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Abstract
A novel framework for hierarchical low-rank matrices is proposed that combines
an adaptive hierarchical partitioning of the matrix with low-rank approxima-
tion. One typical application is the approximation of discretized functions on
rectangular domains; the flexibility of the format makes it possible to deal with
functions that feature singularities in small, localized regions. To deal with time
evolution and relocation of singularities, the partitioning can be dynamically
adjusted based on features of the underlying data. Our format can be leveraged
to efficiently solve linear systems with Kronecker product structure, as they arise
from discretized partial differential equations (PDEs). For this purpose, these
linear systems are rephrased as linear matrix equations and a recursive solver is
derived from low-rank updates of such equations. We demonstrate the effective-
ness of our framework for stationary and time-dependent, linear and nonlinear
PDEs, including the Burgers’ and Allen–Cahn equations.
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1 INTRODUCTION

Low-rank based data compression can sometimes lead to a dramatic acceleration of numerical simulations. A striking
example is the solution of two-dimensional elliptic partial differential equations (PDEs) on rectangular domains with
smooth source terms. In this case, the (structured) discretization of the source term and the solution lead to matrices that
allow for excellent low-rank approximations. Under suitable assumptions on the differential operator, one can recast the
corresponding discretized PDE as a matrix equation.1,2 In turn, this yields the possibility to facilitate efficient algorithms
for matrix equations with low-rank right-hand side.3,4 However, in many situations of interest, the smoothness property is
not present in the whole domain. A typical instance is solutions that feature singularities along curves, while being highly
regular elsewhere. This renders a global low-rank approximation ineffective. Adaptive discretization schemes, such as the
adaptive finite element method, are one way to handle such situations. In this work, we will focus on a purely algebraic
approach.

During the last decades, there has been significant effort in developing hierarchical low-rank formats that apply
low-rank approximation only locally. These formats recursively partition the matrix into blocks that are either repre-
sented as a low-rank matrix or are sufficiently small to be stored as a dense matrix. Examples of such formats include
block low-rank matrices,5 -matrices,6 2-matrices,7 HODLR matrices,8 HSS matrices,9 as well as SMASH.10,11 These
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techniques are often applied in the context of matrices that arise from the discretization of operators and are known a
priori to feature low-rank off-diagonal blocks. The use of these formats for representing the solution of a linear system,
instead of the operator, has also been proposed in a number of works, such as References 12 and 13. Many of these tech-
niques work best if the location of low-rank blocks is known. For example, when the matrix arises from the discretization
of an integral operator with a singular kernel, the location of the singularities can be used to define a so called admissi-
bility criterion6-8 to decide a priori which blocks admit a good low-rank approximation. This can make these formats too
inflexible to treat time-dependent problems for which the region of non-smoothness evolves over time. In the context of
tensors, it has been recently proposed a bottom-up approach to identify a partitioning of the domain and perform a piece-
wise compression of a target tensor by means of local high-order singular value decompositions.14 A very different and
promising approach proceeds by forming high-dimensional tensors from a quantization of the function and applying the
so called QTT compression format; see Reference 15 and the references therein.

In this article, we propose a new framework of structured matrices that automatically adapts the choice of the hierar-
chical partitioning and the location of the low-rank blocks without requiring the use of an admissibility criterion. While
the representation format itself is derived from a minor variation of -matrices, the admissibility is decided on the fly
by the success or failure of low-rank approximation techniques. To emphasize this adaptive choice, we use hierarchical
adaptive low-rank (HALR) matrices to refer to our framework. Note that we keep the ordering of the matrix A fixed, that
is, a suitable ordering of its indices needs to be performed a priori.

This work focuses on the application of HALR matrices to the following class of time-dependent PDEs:

{
𝜕u
𝜕t
= Lu + f (t,u,∇u), (x, y) ∈ Ω, t ∈ [0,Tmax],

u(x, y, 0) = u0(x, y),
(1)

whereΩ ⊂ R2 is a rectangular domain, L is a linear differential operator, f is nonlinear, and (1) is coupled with appropriate
boundary conditions in space. Discretizing (1) in time with the IMEX Euler method16 and in space with, for example,
finite differences leads to

(I − ΔtLn)un,𝓁+1 = un,𝓁 + Δt(fn,𝓁 + bn,𝓁), (2)

where Ln represents the discretization of the operator L, un,𝓁 and fn,𝓁 are the discrete counterparts of u and f at time
t𝓁 ∶= 𝓁Δt, 𝓁 ∈ N, and bn,𝓁 accounts for the boundary conditions. When using finite differences on a tensor grid, it is
natural to reshape the vectors un,𝓁 , fn,𝓁 ,bn,𝓁 into matrices Un,𝓁 , Fn,𝓁 , Bn,𝓁 . In our examples, the matrix Ln will often take
the form Ln = I ⊗ A1,n + A2,n ⊗ I, a structure that is sometimes referred as having splitting-rank 22 and which allows to
rephrase the linear system (2) as a linear matrix equation.

As a more specific guiding example, let us consider the two-dimensional Burgers’ equation over the unit square:

𝜕u
𝜕t
= K

(
𝜕

2u
𝜕x2 +

𝜕
2u
𝜕y2

)
− u ⋅

(
𝜕u
𝜕x
+ 𝜕u
𝜕y

)
, (x, y) ∈ Ω ∶= (0, 1)2, (3)

with K > 0. Under suitably chosen boundary conditions, the solution of (3) is given by u(x, y, t) =
[
1 + exp

(
x+y−t

2K

)]−1
; see

Reference 17, Example 3. For a fixed time t, the snapshot ut ∶= u(⋅, ⋅, t) describes a transition between two levels across
the line x + y = t. For a small coefficient K, the transition becomes quite sharp, see Figure 1.

Let Usol
n,𝓁 be the matrix collecting the samples of ut𝓁 on an equispaced 2D lattice; Usol

n,𝓁 has a time dependent rank
structure. More specifically, the submatrices of Usol

n,𝓁 corresponding to subdomains which are far away from x + y = t𝓁 are
numerically low-rank because they contain samples of a smooth function over a rectangular domain; see the lower part of
Figure 1. Therefore, an efficient representation strategy for the solution of (3) needs to adapt the block low-rank structure
of Usol

n,𝓁 according to 𝓁.
In this work, we develop techniques for:

(i) Computing a HALR representation for the discretization of a function explicitly given in terms of a black-box
evaluation function.

(ii) Solving the linear system (2) by exploiting the HALR structure in the right-hand side and the decomposition Ln =
I ⊗ A1,n + A2,n ⊗ I.
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F I G U R E 1 Top: Snapshots of u(x, y, t) =
[
1 + exp

(
x+y−t

2K

)]−1
for t = 0.5, 1, 1.5, 2 and K = 0.001. Bottom: Corresponding block low-rank

structure of Usol
n,𝓁 for n = 4096; the numbers indicate the rank of the corresponding block while full rank blocks are colored in blue.

Task (i) yields structured representations for the initial condition un,0 and the source term fn,𝓁 . Taken together, tasks
(i) and (ii) allow to efficiently compute the matricized solution Un,𝓁+1 of (2). The assumption on the discretized operator
in (ii) is satisfied for L = 𝜕

2

𝜕x2 +
𝜕

2

𝜕y2 and enables us to rephrase (2) as the matrix equation

(1
2

I − ΔtA1,n

)
Un,𝓁+1 + Un,𝓁+1

(1
2

I − ΔtAT
2,n

)
= ΔtFn,𝓁 + Un,𝓁 + Bn,𝓁 . (4)

The article is organized as follows; in Section 2, we introduce HALR matrices and discuss their arithmetic. Section 2.4
focuses on solving matrix equations of the form (4) where the right-hand side is represented in the HALR format. There,
we propose a divide-and-conquer method whose cost scales comparably to the memory resources used for storing the
right-hand side. In Section 3, we address the problems of constructing and adapting HALR representations. In particular,
Section 3.3 considers the following scenario: given a parameter maxrank, determine the partitioning that provides the
biggest reduction of the storage cost and uses low-rank blocks of rank bounded by maxrank. In Section 4, we incorporate
HALR matrices into integration schemes for PDEs, and we perform numerical tests that demonstrate the computational
benefits of our approach. Conclusions are drawn in Section 5.

1.1 Notation

To simplify the statements of some definitions, we introduce the following compact notation for intervals of consecutive
integers:

⟦il, ir⟧ ∶= {il, il + 1, … , ir} ⊆ N, for 0 < il ≤ ir.

In addition, we write ⟦il, ir⟧ < ⟦i′l , i′r⟧ if ir < i′l and we use the symbol ⊔ to indicate the union of disjointed sets.

2 HALR

We are concerned with matrix partitioning described by quad-trees, that is, trees with four branches at each node. More
explicitly, given a matrix A we consider the block partitioning
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4 of 24 MASSEI et al.

A =

[
A11 A12

A21 A22

]
, (5)

where the blocks Aij can be either dense blocks, low-rank matrices, or recursively partitioned. The cases of interest
are those where large portions of the matrix are in low-rank form. This is in the spirit of well-established hierarchical
low-rank formats such as -matrices6 and 2-matrices.7 To formalize our deliberations, we first provide the definition
of a quad-tree cluster.

Definition 1. Let m,n ∈ N. A tree  is called quad-tree cluster for ⟦1,m⟧ × ⟦1,n⟧ if

• The root node is ⟦1,m⟧ × ⟦1,n⟧.
• Each node I is a subset of ⟦1,m⟧ × ⟦1n⟧ of the form

I = Ir × Ic ∶= ⟦m1,m2⟧ × ⟦n1,n2⟧.
• Each non-leaf node I = Ir × Ic has 4 children I11, I12, I21, I22, that are of the form Iij = Iri × Icj such that Ir = Ir1 ⊔ Ir2 ,

Ic = Ic1 ⊔ Ic2 , and Ir1 < Ir2 , Ic1 < Ic2 .
• Each leaf node is labeled either as dense or low-rank.

The depth of  is the maximum distance of a node from the root; throughout this work we indicate depths with the lower
case letter p with an appropriate subscript, if required by the context.

An example of a quad-tree cluster of depth 4 is given in Figure 2; this induces the block structure of
a 16 × 16 matrix shown in the bottom part of the figure. This block structure is formalized in the following
definition.

F I G U R E 2 Example of a quad-tree cluster of depth 4 and the induced partitioning on the matrix. The leaf nodes labeled as dense
correspond to dense blocks colored in blue. The leaf nodes labeled as low-rank are taken of rank 1 and correspond to the blocks colored in
gray.
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Definition 2. Let A ∈ Cm×n and  be a quad-tree cluster for ⟦1,m⟧ × ⟦1,n⟧.
1. Given k ∈ N, A is said to be a ( , k) HALR matrix, in short ( , k)-HALR, if for every leaf node Ir × Ic of  labeled as

low-rank, the submatrix A(Ir, Ic) has rank at most k.
2. The smallest integer k for which A is ( , k)-HALR is called the  -HALR rank of A.

There are close connections between ( , k)-HALR matrices and -matrices.6 More precisely, any -matrix with
low-rank blocks of rank at most k and with binary row and column cluster trees is a ( , k)-HALR matrix. In this case, the
quad-tree cluster is obtained from the Cartesian product of the row and column cluster trees. The HODLR format8 is a
special case discussed in more detail in Section 2.3. Compared to -matrices, Definition 1 is—in principle—more flexi-
ble by allowing for quad-tree clusters that cannot be written as subsets of any Cartesian product of a row and a column
cluster trees. Note, however, that we will make little use of this flexibility in the following. In particular, the constructions
described in Section 3 always lead to HALR matrices that are also-matrices.

In the next sections, we will describe operations involving HALR matrices and we will tacitly assume to have access
to their structured representations, that is, the quad-tree clusters and the low-rank factors of the low-rank leaves. How
to retrieve the HALR representation of a given matrix will be discussed in Section 3.

2.1 Matrix-vector product

In complete analogy with the -matrix arithmetic, the HALR structure allows to perform the matrix-vector product
efficiently by relying on the block-recursive procedure described in Algorithm 1.

Algorithm 1. Matrix-vector product with an HALR matrix A

1: procedure HALR_MatVec(A, v)
2: if A is a leaf node then
3: return Av ⊳ Exploiting low-rank structure if present
4: else
5: Partition v =

[
v1
v2

]

6: return
[

HALR_MatVec(A11, v1) +HALR_MatVec(A12, v2)
HALR_MatVec(A21, v1) +HALR_MatVec(A22, v2)

]
7: end if
8: end procedure

In the particular case when the cluster only contains the root, A itself is either low-rank (of rank k) or dense and
Algorithm 1 requires ((m + n)k) and (mn) flops, respectively. We remark that this cost corresponds to the memory
required for storing A. This statement holds in more generality.

Lemma 1. Let A ∈ Cm×n be a ( , k)-HALR, and v ∈ Cn a vector. Computing Av by Algorithm 1 requires (S) flops, where
S is the memory required to store A.

Proof. The result is shown by induction on the depth of  . By the discussion above, the claim is true when  consists of
a single node. If the result holds for trees of depth up to d, and  has depth d + 1, the cost for Av is dominated by the cost
of the 4 recursive calls to HALR_MatVec. Using the induction assumption, it follows that the cost for these calls sums
up to (S). ▪

2.2 Arithmetic operations

We proceed by analyzing the interplay between the quad-tree cluster partitioning and the usual matrix operations. If A is
a given ( , k)-HALR we can define the transpose of  as the natural cluster tree for AT .

Definition 3. Let m,n ∈ N, and  a quad-tree cluster for ⟦1,m⟧ × ⟦1,n⟧. The transposed quad-tree cluster  T is defined
as the quad-tree cluster on ⟦1,n⟧ × ⟦1,m⟧ obtained from  by:
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(i) replacing each node Ir × Ic with Ic × Ir,
(ii) swapping the subtrees at I12 and I21 for every non-leaf node.

Clearly, A is ( , k)-HALR if and only if AT is ( T
, k)-HALR.

Remark 1. In the following, we want to regard a subtree of  again as a quad-tree cluster. For such a subtree to satisfy
Definition 1, we tacitly shift its root ⟦m1,m2⟧ × ⟦n1,n2⟧ to ⟦1,m2 −m1⟧ × ⟦1,n2 − n1⟧ and, analogously, all other nodes
in the subtree. In the opposite direction, when connecting a tree to a leaf of  , we shift the root (and the other nodes) of
the tree such that it matches the index set of the leaf.

Now, let us focus on arithmetic operations between HALR matrices. When dealing with binary operations, we need
to ensure some compatibility between the sizes of the hierarchical partitioning in order to unambiguously define the
partitioning of the result. To this aim, we introduce the notions of row and column compatibility, which will be used in
the next section for characterizing matrix products and additions.

Definition 4. Given mA,nA,mB,nB ∈ N, let A, B be quad-tree clusters for ⟦1,mA⟧ × ⟦1,nA⟧ and ⟦1,mB⟧ × ⟦1,nB⟧,
respectively.

• A and B, with roots IA and IB, are said to be row-compatible if one of the following two conditions are satisfied:

(i) A or B only contains the root, and mA = mB.
(ii) For every i, j = 1, 2 the subtrees at (IA)ij and (IB)ij are row-compatible.

• A and B are said column-compatible if  T
A and  T

B are row-compatible.
• A and B are said compatible if they are both row- and column-compatible.

Intuitively, two quad-trees A and B are row (resp. column) compatible if taking the same path in A and B yields
index sets with the same number of row (resp. column) indices.

According to Definition 4, compatibility does not depend on the labeling of the leaf nodes. Moreover, two clusters
can be compatible even if they have different depths (or contain subtrees of different depths). The following definition
introduces a partial ordering among compatible trees. This will be used to define the intersection between quad-tree
clusters, which in turn allows us to characterize the natural partitioning of binary matrix operations involving A and B.

Definition 5. Let A, B be compatible quad-tree clusters for ⟦1,m⟧ × ⟦1,n⟧. We write A ≤ B if one of the following
conditions is satisfied

(i) A only contains the root labeled as low-rank.
(ii) B only contains the root labeled as dense.

(iii) For every i, j = 1, 2 the subtrees (A)ij and (B)ij at (IA)ij and (IB)ij, respectively, verify (A)ij ≤ (B)ij.

The idea behind Definition 5 is that A ≤ TB implies that a (A, k)-HALR matrix has a stronger structure than an
(B, k)-HALR one. In fact, any (A, k)-HALR is also a (B, k)-HALR for all B ≥ A. A low-rank matrix itself corresponds
to the format with the strongest structure. Based on this, we define the intersection between A and B as the strongest
structure among the ones which are weaker than both A and B.

Definition 6. Let A, B be compatible quad-tree clusters for ⟦1,m⟧ × ⟦1,n⟧. Their intersection  ∶= A ∩ B is defined
recursively as follows:

(i) If A (resp. B) only contain the root labeled as low-rank then A ∩ B = B (resp. A ∩ B = A).
(ii) If A or B only contain the root labeled as dense then A ∩ B is a tree that only contains the root labeled as dense.

(iii) If A and B contain more than one node then their intersection is constructed by connecting the subtrees ij =
(A)ij ∩ (B)ij, i, j = 1, 2, to the root I = IA = IB.

Remark 2. The neutral element for the intersection is given by the quad-tree  only containing the root labeled as
low-rank, that is, a low-rank matrix.

We now make use of the notions defined above to infer the structure of A + B from the ones of A and B.
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Lemma 2. Let A,B ∈ Cm×n be (A, kA)-HALR and (B, kB)-HALR, respectively. If A, B are compatible then A + B is (A ∩
B, kA + kB)-HALR.

Proof. We recall that the sum of two matrices of rank at most kA and kB, respectively, has rank at most kA + kB. The
statement follows from traversing the tree TA ∩ B; for every leaf in the tree for which both submatrices of A and B are
low rank, the resulting submatrix in A + B will have rank at most kA + kB. ▪

It is instructive to consider two special cases. First, if A = B, then A + B shares the same quad-tree cluster (with
higher rank). Second, in view of Remark 2, if A is low rank then A + B has the same structure as B, with a rank increase
by (at most) the rank of A.

The proof of Lemma 2 suggests a recursive procedure that is summarized in Algorithm 2. An inductive argument
analogous to the one used for Lemma 1 shows that the complexity of Algorithm 2 is bounded by two times the cost of
storing a (A ∩ B, kA + kB)-HALR matrix. Note that this estimate can be reduced by exploiting the fact that Line 5 is
executed at no cost by simply appending the low-rank factors of A,B. For example, when A is a rank-kA matrix the cost
reduces to kA times the number of entries in the dense blocks of B, which equals the storage needed for a (B, 0)-HALR
matrix

Algorithm 2. Sum of HALR matrices

1: procedure HALR_Sum(A, B)
2: if A and/or B are leaf nodes labeled as dense then
3: return the dense matrix A + B
4: else if A and B are leaf nodes labeled as low-rank then
5: return a low-rank factorization of A + B
6: else
7: If A (resp. B) is a low-rank leaf, partition it according to B (resp. A)

8: return
[

HALR_Sum(A11,B11) HALR_Sum(A12,B12)
HALR_Sum(A21,B21) HALR_Sum(A22,B22)

]
9: end if

10: end procedure

For a matrix product A ⋅ B of HALR matrices, it is natural to assume that AT and B are row compatible. Assuming
that A and B denote, as usual, the quad-tree clusters of A and B, the matrix product A ⋅ B stored in the HALR format is
computed with the following procedure:

(i) If A (resp. B) only contains the root labeled as low-rank, then the resulting tree only contains the root labeled
as low-rank and its factorization is obtained efficiently by applying B on the right low-rank factor of A (resp. the
analogous procedure for B); otherwise

(ii) If A (resp. B) only contains the root labeled as dense, then A ⋅ B is computed by applying B on each row of A, and
the resulting tree only contains the root labeled as dense; otherwise

(iii) We partition

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, C = AB =

[
C11 C12

C21 C22

]
,

determine recursively AikBkj along with their clusters ijk for i, j, k = 1, 2, and set Cij = Ai1B1j + Ai2B2j with cluster
ij1 ∩ ij2.

We note that it is difficult to predict a priori the quad-tree cluster of AB because even if A and B contain many low-rank
blocks, the structure may be completely lost in AB; see the example reported in Figure 3. Also computing A ⋅ B may cost
significantly more than the storage cost of the outcome, for example, when A and B are dense matrices. On the other
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F I G U R E 3 Example of loss of structure when computing the matrix–matrix multiplication. The blue region correspond to nodes
labeled as dense, and the empty regions to nodes labeled as low-rank.

F I G U R E 4 Example of partitioning induced by a HODLR cluster tree of depth 3

hand, in Section 2.3, we will show that if one of the two factors happens to be a HODLR matrix then the cost of computing
A ⋅ B and its quad-tree structure are predictable.

2.3 HODLR matrices

HODLR matrices are special cases of HALR matrices; all the off-diagonal blocks have low rank. To formalize this notion,
we adopt the definition given in Reference 18, rephrased in the formalism of quad-tree clusters.

Definition 7. A quad-tree cluster  (H)p of depth p is said to be a HODLR cluster tree if either p = 1 and  (H)p only contains
the root labeled as dense, or if the children Iij at the root of  (H)p satisfy:

• I12 and I21 are leaf nodes labeled as low-rank.
• The subtrees at I11 and I22 are HODLR cluster trees of depth p − 1.

We say that a matrix is ( (H)p , k)-HODLR if it is ( (H)p , k)-HALR. The smallest integer k for which a matrix A is
( (H)p , k)-HODLR is called the HODLR rank of A.

An example of a HODLR cluster tree is reported in Figure 4. A crucial property of HODLR matrices is that they are
block diagonal up to a low-rank correction. This allows to predict the structure of a product of HALR matrices whenever
one of the factors is, in fact, a HODLR matrix.

Lemma 3. Let A ∈ Cm×m be a ( (H)pA
, kA)-HODLR matrix and B ∈ Cm×n be a ( , kB)-HALR matrix of depth pB. If AT

and B are row compatible and pA ≥ pB, then A ⋅ B is a ( , kB + (pA − 1) ⋅ kA)-HALR matrix. Similarly, if C is an n × n
( (H)pC

, kC)-HODLR matrix and pC ≥ pB then B ⋅ C is a ( , kB + (pC − 1) ⋅ kC)-HALR matrix.

Proof. We prove only the first statement, the second can be obtained by transposition. We proceed by induction on pA; if
pA = 1, then A is composed of a single dense block. Since pB ≤ pA, B is also composed of a single block, either labeled as
low-rank or dense. Both structures are preserved when multiplying with A.

Suppose that the claim is valid for pA − 1 ≥ 1. If  is composed of a single node, the claim is valid. Otherwise, by
decomposing A in its diagonal and off-diagonal parts, we may write
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[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 A11B12

A22B21 A22B22

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MD

+

[
A12B21 A12B22

A21B11 A21B12

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MO

. (6)

In view of the induction step, each block of MD is a (ij, kB + (pA − 2)kA)-HALR matrix, for i, j = 1, 2, where ij are the
quad-tree clusters associated with the first level of  . In particular, MD is ( , kB + (pA − 2)kA)-HALR. Finally, note that
all the blocks of MO have rank bounded by kA, and therefore MO is ( , kA)-HALR. We conclude that AB = MD +MO is
( , kB + (pA − 1)kA)-HALR. ▪

The complexity of multiplying by a HODLR matrix can be bounded in terms of the storage of the other factor.

Lemma 4. Under the assumptions of Lemma 3 the cost of computing A ⋅ B is(S(nmin + kA(pA − 1))) where S is the storage
cost of B and nmin is an upper bound on the size of the dense diagonal blocks of A.

Proof. For pA = 1, A is a square matrix of size at most nmin while B has low rank or is dense. In both cases, it directly
follows that the cost of multiplication is (Snmin).

For the induction step, we recall the splitting (6) of A ⋅ B into two terms MD and MO. The term MO is a prod-
uct between B and a matrix of rank (at most) 2kA, which, according to Lemma 1, requires cvSkA operations for some
constant cv. The term MD consists of four products AiiBij, where Aij is a HODLR matrix of depth pA − 1 and Bij is
a HALR matrix. By induction, there is a constant c ≥ cv + 2 such that the cost for each of these four multiplications
is bounded by cSij(nmin + kA(pA − 2)) operations, where Sij denotes the storage cost of Bij. Adding the correspond-
ing rank-kA submatrix of MO requires at most 2SijkA operations, as discussed after Lemma 2. Therefore, the cost for
computing the block (i, j) of the product A ⋅ B is bounded by cSij(nmin + kA(pA − 1)). Summing over i, j concludes the
proof. ▪

Remark 3. When performing arithmetic operations between HALR matrices, or HODLR and HALR matrices, it is often
observed that the numerical rank of the blocks in the outcome is significantly less than the worst case scenario depicted
in Lemmas 2 and 4. Hence, it is advisable to perform a recompression stage, see Reference 6, Algorithm 2.17, p. 33, when
expanding low-rank factorizations, such as in line 5 of Algorithm 2.

2.4 Solving Sylvester equations with HODLR coefficients and HALR right-hand side

As pointed out in Section 1, when dealing with PDEs defined on a rectangular two-dimensional domain, one frequently
encounters linear matrix equations of the form

AX + XB = C, (7)

with square matrices A,B and a right-hand side C of matching size. To simplify the discussion, we will assume that A and
B are of equal size n. As A,B stem from the discretization of a 1D differential operator, they are typically ( (H)p , k)-HODLR
for some small k. In contrast to our previous work,18 where we assumed C to be HODLR as well, we now consider the
more general setting when C is ( , kC)-HALR. In the following, we require that  (H)p is compatible with  and p ≥ pC,
where pC denotes the depth of  .

The particular case when C is a dense matrix will be discussed in further detail in Section 2.4.1. For the moment, we
let DenseRHS_Sylv denote the algorithm chosen for this case. If, instead, C is low-rank, well-studied low-rank solvers
are available, such as Krylov subspace methods and ADI (see Reference 19 for a survey). Under suitable conditions on
the spectra of A and B and given a low-rank factorization of C, these solvers return an approximation to the solution X
in factorized low-rank format. Since the specific choice of the low-rank solver is not crucial for the following discussion,
we refer to this routine as LowRankRHS_Sylv.

Equation (7) can be solved recursively using an extension of our divide-and-conquer approach18 for HODLR matri-
ces C. If  only contains the root and, hence, C is composed of a single block, we use either DenseRHS_Sylv (if C is
dense) or LowRankRHS_Sylv (if C is low-rank). Otherwise, we partition (7) according to the four children of the
root of  :
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[
A11 A12

A21 A22

][
X11 X12

X21 X22

]
+

[
X11 X12

X21 X22

][
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
.

In the spirit of Reference 18, we first solve the equation associated with the diagonal blocks of A and B:

[
A11 0
0 A22

][
X̃11 X̃12

X̃21 X̃22

]
+

[
X̃11 X̃12

X̃21 X̃22

][
B11 0
0 B22

]
=

[
C11 C12

C21 C22

]
, (8)

which is equivalent to solving the four decoupled equations

AiiX̃ ij + X̃ ijBjj = Cij, i, j = 1, 2, X̃ ∶=

[
X̃11 X̃12

X̃21 X̃22

]
, (9)

where, by recursion, X̃ can be represented in the  -HALR format. Letting 𝛿X ∶= X − X̃ and subtracting (8) from (7), we
obtain

A𝛿X + 𝛿XB = −

[
0 A12

A21 0

]
X̃ − X̃

[
0 B12

B21 0

]
,

which is a Sylvester equation with right-hand side of rank at most 4k. In turn, 𝛿X is computed using LowRankRHS_Sylv,
and X = X̃ + 𝛿X is retrieved performing a low-rank update. Note that the Sylvester equations in (9) have again HODLR
coefficients and HALR right-hand side, with the depth decreased by one. Applying this step recursively yields the
divide-and-conquer scheme reported in Algorithm 3. Note that, the approximate solution returned by Algorithm 3 retains
the HALR format, with the quad-tree cluster  inherited from C.

Algorithm 3. Divide-and-conquer approach for solving AX + XB = C

1: procedure D&C_Sylv(A,B,C)
2: if pC = 1 then
3: if C is low-rank then
4: return LowRankRHS_Sylv(A,B,C)
5: else
6: return DenseRHS_Sylv(A,B,C)
7: end if
8: else
9: for i, j = 1, 2 do

10: X̃ij ← D&C_Sylv(Aii,Bjj,Cij)
11: end for
12: C̃ ← −

[
0 A12

A21 0

]
X̃ − X̃

[
0 B12

B21 0

]
13: 𝛿X ← LowRankRHS_Sylv(A,B, C̃)

14: return
[

X̃11 X̃12
X̃21 X̃22

]
+ 𝛿X

15: end if
16: end procedure

In practice, LowRankRHS_Sylv in lines 4 and 13 uses low-rank factorizations of the matrices C and C̃, and returns
the solutions in factorized form. The low-rank factors of C at line 4 are given as C is a leaf node of an HALR matrix. At
line 4 they are easily retrieved using the low-rank factorizations of the off-diagonal blocks of A and B that are stored in
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MASSEI et al. 11 of 24

their HODLR representations; see Reference 18, Section 3.1 for more details. When X is assembled by its blocks in line
14, an HALR structure with the appropriate tree is created.

2.4.1 Sylvester equation with dense right-hand side

We now consider the solution of a Sylvester equation (7) with dense C and HODLR coefficients A,B. This is needed in
Line 6 of Algorithm 3, but it may also be of independent interest.

For small n (say, n ≤ 200), it is most efficient to convert A and B to dense matrices, and use a standard dense solver,
such as the Bartels–Stewart method or RECSY,20 requiring (n3) operations.

For large n, we will see that it is more efficient to use a recursive approach instead of a dense solver. For this purpose, we
partition C into a block matrix in accordance with the row partition of A and the column partition of B. More specifically,
if the size of the minimal blocks in the partitioning of A and B is nmin and n = 2pnmin, we represent C as a n

nmin
× n

nmin
block

matrix, that is, a ( , 0)-HALR of depth p with all leaf nodes labeled as dense. Then (7) is solved recursively in analogy to
Algorithm 3. The resulting procedure is summarized in Algorithm 4, where DenseSolver_Sylv indicates the standard
dense solver.

2.4.2 Complexity analysis of the D&C Sylvester solvers

In order to perform a complexity analysis we need to make a simplifying assumption on the convergence of the low-rank
Sylvester solver, which usually depends on several features of the problem, such as the spectrum of A and B.

Algorithm 4. Solver of AX + XB = C for a dense matrix C

1: procedure DenseRHS_Sylv(A,B,C)
2: if pA = pB = 1 then
3: return DenseSolver_Sylv(A,B,C)
4: else
5: Partition C according to the partitioning of A,B:

6: C ←

[
C11 C12
C21 C22

]
Cij dense for all i, j

7: for i, j = 1, 2 do
8: X̃ij ← DenseRHS_Sylv(Aii,Bjj,Cij)
9: end for

10: C̃ ← −
[

0 A12
A21 0

]
X̃ − X̃

[
0 B12

B21 0

]
11: 𝛿X ← LowRankRHS_Sylv(A,B, C̃)

12: return
[

X̃11 X̃12
X̃21 X̃22

]
+ 𝛿X

13: end if
14: end procedure

Assumption 1. The computational cost of LowRankRHS_Sylv for AX + XB = C is (kCkn log n + k2nlog2n), where n
is the size of A,B, and k their HODLR rank, and kC is the rank of C. The rank of X is O(kC).

Assumption 1 is satisfied, for example, if the extended Krylov subspace method21 converges to fixed (high) accuracy
in(1) iterations and the LU factors of A and B are HODLR matrices of HODLR rank(k).1 This requires the solution of
a linear system with A and B in each iteration, via precomputing accurate approximations of the LU decompositions of A,
B at the beginning with cost (k2nlog2n). In other situations, for example, when the number of steps and/or the number
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12 of 24 MASSEI et al.

of linear systems per step depend logarithmically on n in order to reach a fixed accuracy, Assumption 1 and the following
discussion can be easily adjusted by adding log n factors.

Before analyzing the more general Algorithm 3, it is instructive to first focus on Algorithm 4. We note that Algorithm 4
solves ( n

nmin
)2 dense Sylvester equations of size nmin and, at each level j = 0, … , p − 1, as well as 4j Sylvester equations of

size n
2j and with right-hand sides of rank at most 4k. In addition, computing the low-rank factorization at line 10 requires

( n2

4j k) operations, amounting to a total cost of (n2). Under Assumption 1, LowRankRHS_Sylv solves the equations

at level j with a cost bounded by ( k2nlog2n
2j ). Hence, the total computational cost is(n2(nmin + k2log2n)). For large n and

moderate k, we can therefore expect that Algorithm 4 is faster than a dense solver of complexity (n3).
The following lemma estimates the cost of Algorithm 3 for a general HALR matrix C, which reduces to our previous

estimates in the two extreme cases: (kCkn log n + k2nlog2n) if C is low-rank and (n2nmin + k2n2log2n) algorithm if
C is dense.

Lemma 5. Consider the Sylvester equation AX + XB = C with ( (H)p , k)-HODLR matrices A,B ∈ Cn×n and a ( , kC)-HALR
matrix C ∈ Cn×n, with a quad-tree cluster  that is compatible with  (H)p and has depth pC ≤ p. Suppose that p ∼ log(n),
and let nmin denote the size of minimal blocks in A,B. If Assumption 1 holds, then the cost of Algorithm 3 for computing the
solution X is (S(nmin + k2log2n)), where S is the storage required for C.

Proof. We prove the result by induction on pC. For pC = 1, the result holds following the discussion above, because S = n2

if C is dense and S = 2kCn if C is low-rank.
As the induction step is similar to the proof of Lemma 4, we will keep it briefer. When pC > 1, Algorithm 3 consists of

four stages:

1. Solution of AiiX̃ ij + X̃ ijBjj = Cij, for i, j = 1, 2.
By the induction hypothesis, each solve is (Sij(nmin + k2log2n)), where Sij denotes the storage of Cij and, hence, the
total cost is (S(nmin + k2log2n)).

2. Computation of the right-hand side in line 12.
This computation involves 4k matrix-vector products with X̃ . After p − 1 recursive steps, the storage for X̃ is at most the
one for C plus the one for storing the p − 1 low-rank updates, which amounts to(S + kpn) according to Assumption 1.
Hence, by Lemma 1, the cost of this step is (Sk + k2pn).

3. Solution of Sylvester equation in line 13.
Because the rank of the right-hand side is bounded by 4k, the cost of this step step is (k2nlog2n).

4. Update of X̃ in line 14.
The cost of this step is (Sk + k2pn), the storage of X̃ times the rank of 𝛿X .

The total cost is dominated by the cost of Step 1, because one can easily prove by induction that pn is bounded by(S).
This completes the proof. ▪

Note that it is not the HALR rank kC but the storage cost S of the right-hand side C that appears explicitly in the
complexity bound of Lemma 5. The advantage of using S instead of an upper bound induced by kC is that it allows us to
better explain why isolated relatively high ranks can still be treated efficiently.

We remark that when A and B are banded, for example, when they arise from the discretization of 1D differential
operators, Algorithm 3 can be executed without computing the HODLR representations of A and B. Indeed, the low-rank
factorizations of the off-diagonal blocks at line 12 are easily retrieved on the fly and one can implement a solver of Sylvester
equations that exploits the sparse structure of A,B, in LowRankRhs_Sylv.

2.5 HALR matrices in hm-toolbox

The hm-toolbox22 available at https://github.com/numpi/hm-toolbox is a MATLAB toolbox for working conveniently
with HODLR and HSS matrices via the classes hodlr and hss, respectively. We have added functionality for HALR matrices
to the toolbox. A new class halr has been introduced, which stores a ( , k)-HALR matrix A as an object with the following
properties:
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MASSEI et al. 13 of 24

• sz is a 1 × 2 vector with the number of rows and columns of the matrix A.
• F contains a dense representation of A if it corresponds to a leaf node labeled as dense.
• U, V contain the low-rank factors of A if it corresponds to a leaf node labeled as low-rank.
• admissible is a Boolean flag that is set to true for leaf nodes labeled as low-rank.
• A11, A21, A12, A22 contain 4 halr objects corresponding to the children of A.

The toolbox implements operations between halr objects, such as Algorithms 1 and 2 and matrix multipli-
cation, as well as the Sylvester equation solver described in Section 2.4. Similar to hodlr and hss, when arith-
metic operations are performed recompression (e.g., low-rank approximation) is applied in order to limit stor-
age while ensuring a relative accuracy. More specifically, an estimate of the norm of the result C = A op B
is computed beforehand, and recompressions are performed using a tolerance 𝜖 ⋅ ||C||, where 𝜖 is a global
tolerance.

3 CONSTRUCTION VIA ADAPTIVE DETECTION OF LOW-RANK BLOCKS

In this section, we deal with task (i) described in Section 1, that is: given a function handle f ∶ ⟦1,m⟧ × ⟦1,n⟧→ C

construct an HALR representation of A = (aij)i,j ∈ Cm×n such that aij = f (i, j).

3.1 Low-rank approximation

We start by considering a simpler problem, the (global) approximation of A with a low-rank matrix. Several methods have
been proposed for this problem,23-26 which target different scenarios. In the following sections, we will often need to deter-
mine if a matrix is sufficiently low-rank in the sense that it can be approximated, within a certain accuracy, with a matrix of
rank bounded by maxrank. For this purpose, we assume the availability of a procedure (U,V , flag) = LRA(A,maxrank, 𝜖)
that returns a low-rank factorization A ≈ UV T , of rank at most maxrank. The returned flag indicates whether the
approximation verifies ||A − UV T|| ≲ 𝜖.

In our implementation, we will rely on the adaptive cross approximation (ACA) algorithm with partial pivoting,24

which only requires the evaluation of a few matrix rows and columns selected by the algorithm. The parameter 𝜖 is
used in the heuristic stopping criterion of the method, which in practice usually ensures the requirement on the abso-
lute error stated above. More specifically, the first pivot is chosen as the entry of maximum magnitude over a random
sample of (n) entries from A, and the corresponding row and column are used to construct a rank-1 approxima-
tion to A. Then, at step j ACA chooses a new pivot from the residual matrix A − UjV T

j with partial pivoting, where
UjV T

j is the current rank-j approximation, and continues the process by improving the approximation with a rank-1
update. The process is continued until the norm of the update becomes smaller than 𝜖; then, as a safeguard condition,
we inspect the residual matrix in (n) randomly sampled entries. If the rank-1 update corresponding to the maxi-
mum entry has norm bounded by 𝜖, then we stop. If this is not the case, the process is continued until the condition
is met.

The parameter 𝜖 is used in the heuristic stopping criterion of the method, which in practice usually ensures
the requirement on the absolute error stated above. When aiming at a relative accuracy 𝜖rel, we need to set 𝜖 =
𝜖rel||A||; if ||A|| is not available, it is estimated during the first ACA steps. The cost of ACA for returning an
approximation of rank k is ((k2 + kcA)(m + n)) where cA is the cost of evaluating one entry of A. The approxi-
mation is returned in factorized form as a product of m × k and k × n matrices and therefore the storage cost is
(k(m + n)).

Depending on the features of A, other choices for the procedure LRA might be attractive. For instance, if the
matrix-vector product by A and AT can be performed efficiently (for instance when A is sparse), then a basis for
the column range of A can be well-approximated by taking matrix-vector products with a small number of ran-
dom vectors, and this can be used to construct an approximate low-rank factorization as described in Reference 23.
The methodology described in the following sections can be adapted to this context, by replacing the procedure
LRA.
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14 of 24 MASSEI et al.

3.2 HALR approximation with prescribed cluster

Letting  denote a prescribed quad-tree cluster on ⟦1,m⟧ × ⟦1,n⟧, we consider the problem of approximating A within
a certain tolerance 𝜖, with a ( , k)-HALR ∼ A for some, hopefully small k. A straightforward strategy for building ∼ A is
to perform the following operations on its blocks:

(i) For a leaf node labeled low-rank, run LRA (without limitation on the rank) to approximate the block in factored
form.

(ii) For a leaf node labeled dense, assemble and explicitly store the whole block.
(iii) For a non-leaf node, proceed recursively with its children.

To avoid an overestimation of the ranks for blocks of relatively small norm, we first approximate the norm of the entire
matrix with the norm of a rough approximation of A obtained by running LRA for a small value of maxrank.

3.3 HALR approximation with prescribed maximum rank

We now discuss the problem at the heart of HALR: Given an integer maxrank determine a quad-tree cluster  and an
( , k̃)-HALR matrix Ã such that k̃ ≤ maxrank and ||A − Ã|| ≤ 𝜖. Moreover, we ideally want  to be minimal in the sense
that if Â is another (̂ , k̂)-HALR approximating A within the tolerance 𝜖, and k̂ ≤ maxrank, then ̂ ≮  . In this context,
we consider all the trees (or subtrees) that contain only dense leaves to be equivalent to a single dense node.

We propose to compute  and Ã with the following greedy algorithm:

(i) We apply LRA limited by maxrank to the matrix A. If this is successful, as indicated by the returned flag, then  is
set to a tree with a single node that is labeled low-rank and contains the approximation returned by LRA.

(ii) If LRA fails and the size of A is smaller than a fixed parameter nmin then  is set to a tree with a single node labeled
as dense and the matrix is formed explicitly.

(iii) Otherwise we split A in 4 blocks of nearly equal sizes and we proceed recursively on each block. Then:

• If the 4 blocks are all leaves labeled as dense, then we merge them into a single dense block.
• Otherwise, we attach to the root of  the four subtrees resulting from the recursive calls.

The whole procedure is summarized in Algorithm 5. Under reasonable assumptions, the cost of Algorithm 5 is
proportional to the one for storing its outcome.

Lemma 6. Let A ∈ Cn×n, n = 2pnmin, and assume that for fixed 𝜖 > 0 and maxrank ∈ N the cost of LRA(B,maxrank, 𝜖) is
(t) for any t × t matrix B. Denote by Â the HALR matrix returned by Algorithm 5 with input parameters A,maxrank, 𝜖,nmin.
If evaluating the entries of A costs(1), then the cost of Algorithm 5 is(S), where S is the maximum between the storage for
Â and n.

Proof. We proceed by induction on the depth p of the quad-tree cluster of Â. If p = 1 and Â is a low-rank matrix it means
that Algorithm 5 has run one (successful) call of LRA on A; the latter costs (n) = (S). If Â is a dense matrix, then
Algorithm 5 has run (without success) 4j calls of LRA on n∕2j × n∕2j matrices for each level j = 0, … , p, and has evaluated
all the entries of A at the end of the recursion. The overall cost of these operations is (n2) = (S). When p > 1 we have
that the cost of Algorithm 5 is given by the first call of LRA, that is, (n), plus the costs of the four recursive calls on the
blocks of size n∕2 × n∕2. Applying the induction step and the fact that (S) ≥ (n) we get the claim. ▪

3.4 Refining an existing partitioning

As operations are performed on a ( , kA)-HALR matrix A, its low-rank properties may evolve and it can be beneficial to
readjust the tree  accordingly by making use of Algorithm 5. More specifically, we refine  by performing the following
steps from bottom to top:
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MASSEI et al. 15 of 24

Algorithm 5. Approximation of a matrix A using the greedy construction of the quad-tree cluster  . The (absolute)
approximation accuracy is determined by 𝜖

1: procedure HALR_Adaptive(A,𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖,nmin)
2: (m,n)← size(A)
3: (U,V , flag)← LRA(A,𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
4: if LRA succeeds then
5: H.U ← U, H.V ← V ,H.admissible = 1
6: else
7: if min{m,n} ≤ nmin then
8: H.F ← A, H.admissible = 0
9: else

10: H.admissible = 0, m1 ← ⌈m
2
⌉,n1 ← ⌈ n

2
⌉

11: H.A11 = HALR_Adaptive(A(1 ∶ m1, 1 ∶ n1),𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
12: H.A21 = HALR_Adaptive(A(m1 + 1 ∶ m, 1 ∶ n1),𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
13: H.A12 = HALR_Adaptive(A(1 ∶ m1,n1 + 1 ∶ n),𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
14: H.A22 = HALR_Adaptive(A(m1 + 1 ∶ m,n1 + 1 ∶ n),𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
15: if H.Aij are labeled as dense for i, j = 1, 2 then

16: H.F ←

[
H.A11.F H.A12.F
H.A21.F H.A22.F

]
17: H.Aij ← [ ] ⊳ Remove the successors
18: end if
19: end if
20: end if
21: end procedure

(i) Algorithm 5 with maximum rank maxrank is applied to each leaf node and the leaf node is replaced with the outcome.
(ii) A node with 4 children that are dense leaf nodes is merged into a single dense leaf node.

(iii) For a node with 4 children that are low-rank leaf nodes, we form the low-rank matrix obtained by merging them.
If its numerical rank is bounded by maxrank, we replace the node with a low-rank block. Otherwise, the node
remains unchanged.

The procedure is summarized in Algorithm 6; to decide whether to merge four low-rank blocks in (iii), we make use of
the method CompressFactors that computes a reduced truncated singular value decomposition of UV T ; this requires
(k2(m + n) + k3) flops, where k is the number of columns of U,V , see Reference 6, Algorithm 2.17, p. 33.

In the next sections, Algorithm 6 is regularly used to deal with situations where a matrix B is obtained from operating
with𝓁HALR matrices A1, … ,A𝓁 and its tree is initially set to the intersection of the cluster trees of A1, … ,A𝓁 . A relevant
special case is the one where only A1 is a general HALR matrix and all the other matrices are low-rank; in this case the
initial tree for B is the one of A1.

4 NUMERICAL EXAMPLES

In Sections 2 and 3, we have developed all the tools needed to implement an efficient implicit time integration scheme
for the reaction diffusion equation (1), provided that the discretization of the operator L has the Kronecker sum structure
I ⊗ An + Bn ⊗ I. In the following, we describe in detail how to put all pieces together for the representative case of the
Burgers’ equation. Then we provide numerical tests for other problems that can be treated similarly. The experiments have
been run on a server with two Intel(R) Xeon(R) E5-2650v4 CPU with 12 cores and 24 threads each, running at 2.20 GHz,
using MATLAB R2017a with the Intel(R) Math Kernel Library Version 11.3.1. In all case studies, the relative truncation
threshold has been set to 𝜖rel = 10−8.
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16 of 24 MASSEI et al.

Algorithm 6. Refine the quad-tree cluster of an HALR matrix

1: procedure RefineCluster(A,𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
2: if A is leaf node then
3: A ← HALR_Adaptive(A,𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖)
4: else
5: A.Aij ← RefineCluster(A.Aij,𝗆𝖺𝗑𝗋𝖺𝗇𝗄, 𝜖) for i, j = 1, 2.
6: if A.Aij are dense leaf nodes for i, j = 1, 2 then

7: A.F ←

[
A.A11.F A.A12.F
A.A21.F A.A22.F

]
8: end if
9: if A.Aij are low-rank leaf nodes for i, j = 1, 2 then

10: U ←

[
A.A11.U A.A12.U

A.A21.U A.A22.U

]

11: V ←

[
A.A11.V A.A21.V

A.A12.V A.A22.V

]
12: (U,V) ← CompressFactors(U,V , 𝜖) ⊳ Reference 6, Algorithm 2.17, p. 33
13: if rank(UV T) ≤ 𝗆𝖺𝗑𝗋𝖺𝗇𝗄 then
14: (A.U,A.V)← (U,V)
15: A.admissible ← 1
16: A.Aij ← [ ] for i, j = 1, 2
17: end if
18: end if
19: end if
20: end procedure

4.1 Burgers’ equation

We consider the following Burgers’ equation17(Example3) with Dirichlet boundary conditions:

⎧⎪⎨⎪⎩
𝜕u
𝜕t
= K

(
𝜕

2u
𝜕x2 +

𝜕
2u
𝜕y2

)
− u ⋅

(
𝜕u
𝜕x
+ 𝜕u

𝜕y

)
= 0 (x, y) ∈ Ω = (0, 2) × (0, 2),

u(x, y, t) = 1
1+exp((x+y−t)∕2K)

for t = 0 or (x, y) ∈ 𝜕Ω,

for K = 0.001. We make use of a uniform finite differences discretization in space, with step h = 2
n−1

, combined with a
Euler IMEX method for the discretization in time with step Δt = 5 ⋅ 10−4. This yields

(1
2

I − ΔtAn

)
Un,𝓁+1 + Un,𝓁+1

(1
2

I − ΔtAn

)
= Un,𝓁 + Δt(Fn,𝓁 + Bn,𝓁), (10)

where denoting with ◦ the Hadamard (component-wise) product, we have set

Fn,𝓁 ∶= Un,𝓁◦
[

Dn,𝓁Un,𝓁 + Un,𝓁DT
n,𝓁 + (envT

n,𝓁 + vn,𝓁eT
n )∕h

]
, (vn,𝓁)j = u(jh, 2,𝓁Δt),

Bn,𝓁 ∶= (e1wT
n,𝓁+1 + wn,𝓁+1eT

1 + envT
n,𝓁+1 + vn,𝓁+1eT

n )∕h2
, (wn,𝓁)j = u(jh, 0,𝓁Δt),

and

An =
1
h2

⎡⎢⎢⎢⎢⎢⎣

−2 1
1 −2 ⋱

⋱ ⋱ 1
1 −2

⎤⎥⎥⎥⎥⎥⎦
, Dn,𝓁 =

1
h

⎡⎢⎢⎢⎢⎢⎣

− 1 1
⋱ ⋱

⋱ 1
− 1

⎤⎥⎥⎥⎥⎥⎦
.

 10991506, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2448 by C

rui/ C
onferenza D

ei R
ettori, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MASSEI et al. 17 of 24

Algorithm 7. Time stepping procedure for the Burgers’ equation

1: procedure Burgers_IMEX(n, Δt, Tmax)
2: h ← 2

n−1
3:

(
Un,0
)

ij ← u(ih, jh, 0)
4: t ← 0, 𝓁 ← 0
5: while t ≤ Tmax do
6: Fn,𝓁 ← Un,𝓁◦

[
Dn,𝓁Un,𝓁 + Un,𝓁DT

n,𝓁 + (envT
n,𝓁 + vn,𝓁eT

n )∕h
]

7: Bn,𝓁 ← (e1wT
n,𝓁+1 + wn,𝓁+1eT

1 + envT
n,𝓁+1 + vn,𝓁+1eT

n )∕h2

8: R ← Un,𝓁 + Δt(Fn,𝓁 + Bn,𝓁)
9: Un,𝓁+1 ← Lyap( 1

2
I − ΔtAn,R) ⊳ Solve the Lyapunov equation (10)

10: t ← t + Δt, 𝓁 ← 𝓁 + 1
11: end while
12: end procedure

Note that rank(Bn,𝓁) ≤ 4. The time stepping procedure is reported in Algorithm 7.

If Algorithm 7 is executed with standard dense numerical linear algebra each time step requires(n3) flops and(n2)
storage. In order to exploit the additional structure observed in Figure 1, we propose to maintain the HALR representations
of the matrices Fn,𝓁 and Un,𝓁 . In particular:

(i) At line 3, we employ Algorithm 5 to retrieve a quad-tree cluster tree  and a ( , k̃)-HALR representation of Un,0.
The rank k̃ satisfies k̃ ≤ maxrank.

(ii) In place of lines 6–8, we compute a ( , kR)-HALR representation for R using the algorithm described in Section 3.2.
More specifically, we force the quad-tree cluster to be the one of Un,𝓁 . We remark that an efficient handle function
for evaluating the entries of R is obtained by leveraging the HALR structure of Fn,𝓁 ,Un,𝓁 and the low-rank structure
of Bn,𝓁 .

(iii) We refine the cluster tree of R using Algorithm 6. During this process, the truncation is performed according to a
relative threshold 𝜖rel = 10−5, comparable with the accuracy of the time integration method. This avoids taking into
account the increase of the rank caused by the accumulation of the errors.

(iv) Since the Lyapunov equation (10) has HODLR coefficients and HALR right hand-side we employ Algorithm 3 for
its solution at line 9. Consequently, the matrix Un,𝓁+1 inherits the same quad-tree cluster of R.

Note that the refinement of the cluster at step (iii) is the only operation that can modify the quad-tree cluster used
to represent the solution. The test has been repeated for maxrank = 25, 50, 75,100. In Table 1, we report the total compu-
tational time (labeled as Ttot), and the maximum memory consumption for storing the solution in each run, measured
in MB. We also report the total time spent solving Lyapunov equations (phase (iv), labeled as Tlyap) and approximating
the right-hand side and adapting the HALR structure (phases (ii) and (iii), labeled as Tadapt). These two phases accounts
for most of the computational cost (between 85% and 90%); the solution of the Lyapunov equation is the most expensive
operation. The ratio Tlyap∕Tadapt seems to grow with n, and is around 2 at n = 16,384.

Figure 5 describes in detail the case maxrank = 50. The solution at time t = 0 (iteration 0) has a low-rank structure;
the region where the shock happens is confined to the origin in [0, 2]2. After some iterations, the shock moves causing
an increase in the rank required to approximate the solution, and the method switches to the HALR structure. When the
time approaches t = 3.75 (iteration 7500), the solution becomes numerically low-rank again, because the shock moves
close to top-right corner of [0, 2]2. This progression is reported in the top part of Figure 5, which shows the time required
for each iteration, and the structure adopted by the method. We remark that since the 1D Laplacian can be diagonalized
via the sine transform, Algorithm 7 can be efficiently implemented also without exploiting the local low-rank structure.
In particular, the iteration cost becomes (n2 log(n)). In the left part of Table 3 we have reported the times required by a
dense version of Algorithm 7 for integrating (3) where any hierarchical structure is ignored, and the Lyapunov equations
are solved by diagonalizing the Laplace operator using the FFT; for this case, we have also reported the average time for
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18 of 24 MASSEI et al.

T A B L E 1 Time and storage required for integrating the Burgers’ equation from t = 0 to t = 4, for different values of n and of maxrank

n Ttot (s) Tlyap (s) Tadapt (s) Mem. Ttot (s) Tlyap (s) Tadapt (s) Mem.

maxrank = 25 maxrank = 50

4096 20,057.6 9742.6 7256.7 13.1 22,334.0 10,604.3 7767.4 10.3

8192 54,659 29,231.1 17,104.5 17.8 57,096.9 32,116.9 17,346.2 16.4

16,384 132,238.3 80,762.6 36,539.2 25.3 119,130.4 76,431.5 31,011.5 35.3

maxrank = 75 maxrank = 100

4096 26,727.0 12,915.1 8923.3 10.8 29,383.2 14,174.7 10,362.5 12.1

8192 59,340.9 33,756.1 18,825.8 22.4 63,150.1 34,108.4 22,163.0 24.8

16,384 119,602.0 71,187.1 35,398.9 46.5 125,688.6 71,050.3 40,701.3 50.4

Note: The best times and memory usage for a given n are reported in bold. The reported memory is measured in megabytes (MB) and is the maximum memory
consumption for storing the solution during the iterations. The reported timings are the cumulative ones for 8000 time steps.

F I G U R E 5 Top figure: Time required for solving the Lyapunov equation and the adaptive approximation at each iteration; the
iterations marked as low-rank correspond to the case where the matrix has the trivial partitioning with only one block labeled as
low-rank; bottom figure: approximation error during the iteration, obtained computing the l2-norm of the difference with the exact solution.
The reported timings are for maxrank = 50, and n = 4096, n = 8192, and n = 16,384. The reported errors are absolute; for comparison, note
that the 𝓁2 norm of the solution grows monotonically from 0 to 1 in the time interval [0, 4], as the solution converges pointwise to 1.

solving the Lyapunov equation via fast diagonalization; we see that leveraging the HALR structure makes the algorithm
faster since dimension 8192.

The bottom plot of Figure 5 shows the absolute approximation error in the discrete l2-norm, computed comparing the

numerical solution with the true solution u(x, y, t) =
[
1 + exp

(
x+y−t

2K

)]−1
. The error curve associated with the implemen-

tation of Algorithm 7 in dense arithmetic matches the one reported in Figure 5 confirming that the low-rank truncations
have negligible effects on the computed solution. We remark that the displayed errors come from the discretization,
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MASSEI et al. 19 of 24

= 0.3 = 0.5 = 18.0 = 35.0

F I G U R E 6 Evolution of the structure and the solution at different time steps

and are not introduced by the low-rank approximations in the blocks: we have verified the computations using dense
unstructured matrices, obtaining the same results.

4.2 Allen–Cahn equation

The Allen–Cahn equation is a reaction–diffusion equation which describes a phase separation process. It takes the
following form:

⎧⎪⎨⎪⎩

𝜕u
𝜕t
+ 𝜈 (−Δ)u = g(u) in Ω,

𝜕u
𝜕n⃗
= 0 on 𝜕Ω,

u(x, y, 0) = u0(x, y),

(11)

where 𝜈 = 5 ⋅ 10−5 is the mobility, Ω = [0, 1]2, and the source term is the cubic function g(u) ∶= u(u − 0.5)(1 − u). This
test problem is described in Reference 27. For a fixed choice of (x, y), the solution u(x, y, t) converges either to 1 or 0 for
most points inside the domain as t → ∞.

We discretize the problem with the IMEX implicit Euler method in time and centered finite differences in space,
exactly as in the Burger’s equation example. The only difference is that in this problem we are considering Neumann
boundary conditions instead of Dirichlet.

In this example, we choose the initial (discrete) solution randomly, distributed as u(xi, yj, 0) ∼ N( 1
2
, 1), with every grid

point independent of the others. Integrating the system yields a model for spinodal decompositions.27 We remark that
with this choice the matrix Un,0 has no low-rank structure, and will be treated as a dense matrix. On the other hand,
during the time evolution, the smoothing effect of the Laplacian makes the solution Un,𝓁 well-approximable by low-rank
matrices, at least locally (see Figure 6). For even larger 𝓁, the solution converges to either 0 or 1, giving rise to several
“flat regions,” which can be approximated by low-rank blocks, and the structure Un,𝓁 can be efficiently memorized using
a ( , k)-HALR representation.

We have integrated the solution for t ∈ [0, 40], using Δt = 0.1, and grid sizes from 1024 up to 16,384. The simulation
has been run for maxrank = 25, 50, 75,100. The time and storage used for the integration has been reported in Table 2,
analogously to the Burgers’ equation case. Note that here the maximum memory consumption is always attained at t = 0,
where the solution is stored as a dense matrix.
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20 of 24 MASSEI et al.

T A B L E 2 Time and storage required for integrating the Allen–Cahn equation from 0 to 40, for different values of n and of maxrank

n Ttot (s) Tlyap (s) Tadapt (s) Mem. Ttot (s) Tlyap (s) Tadapt (s) Mem.

maxrank = 25 maxrank = 50

1024 277.1 153.0 124.1 8.0 317.6 197.1 120.5 8.0

2048 1080.6 733.7 346.9 32.0 713.9 561.0 152.9 32.0

4096 1754.2 1479.8 274.4 128.0 900.7 701.5 199.2 128.0

8192 3702.4 3202.8 499.5 512.0 1823.7 1428.9 394.7 512.0

16,384 7704.5 6392.1 1312.4 2048.0 3688.1 2765.7 922.5 2048.0

maxrank = 75 maxrank = 100

1024 229.6 151.1 78.4 8.0 187.9 118.9 69.0 8.0

2048 430.9 338.2 92.7 32.0 346.9 252.0 94.9 32.0

4096 619.7 444.2 175.4 128.0 505.2 325.6 179.6 128.0

8192 1424.5 1036.0 388.4 512.0 1147.4 731.0 416.3 512.0

16,384 2899.1 1982.0 917.1 2048.0 2336.8 1331.8 1005.0 2048.0

Note: The best times for a given N are reported in bold. The reported memory is measured in megabytes (MB) and is the maximum memory consumption for
storing the solution during the iterations.

F I G U R E 7 Execution time per iteration for the Allen–Cahn problem. The reported timings are for maxrank = 50, and n = 4096,
n = 8192, and n = 16,384.

Figures 6 and 7 focus on the case n = 4096 and maxrank = 50. The evolution in time of the solution and of the
corresponding HALR structure are reported in Figure 6. The initial structure is a tree with a single node labeled
as dense, and the HALR representation can be used already at time 0.3. Then, the solution becomes (numerically)
low-rank at time 6.7 (with rank approximately 50); the third image in Figure 6 shows the low-rank structure at time
t = 18. Later, as the phase separation happens, the representation becomes again HALR, and stabilizes at the format
shown in the fourth figure. The time required for each iteration, and the structure adopted is reported in Figure 7.
Analogously to the Burgers’ example, the 1D Laplacian with Neumann boundary conditions can diagonalized via the
cosine transform providing a dense method with iteration cost (n2 log(n)). In the right part of Table 3, we have
reported the times required by the dense method for integrating (11) and the average time for solving the Lyapunov
equation via fast diagonalization; we see that exploiting the structure makes the HALR approach faster from dimension
16,384.

 10991506, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2448 by C

rui/ C
onferenza D

ei R
ettori, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MASSEI et al. 21 of 24

T A B L E 3 Time required for integrating the Burgers’ equation and the Allen–Cahn equation, for different values of n, relying on sine
and cosine transforms

FFT-based algorithms

Burgers Allen–Cahn

n Ttot (s) Avg. Tlyap (s) THALR (s) Ttot (s) Avg. Tlyap (s) THALR (s)

4096 18,094 2.26 20,057.6 174.97 0.44 505.2

8192 70,541 8.82 54,659 847.3 2.12 1147.4

16,384 295,507 36.94 119,130.4 2967 7.42 2336.8

Note: The time step is chosen as in the experiments using the HALR structure. The time required by the best performing version of the HALR algorithm is
reported for reference in the column THALR.

F I G U R E 8 Solution of the Helmholtz equation (12) discretized on a 4096 × 4096 grid (left) and its representation in the HALR format
(right), with maxrank = 50.

4.3 Inhomogeneous Helmholtz equation

Let us consider the following Helmholtz equation with Neumann boundary conditions on the square Ω ∶= [−1, 1]2:

{
Δu + ku + f = 0,
𝜕u
𝜕n⃗
= 0 on 𝜕Ω,

⎧⎪⎨⎪⎩
k(x, y) ∶= 2500 ⋅ e−50|||x2+(y+1)2− 1

4
|||,

f (x, y) ∶= e−x2−y2

100
.

(12)

The chosen coefficient k(x, y) is negligible outside of a semi annular region centered in (0,−1); the source term f is concen-
trated around the origin. The numerical solution of (12), reported in Figure 8, is well approximated in the HALR format
which refines the block low rank structure in the region where k takes the larger values.

The usual finite difference discretization of (12) provides the n2 × n2 linear system

(A ⊗ I + I ⊗ A + Dk) vec(X) + vec(F) = 0, (13)

where A is the 1D Laplacian matrix with Neumann boundary conditions, Dk is the diagonal matrix containing the evalua-
tions of k(x, y) at the grid points and F contains the analogous evaluations of the source term. Note that, omitting the matrix
Dk, (13) can be solved as a Lyapunov equation. In the spirit of numerical methods for generalized matrix equations,28 we
propose to solve (13) with a structured GMRES iteration using the Lyapunov solver as preconditioner; more specifically
we store all the (matricized) vectors generated by the GMRES in the HALR format. If necessary (when the rank grows)
we adjust the partitioning of the latter via Algorithm 6. The inner product between vectors are computed using the block
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Algorithm 8. Structured and preconditioned GMRES iteration for (12)

1: procedure PGMRES(A, K, F, 𝗍𝗈𝗅, 𝗆𝖺𝗑𝗋𝖺𝗇𝗄) ⊳ diag(vec(K)) = Dk
2: B ← Lyap(A,F)
3: U1 ← B∕‖B‖F
4: for j = 1, 2,… do
5: R = AUj + UjAT + K◦Uj
6: R ← Repartition(R,𝗆𝖺𝗑𝗋𝖺𝗇𝗄)
7: W ← Lyap(A,R)
8: for s = 1,… , j do
9: Hs,j ← Dot(W ,Us) ⊳ Trace of W TUs, see Algorithm 9

10: W ← W −Hs,j ⋅ Us
11: end for
12: Hj+1,j ← ‖W‖F , Uj+1 ← W∕‖W‖F
13: y ← ‖B‖FH†e1
14: if ‖Hy − ‖B‖Fe1‖<𝗍𝗈𝗅 ⋅ ‖B‖F then
15: break
16: end if
17: end for
18: return

∑
j yjUj

19: end procedure

T A B L E 4 Time and storage required for solving the inhomogeneous Helmholtz equation (12), for different values of n and maxrank = 50

maxrank = 50

n Ttot (s) Tlyap (s) Tadapt (s) It. Mem.

1024 72.83 42.82 11.39 25 1.72

2048 231.92 161.35 24.25 26 3.73

4096 603.03 362.22 75.74 26 8.18

8192 1773.6 982.37 244.54 26 16.68

16,384 5884 3065 1044.4 28 33.3

Note: The reported memory is measured in megabytes (MB) and refers to the storage of the solution.

Algorithm 9. Trace inner product for two HALR matrices

1: procedure Dot(A, B)
2: if A and B are leaf nodes or at least one is low-rank then
3: return Trace(ATB) ⊳ Exploiting the low-rank structure of A or B, if any
4: else
5: if A is dense or B is dense then
6: Set the partitioning of A and B equal to the finest of the two.
7: end if
8: return Dot(A11,B11) + Dot(A12,B12)+Dot(A21,B21)+Dot(A22,B22)
9: end if

10: end procedure

 10991506, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2448 by C

rui/ C
onferenza D

ei R
ettori, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MASSEI et al. 23 of 24

recursive procedure described in Algorithm 9, which returns the trace of ATB for two HALR matrices A and B. Finally,
the solution is constructed as a linear combination of HALR matrices. The whole procedure is reported in Algorithm 8.

Equation (12) has been solved for different grid sizes with maxrank = 50. The time and memory consumption are
reported in Table 4. The storage needed for the solution scales linearly with n. In addition, the table contains the number
of iterations needed by the preconditioned GMRES to reach the relative tolerance tol = 10−4. We note that the number
of iterations grows very slowly as the grid size increases. The time required depends on many factors, such as the dis-
tribution of the ranks and the complexity of the structure in the basis generated by the GMRES; we just remark that it
grows subquadratically for this example. In future work, we plan to explore the use of restarting mechanisms and other
truncation strategies in order to optimize the approach.

5 CONCLUSIONS

In this work, we have proposed a new format for storing matrices arising from 2D discretization of functions which
are smooth almost everywhere, with localized singularities. Low-rank decompositions, which are effective for globally
smooth functions, become ineffective in this case. The proposed structure automatically adapts to the matrix, and requires
no prior information on the location of the singular region. The storage and complexity interpolates between dense and
low-rank matrices, based on the structure, with these two cases as extrema.

We demonstrated techniques for the efficient adaptation of the structure in case of moving singularities, with the aim
of tracking time-evolution of 2D PDEs; the examples show that the proposed techniques can effectively detect changes in
the structure, and ensure the desired level of accuracy. We developed efficient Lyapunov and Sylvester solvers for matrix
equations with HALR right-hand side and HODLR coefficients. This case is of particular interest, as it often arises in
discretized PDEs. Several numerical experiments demonstrate both the effectiveness and the flexibility of the approach.

The proposed format may be generalized to the discretization of functions on 3D box domains by moving from matrices
to tensors, swapping quadtrees with octrees, making the necessary adjustments, and choosing a suitable low-rank format
for subtensors. Similar ideas to the ones presented in this work may be used to detect the hierarchical structure in an
adaptive way, and to adjust the structure in time. However, devising an efficient Sylvester solver remains challenging.
Despite the existence of low-rank solvers for linear systems with Kronecker structure in the Tucker format29 exploiting
the hierarchical structure introduces major difficulties, which we plan to investigate in future work.

CONFLICT OF INTEREST
This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ENDNOTE
1This is the case when A and B are endowed with stronger structures like hierarchical semiseparability (HSS).9
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