test the error bounds for the unstructured back-
ward error associated in Theorem [2.3] and compare it with the explicit bounds obtained in
Lemma In Figure [3] the plot on the left provides the comparison for p = 3, while the plot
on the right a comparison of the bounds for p = 10. Observe that if the number of considered
approximate eigenpairs p is strictly larger than the number of coefficients in the matrix-valued
function, in Lemma [2.7] the second bound does not hold.

4.2 Structured case: linear subspaces
4.2.1 Randomly generated and sparse matrices

We consider again the matrix-valued function in , with randomly generated matrices of size
64 x 64, and we impose a sparsity pattern on the coefficients Ay, A1, E1, Fo, where we allow the
sparsity patterns to be different from each others. We generate 1000 random sets of coefficients
for the matrix-valued function, where we preserve the sparsity pattern on the coefficients. We
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Randomly generated problems , p=3 Randomly generated problems (12)), p = 10
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Figure 3: Comparison among the upper bounds for the unstructured backward error for the
problem (12). On the left: we consider a set of p = 3 approximate eigenpairs. On the right: we
consider a set of p = 10 approximate eigenpairs.

compute the structured backward error associated with a set of p = 3 approximate eigenpairs for
this set of randomly generated family of matrices, using the result in Theorem In Figure [4
we provide test the upper bound for the structured backward error imposing sparsity patterns
on the coefficients, against the exact formula for the structured backward error, as provided in
Theorem We report for completeness the upper bound for unstructured backward error
provided by (which does not hold in this case).

4.2.2 Randomly generated symmetric matrices

Consider again the nonlinear eigenvalue problem associated with , with randomly generated
coefficients such that A; = AT for i = 0,1 and E; = E]T for j = 1,2. As in the previous case, we
run 1000 tests, for a set of p = 3 approximated eigenpairs. In Figure[p| we consider an example of
size n = 64 and compute the structured backward error imposing the symmetry on the coefficient
matrices, provided in Theorem[3.3] We provide a comparison among the upper bound for general
linear structures in Theorem [3.2] and the one specialized for symmetry structures in Corollary
3.4

Then we consider two randomly generated and symmetric problems as in , where the
dimension of the coefficients is n = 128 and n = 2048. In Figure [0} we test the upper bound in
Corollary against the structured backward error obtained using Theorem comparing it
with the one for unstructured backward error.
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Randomly generated sparse problem
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Figure 4: Test the upper bound for the structured backward error in Theorem for the case
of randomly generated sparse matrices in Subsection The bound for unstructured case,
which does not hold, is reported for completeness.

4.3 Riemannian optimization
4.3.1 Quadratic polynomial eigenvalue problem

We consider the nonlinear matrix-valued function:

F(\) = Ag + MA; + M2 A5 ¢ R™™ n = 10000, (13)
where the matrix Ay = tridiag(1,—2,1), Ay = —UU7T is a low-rank matrix with a randomly
generated matrix U € R'0000%2 and A, is the identity matrix. We consider an approximation of

two eigenpairs (;\l, 0;) for i = 1,2 and perturb the matrix coefficients keeping the same structures:
F(\) = (Ao + Ag) + Ay + 22(As + Ay),

where Ay is a randomly generated tridiagonal matrix, A; = —(U + U)(U 4+ U)7 with U € R"*2
randomly generated and Ay a multiple of the identity. The norm of the perturbation |[F — F|| ¢
is in the order of 1.992017.
In order to apply the method proposed in Subsection we consider the following product
manifold:
S = 81 X Rgxn X 82,

where S is the manifold of sparse matrices with the same sparsity patterns of Ag, R5*" is the
manifold of rank 2 real matrices of size n x n and Ss is the manifold of the matrices that are
multiples of the identity. The implementation of the method requires the use of the manopt
package for MATLAB, version 7.1. Observe that the manifold Sy is not available in manopt,
then we used our implementation of this manifold.
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Randomly generated symmetric problem
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Figure 5: Comparison between the bounds for structured backward error in Theorem and
Corollary applied to problem with symmetric coefficients. For completeness, we report
the unstructured bound.

Symmetric problem , n =128 Symmetric problem , n = 2048
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Figure 6: Test the structured bound in Corollary[3.4] for randomly generated symmetric problems
in . On the left: size n = 128. On the right: size n = 2048. The bound for unstructured
case, which does not hold, is reported for completeness.

The running time for the computation of the structured backward error associated with two
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approximate eigenpairs of F'()) is 199.1613 seconds. We obtain an upper bound for the backward
error equal to 3.521105 x 10~2 and a norm of the residual equal to 4.015467 x 10~°.

In practice, this experiment can be repeated as coded in Listing [I| where f is a function for
the evaluation of [1, A, \2] and (V,L) are approximate eigenpairs. The command be_riemannian
calls the manifolds that we need for the optimization procedure, where ’identity’ refers to
our implementation of the manifold So. The MATLAB functions can be found in the github
repository https://github.com/miryamgnazzo/backward-error-nonlinear,

Listing 1: Code for the experiment in

F = { A0, A1, A2 }; Jcell array of coeffictent matrices

D = be_riemannian(F, @f,
{ 'sparse', 'low-rank', 'identity' }, V, L);
nrm = be_norm(D); /Computed backward error;

4.3.2 The beam problem with prescribed sparsity pattern

Consider again the beam problem stated in Subsection We consider different dimensions n
for the matrix-valued function in and we apply the Riemannian optimization-based approach
in Section [3.3] preserving the sparsity structures of the coefficients, that leads to the product

manifold:
S:ZSO XSl XSQ,

where Sp is the manifold of matrices that are multiples of the identity, Sy is the manifold of
tridiagonal matrices and Sy the one of multiples of the matrix e,el. Observe that the involved
structures are linear, nevertheless we compute an approximation of the structured backward
error, in order to provide a few examples on matrices of large size.

We compute V € R™*3 and A € R3*3, approximations of p = 3 eigenvectors and eigenvalues
of D(A) in , respectively, then perturb it by

AD(\) = —Aoh + Aq 4 Age™,

where F; + A; € §; for i = 0,1,2, since Fy = I,,, F} = Ay and F», = A;. The algorithm in
Subsectionprovides final matrices AF}, AFy, AF3, which we use to define the (approximated)
structured backward error ns = || [AFy AFy  AF]|p. We test the accuracy of our solution
computing the norm of the residual

R:=—(I,+ AF)VA + (Ag + AF)V + (A1 + AF,)V exp(—A).

In Table[T] we collect the results obtained considering different sizes n. In particular, we provide a
comparison among the elapsed time (expressed in seconds), the (approximated) structured back-
ward error 7s, the norm of the residual R and the Frobenius norm of the starting perturbation
matrices.

Conclusions
We propose a backward error analysis for nonlinear eigenvalue problems given in split form.

We presented a novel formula for the computation of the backward errors for a given set of
eigenpairs or eigenvalues, and explicitly, computable, and inexpensive upper bounds for them.
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n_ | time (in seconds) | ns \ |R||F | [AD|r ‘

103 52.9975 5.564350 x 10~3 | 2.351591 x 1079 [ 5.625286 x 102
2 x 103 62.2178 7.798143 x 1073 | 9.967606 x 10~10 | 7.811920 x 103
5 x 103 94.1982 1.383995 x 1072 | 3.560193 x 1079 | 1.421781 x 102
10% 145.4670 1.814495 x 1072 | 4.786304 x 109 | 1.859965 x 102
2 x 104 249.8171 2.584339 x 1072 | 2.480937 x 1072 | 2.616653 x 102
5 x 104 945.6344 3.759764 x 1072 | 6.855576 x 1072 | 3.877037 x 102
10° 1.6083 x 103 5.295991 x 1072 | 1.012763 x 10~8 | 5.703946 x 102

Table 1: Results for the beam problem , with different sizes n.

These bounds have been verified to be tight and descriptive on a set of examples arising from
standard benchmark collections.

We discussed in detail how to impose different structures on the backward errors. For the case
of coefficients living in a linear subspace, we have extended the previous analysis, and provided
computable bounds. The bounds are in particular still relatively inexpensive for the relevant
case of symmetric coefficients.

For more general structures, where coefficients are in a differentiable manifold, we have pro-
vided an effective algorithm for the computation of the backward error, based on a Riemannian
optimization technique. This allows to compute backward errors for problems with low-rank co-
efficients, but also for the ones where the constraint is linear, such as prescribed sparsity pattern,
or symmetries, and any combination of these. We have verified the effectiveness and the scala-
bility of this approach, which is able to give explicit bounds for large-scale structured nonlinear
eigenvalue problems.
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