Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SIAM J. Sc1. COMPUT. (© 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 2, pp. C43-C68

hm-toolbox: MATLAB SOFTWARE FOR HODLR AND HSS
MATRICES*

STEFANO MASSEIT, LEONARDO ROBOL!, AND DANIEL KRESSNER?

Abstract. Matrices with hierarchical low-rank structure, including HODLR and HSS matrices,
constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While ex-
isting software packages for such matrices often focus on linear systems, their scope of applications
is in fact much wider and includes, for example, matrix functions and eigenvalue problems. In this
work, we present a new MATLAB toolbox called hm-toolbox, which encompasses this versatility
with a broad set of tools for HODLR and HSS matrices, unmatched by existing software. While
mostly based on algorithms that can be found in the literature, our toolbox also contains a few new
algorithms as well as novel auxiliary functions. Being entirely based on MATLAB, our implemen-
tation does not strive for optimal performance. Nevertheless, it maintains the favorable complexity
of hierarchical low-rank matrices and offers, at the same time, a convenient way of prototyping and
experimenting with algorithms. A number of applications illustrate the use of the hm-toolbox.

Key words. HODLR matrices, HSS matrices, hierarchical matrices, MATLAB, low-rank
approximation

AMS subject classification. 15B99

DOI. 10.1137/19M1288048

1. Introduction. This work presents hm-toolbox, a new MATLAB software
available from https://github.com/numpi/hm-toolbox for working with HODLR (hi-
erarchically off-diagonal low-rank) and HSS (hierarchically semiseparable) matrices.
Both formats are defined via a recursive block partition of the matrix. More specifi-
cally, for

An A
1 A=
(1) [A21 A22}7

it is assumed that the off-diagonal blocks Aj2, Ao have low rank. This partition
is repeated recursively for the diagonal blocks until a minimal block size is reached.
In the HSS format, the low-rank factors representing the off-diagonal blocks on the
different levels of the recursions are nested, while the HODLR format treats all off-
diagonal blocks independently. During the last decade, both formats have shown their
usefulness in a wide variety of applications. Recent examples include the acceleration
of sparse direct linear system solvers [25, 51, 53], large-scale Gaussian process model-
ing [1, 24], stationary distribution of quasi-birth-death Markov chains [8], as well as
fast solvers for (banded) eigenvalue problems [37, 49, 50] and matrix equations [34, 35].

*Submitted to the journal’s Software and High-Performance Computing section September 18,
2019; accepted for publication (in revised form) January 28, 2020; published electronically April 8,
2020.

https://doi.org/10.1137/19M1288048

Funding: The work of the first author was supported by the SNSF research project Fast Al-
gorithms from Low-Rank Updates under grant 200020-178806. The work of the second author was
partially supported by the GNCS/INdAM project “Metodi di proiezione per equazioni di matrici e
sistemi lineari con operatori deniti tramite somme di prodotti di Kronecker, e soluzioni con struttura
di rango.”

fApplied Mathematics, EPFL Lausanne, Lausanne, CH-1015, Vaud, Switzerland (massei.stef@
gmail.com).

fDepartment of Mathematics, University of Pisa, Pisa, 56127, Ttaly (leonardo.robol@unipi.it).

$SB-MATHICSE-ANCHP, EPFL Lausanne, Lausanne, CH-1015, Vaud, Switzerland (daniel.
kressner@epfl.ch).

C43

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://github.com/numpi/hm-toolbox
https://doi.org/10.1137/19M1288048
mailto:massei.stef@gmail.com
mailto:massei.stef@gmail.com
mailto:leonardo.robol@unipi.it
mailto:daniel.kressner@epfl.ch
mailto:daniel.kressner@epfl.ch

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C44 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

Both the HODLR and HSS formats allow us to design fast algorithms for various
linear algebra tasks. Our toolbox offers basic operations (addition, multiplication,
inversion), matrix decompositions (Cholesky, LU, QR, ULV), as well as more advanced
functionality (matrix functions, solution of matrix equations). It also offers multiple
ways of constructing and recompressing these representations as well as converting
between HODLR, HSS, and sparse matrices. While most of the toolbox is based on
known algorithms from the literature, we also make novel algorithmic contributions.
This includes the fast computation of Hadamard products, the matrix product A~'B
for HSS matrices A, B, and numerous auxiliary functionalities.

The primary goal of the hm-toolbox is to provide a comprehensive and convenient
framework for prototyping algorithms and ensuring reproducibility. Having this goal
in mind, our implementation is entirely based on MATLAB and thus does not strive
for optimal performance. Still, the favorable complexity of the fast algorithms is
preserved.

The HODLR and HSS formats are special cases of hierarchical and H? matrices,
respectively. The latter two formats allow for significantly more general block par-
titions, described via cluster trees, which in turn gives the ability to treat a wider
range of problems effectively, including two-dimensional (2D) and 3D partial differen-
tial equations; see [28] and the references therein. On the other hand, the restriction
to partitions of the form (1) comes with a major advantage: it simplifies the design,
analysis, and implementation of fast algorithms. Another advantage of (1) is that a
low-rank perturbation makes A block diagonal, which opens the door for divide-and-
conquer methods; see [35] for an example.

Ezisting software. In the following, we provide a brief overview of existing soft-
ware for various flavors of hierarchical low-rank formats. An n x n matrix S is called
semiseparable if every submatrix residing entirely in the upper or lower triangular
part of S has rank at most one. The class of quasiseparable matrices is more general
by only considering submatrices in the strictly lower and upper triangular parts. The
class of sequentially semiseparable matrices is another generalization, which has been
defined in [16].

While a fairly complete MATLAB library for semiseparable matrices is available,!
the public availability of software for quasiseparable matrices seems to be limited to
a set of MATLAB functions targeting specific tasks.?

Fortran and MATLAB packages for solving linear systems with HSS and sequen-
tially semiseparable matrices are available.?** The Structured Matrix Market® pro-
vides benchmark examples and supporting functionality for HSS matrices.
STRUMPACK ([43] is a parallel C++ library for HSS matrices with a focus on ran-
domized compression and the solution of linear systems. HODLRIib [2] is a C++
library for HODLR matrices, which provides shared-memory parallelism through
OpenMP and again puts a focus on linear systems. HLib [14] and H2Lib [13] are
C libraries which provide a wide range of functionality for hierarchical and H? ma-
trices, respectively. HLIBpro [10] and AHMED [4] are C++ libraries implement-
ing optimized algorithms for #-matrices. Pointers to other software packages, re-
lated to hierarchical low-rank formats, can be found at https://github.com/gchavez2/
awesome_hierarchical_matrices.

Thttps://people.cs.kuleuven.be/~raf.vandebril /homepage /software/sspack.php.
2http://people.cs.dm.unipi.it /boito/software.html.
Shttp://scg.ece.ucsb.edu/software.html.
4http://www.math.purdue.edu/~xiaj/packages.html.
Shttp://smart.math.purdue.edu/.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://github.com/gchavez2/awesome_hierarchical_matrices
https://github.com/gchavez2/awesome_hierarchical_matrices
https://people.cs.kuleuven.be/~raf.vandebril/homepage/software/sspack.php
http://people.cs.dm.unipi.it/boito/software.html
http://scg.ece.ucsb.edu/software.html
http://www.math.purdue.edu/~xiaj/packages.html
http://smart.math.purdue.edu/

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C45

Outline. The rest of this work is organized as follows. In section 2, we recall the
definitions of HODLR and HSS matrices. Section 3 is concerned with the construction
of such matrices in our toolbox and the conversion between different formats. In
section 4, we give a brief overview of those arithmetic operations implemented in the
hm-toolbox that are based on existing algorithms. More details are provided on two
new algorithms and the important recompression operation. Finally, in section 5, we
illustrate the use of our toolbox with various examples and applications.

2. Preliminaries and MATLAB classes hodlr, hss.

2.1. HODLR matrices. As discussed in the introduction, HODLR matrices
are defined via a recursive block partition (1), assuming that the off-diagonal blocks
have low rank on every level of the recursion.

The concept of a cluster tree allows us to formalize the definition of such a par-
titioning.

DEFINITION 2.1. Givenn € N, let T, be a completely balanced binary tree of depth
p whose nodes are subsets of {1,...,n}. We say that T, is a cluster tree if it satisfies
the following:

e The rootis IY =1 ={1,...,n}.
e The nodes at level £, denoted by I{,. .., Ig,z, form a partitioning of {1,...,n}
into consecutive indices:
If = {ngf)l + 1...,nl(-£) — 1,n(z)}

for some integers 0 = né@ < n(le) << n(;?
if nl@l = ngz)} then If = 0.

e The node It has children IS}, and I5S for any 1 <€ < p—1. The children
form a partitioning of their parent.

=n, {=0,...p. In particular,

In practice, the cluster tree 7, is often chosen in a balanced fashion, that is, the
cardinalities of the index sets on the same level are nearly equal and the depth of the
tree is determined by a minimal diagonal block size ny, for stopping the recursion.

In particular, if n = 2Pn,;,, such a construction yields a perfectly balanced binary
tree of depth p; see Figure 1 for n = 8 and npy;, = 1.

The nodes at a level ¢ induce a partitioning of A into a 2¢ x 2¢ block matrix, with
the blocks given by A(If, If) fori,j =1,...,2% where we use MATLAB notation for
submatrices.

The definition of a HODLR matrix requires that some of the off-diagonal blocks
(marked with stripes in Figure 1) have (low) bounded rank.

DEFINITION 2.2. Let A € C**™ and consider a cluster tree Tp.
1. Given k € N, A is said to be a (T, k)-HODLR matriz if every off-diagonal
block

(2) A(Iﬁff) such that I} and If are siblings in T,, €=1,...,p,

has rank at most k.
2. The HODLR rank of A (with respect to T,) is the smallest integer k such that
A is a (T, k)-HODLR matriz.

MATLAB class. The hm-toolbox provides the MATLAB class hodlr for work-
ing with HODLR matrices. The properties of hodlr store a matrix recursively in
accordance with the partitioning (1) (or, equivalently, the cluster tree) as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C46 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

I=1{1,2,3,4,5,6,7,8}

/\

I ={1,2,3,4} I ={5,6,7,8}
/\ /\

112 = {172} 122 = {374} I:’? = {576} IZ = {77 8}
N N N N
B={1} I={2 B={3} LI={4 B={5 E={6} I}={7 I£={8}

£=0

=3

Fic. 1. Pictures taken from [35]: Example of a cluster tree of depth 3 and the block partitions
induced on each level. The blocks marked with blue stripes are stored as low-rank matrices in the
HODLR format.

D:v =D=D:’
I:ll:l H:’ I:ll:l DD:’D=D=|:||:|
1= ==
= 1= =

Fic. 2. Image taken from [35]: Illustration of the HODLR format for cluster trees of varying
depth. The gray blocks are the (dense) matrices that need to be stored to represent a HODLR matriz.

A11 and A22 are hodlr instances representing the diagonal blocks (for a non-
leaf node);

U12 and V12 are the low-rank factors of the off-diagonal block A;s;

U21 and V21 are the low-rank factors of the off-diagonal block Ao

F is either a dense matrix representing the whole matrix (for a leaf node) or

empty.
Figure 2 illustrates the storage format. For a matrix of HODLR rank k, the
memory consumption reduces from O(n?) to O(pnk) = O(knlogn) when using

hodlr.

2.2. HSS matrices. The log(n) factor in the memory complexity of HODLR
matrices arises from the fact that the low-rank factors take O(kn) memory on each of
the O(log(n)) levels of the recursion. However, in many—if not most—applications
these factors share similarities across different levels, which can be exploited by nested
hierarchical low-rank formats, such as the HSS format, to potentially remove the
log(n) factor.

An HSS matrix is associated with a cluster tree 7Tp; see Definition 2.1. In analogy
to HODLR matrices, it is assumed that the off-diagonal blocks can be factorized as

) (e H* ‘ ¢ n{® ¢ ntt
AL =vPsE (V) s echh v e v e,

7] 9 J

for all siblings I, f in 7,. The matrices SZ(ZJ) are called core blocks. Additionally, and
)

in contrast to HODLR matrices, for HSS matrices we require the factors UZ-(Z), Vj(z to

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C47

be nested across different levels of 7,. More specifically, it is assumed that there exist

so-called translation operators Rg))i, RE% € C?*** guch that
241 (e+1)
(3) v |U5 <?+1> RO, v | <?+1) Ry,
i 4 ,) J 2J?
0 Ui? 0 ‘/}2

where [“1, It and I “1, I+ denote the children of I¢ and I ¢ respectively. These
1 12 J1 J2 1 J

relations allow us to retrieve the low-rank factors U i(g) and Vi(e) for the higher levels ¢ =
1,...,p—1recursively from the bases Ui(p) and Vi(p) at the deepest level p. Therefore,
in order to represent A, one only needs to store the diagonal blocks D; := A(I?, IF),
the bases Ui(p), Vl-(p), the core factors S\, S'. and the translation operators jo)i,

6,J 7 N30
R%. In particular, note that only the bases on the lowest level, Ui(p) and Vi(p), are

stored. We remark that, for simplifying the exposition, we have considered translation
operators and bases Ui(p), Vj(p) with & columns for every level and node. This is not
necessary, as long as the dimensions are compatible, and this more general framework
is handled in hm-toolbox.

As explained in [29], a matrix A admits the decomposition explained above if
and only if it is an HSS matrix in the sense of the following definition, which imposes
rank conditions on certain block rows and columns without their diagonal blocks; see
Figure 3 for an illustration.

DEFINITION 2.3. Let A€ C™*", I ={1,...,n}, and consider a cluster tree T,.

(a) A(If,I\I!) is called an HSS block row and A(I\If,If) is called an HSS block
column fori=1,...,25, 0=1,...,p.

(b) For k € N, A is called a (T,,k)-HSS matriz if every HSS block row and
column of A has rank at most k.

(c) The HSS rank of A (with respect to T,) is the smallest integer k such that A
is a (Tp, k)-HSS matric.

Fia. 3. Image taken from [35]: Illustration of an HSS block row and an HSS block column for
a cluster tree of depth 3.

MATLAB class. The hss class provided by the hm-toolbox uses the following
properties to represent an HSS matrix recursively:

e A11 and A22 are hss instances representing the diagonal blocks (for a nonleaf
node);

e U and V contain the basis matrices Ui(p) and Vi(p) for a leaf node and are
empty otherwise;

e R1 and Rr are such that [R1; Rr] is the translation operator R%, and Wl
and Wr are such that [W1l; Wr] is the translation operator Wr(fz (note that
R1, Rr, W1, Wr are empty for the top node or a leaf node);

e B12 B21 contain the matrices s

i1 S;? for a nonleaf node;

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C48 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

e D is either a dense matrix representing the whole matrix (for a leaf node) or
empty.
Using the hss class, O(nk) memory is needed to represent a matrix of HSS rank k.

2.3. Appearance of HODLR and HSS matrices. Our toolbox is most ef-
fective for matrices of small HODLR or HSS rank. In some cases, this property is
evident, e.g., for matrices with particular sparsity patterns such as banded matrices.
However, there are numerous situations of interest in which the matrix is dense but
still admits a highly accurate approximation by a matrix of small HODLR or HSS
rank. In particular, this is the case for the discretization of (kernel) functions and
integral operators under certain regularity conditions; see [12, 28, 29, 40] for examples.

When manipulating HODLR and HSS matrices, using the functionality of the
toolbox, it would be desirable that the off-diagonal low-rank structure is (approxi-
mately) preserved. For more restrictive formats, such as semi- and quasiseparable
matrices, the low-rank structure is preserved exactly by certain matrix factorizations
and inversion; see the monographs [19, 20, 47, 48]. While the HSS rank is also pre-
served by inversion, the same does not hold for the HODLR rank. Often, additional
properties are needed in order to show that the HODLR and HSS formats are (ap-
proximately) preserved under arithmetic operations; see [5, 21, 22, 27, 35, 41].

3. Construction of HODLR /HSS representation. Even when it is known
that a given matrix can be represented or accurately approximated in the HODLR
or HSS formats, it is by no means a trival task to construct such structured repre-
sentations efficiently. Often, the construction needs to be tailored to the problem at
hand, especially if one aims at handling large-scale matrices and thus needs to by-
pass the O(n?) memory needed for the explicit dense representation of the matrix.
The hm-toolbox provides several constructors (summarized in Table 1 below) trying
to capture the most typical situations for which the HODLR and HSS formats are
utilized. The constructors and, more generally, the hm-toolbox support both real and
complex valued matrices.

3.1. Parameter settings for constructors. The output of the constructors
depends on a number of parameters. In particular, the truncation tolerance e, which
guides the error in the spectral norm when approximating a given matrix by a
HODLR/HSS matrix, can be set with the following commands:

TABLE 1
Complexities of constructors. The symbol C1 denotes the complexity of computing a single entry
of the matrixz through the handle function. The symbol Co indicates the cost of the matriz-vector
multiplication by A or A*.

Constructor | HODLR complexity | HSS complexity
Dense O(kn?) O(kn?)
Sparse O(k%nlog(n) + knz) O(k%n + kny)

’banded’ O(knlogn) O(kn)
’cauchy’ O(knlogn) O(knlogn)
>diagonal’ O(n) O(n)
Yeye’ O(n) O(n)
’handle’ O(Ci1knlogn) O(Cin + Cak)
>low-rank’ O(knlogn) O(kn)
’ones’ O(nlogn) O(n)
’>toeplitz’ O(knlogn) O(knlogn)
’zeros’ O(n) O(n)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C49

1 |hodlroption(’threshold’,)
> |hssoption(’threshold’, ¢)

The default setting is € = 10712 for both formats.

When approximating with a HODLR matrix, the rank of each off-diagonal block
A(I?,I?) is chosen such that the spectral norm of the approximation error is bounded
by e times || A(I}, I7)||2 or an estimate thereof. For example, when using the truncated
singular value decomposition (SVD) for low-rank truncation, this means that k is
determined by the number of singular values larger than e[| A(I7, I7)l|2; see, e.g., [26].
Ensuring such a (local) truncation error guarantees that the overall approximation
for the whole matrix A is bounded by O(elog(n)||Al|2) in the spectral norm; see [28,
Lemma 6.3.2] and [9, Theorem 2.2].

When approximating with an HSS matrix, the tolerance e guides the approxima-
tion error when compressing HSS block rows and columns. The interplay between
local and global approximation errors is more subtle and depends on the specific
procedure. In general, the global approximation error stays proportional to €. Spe-
cific results for the Frobenius and spectral norms can be found in [52, Corollary 4.3]
and [35, Theorem 4.7], respectively. See also [12, Theorem 5.30, Corollary 5.31] for
results on the more general class of H2-matrices.

By default, our constructors determine the cluster tree 7, by splitting the row
and column index sets as equally as possible until a minimal block size np, is
reached. More specifically, an index set {1,...,n} is split into {1,...,[2]}U{[%] +
1,...,n}. The default value for nuyi, is 256; this value can be adjusted by calling
hodlroption(’block-size’, nmin) and hssoption(’block-size’, nmin). In sec-
tion 3.7 below, we explain how nonstandard cluster trees can be specified.

3.2. Construction from dense or sparse matrices. The HODLR/HSS ap-
proximation of a given dense or sparse matrix A € C™"*" is obtained via

1 |hodlrA = hodlr (A);
> |hssA = hss(A);

In the following, we discuss the algorithms behind these two commands.

hodlr for dense A. To obtain a HODLR approximation, the Householder QR
decomposition with column pivoting [15] is applied to each off-diagonal block. The
algorithm is terminated when an upper bound for the spectral norm of the remainder
is below € times the maximum pivot element. Although there are examples for which
such a procedure severely overestimates the (numerical) rank [26, section 5.4.3], this
rarely happens in practice. If k denotes the HODLR rank of the output, this procedure
has complexity O(kn?). Optionally, the truncated SVD mentioned above instead of
QR with pivoting can be used for compression. The following commands are used to
switch between both methods:

1 hodlroption(’compression’, ’svd’);
2 hodlroption(’compression’, ’qr’);

hodlr for sparse A. The two-sided Lanczos method [45], which only requires
matrix-vector multiplications with an off-diagonal block and its (Hermitian) trans-
pose, combined with recompression [3] is applied to each off-diagonal block. The
method uses the heuristic stopping criterion described in [3, p. 173] with threshold
€ times an estimate of the spectral norm of the block under consideration. Letting k
again denote the HODLR rank of the output and assuming that Lanczos converges

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C50 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

in O(k) steps, this procedure has complexity O(k?nlog(n) + kn.), where n, denotes
the number of nonzero entries of A.

hss for dense A. The algorithm described in [54, Algorithm 1] is used, which
essentially applies low-rank truncation to every HSS block row and column starting
from the leaves to the root of the cluster tree and ensuring the nestedness of the
factors (3). As for hodlr, one can choose between QR with column pivoting or the
SVD (default) for low-rank truncation via hssoption.

Letting k£ denote the HSS rank of the output, the complexity of this procedure is
O(kn?).

hss for sparse A. The algorithm described in [39] is used, which is based on the
randomized SVD [30] and involves matrix-vector products with the entire matrix A
and its (Hermitian) transpose. We use 10 random vectors for deciding whether to
terminate the randomized SVD, which ensures an accuracy of O(e) with probability
at least 1 —6-10719 [39, section 2.3]. Assuming that O(k) random vectors are needed
in total, the complexity of this procedure is O(k*n + kn.).

3.3. Construction from handle functions. We provide constructors that
access A indirectly via handle functions.

For HODLR, given a handle function @(I, J) Aeval(I,J) that provides the
submatrix A(I,J) given row and column indices I, J, the command

1 ‘hoder = hodlr (’handle’, Aeval, n, n);

returns a HODLR approximaton of A. We apply adaptive cross approzimation (ACA)
with partial pivoting [11, Algorithm 1] to approximate each off-diagonal block. The
global tolerance € is used as a threshold for the (heuristic) stopping criterion of ACA.

The HSS constructor uses two additional handle functions @(v) Afun(v) and
@(v) Afunt(v) for matrix-vector produces with A and A*, respectively. The com-
mand

1 ‘hssA = hss(’handle’, Afun, Afunt, Aeval, n, n);

returns an HSS approximation using the algorithm for sparse matrices discussed in
section 3.2.

3.4. Construction from structured matrices. When A is endowed with a
structure that allows its description with a small number of parameters, it is sometimes
possible to efficiently obtain a HODLR/HSS approximation. All such constructors
provided in hm-toolbox have the syntax

1 |hodlrA = hodlr(structure, ...);
2 |hssA = hss(structure, ...);

where structure is a string describing the properties of A. The following options are

provided:

’banded’ Given a banded matrix (represented as a sparse matrix on input) with
lower and upper bandwidth b; and b,, this constructor returns an exact
(Tp, max{b,, b;})-HODLR or (7,,b; + b,)-HSS representation of the matrix.
For instance,

1 h=1/(n - 1);

2 A = spdiags(ones(n,1) * [1 -2 1], -1:1, n,
n) / h~2;

3 hodlrA = hodlr(’banded’, A);

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES Ch1

returns a representation of the 1D discrete Laplacian; see also (8) below.
>cauchy’ Given two vectors z and y representing a Cauchy matrix A with entries

1 the commands
T +Y;

CLZ'j =

hodlrA = hodlr (’cauchy’, x, y);
hssA = hss(’cauchy’, x, y);

return a HODLR/HSS approximation of A. For the HODLR format, the
construction relies on the *handle’ constructor described above. The HSS
representation is obtained by first performing a HODLR approximation and
then converting to the HSS format; see section 3.5.

’diagonal’ Given the diagonal v of a diagonal matrix, the commands

1

2

hodlrA = hodlr(’diagonal’, v);
hssA = hss(’diagonal’, v);

1

2

return an exact representation with HODLR/HSS ranks equal to 0.

’eye’ Given n, this constructs a HODLR/HSS representations of the n x n identity
matrix.

’low-rank’ Given A = UV™ in terms of its (low-rank) factors U,V with k columns,
this returns an exact (7,, k)-HODLR or (7, k)-HSS representation.

ones’ This constructs a HODLR/HSS representation of the matrix of all ones. As
this is a rank-one matrix, this represents a special case of >low-rank’.

>toeplitz’ Given the first column ¢ and the first row r of a Toeplitz matrix A, the
following lines construct HODLR and HSS approximations of A:

1 hodlrA = hodlr (’toeplitz’, c, r);
2 hssA = hss(’toeplitz’, c, r);

For a Toeplitz matrix, the off-diagonal blocks Ais, A2 on the first level in
the cluster tree already contain most of the required information. Indeed,
all off-diagonal blocks are submatrices of these two. To obtain a HODLR
approximation we first construct low-rank approximations of Ajs, A1 using
the two-sided Lanczos algorithm discussed above, combined with FFT-based
fast matrix-vector multiplication. For all deeper levels, low-rank factors of
the off-diagonal blocks are simply obtained by restriction. This constructor is
used in section 5.3 to discretize fractional differential operators. For obtaining
an HSS approximation, we rely on the handle’ constructor.
’zeros’ This constructs a HODLR/HSS representations of the zero matrix.

3.5. Conversion between formats. The hm-toolbox functions hod1r2hss and
hss2hodlr convert between the HODLR and HSS formats. An HSS matrix is con-
verted into a HODLR matrix by simply building explicit low-rank factorizations of the
off-diagonal blocks from their implicit nested representation in the HSS format. This
is done recursively by using the translation operators and the core blocks Si(? with
a cost of O(knlogn) operations. A HODLR matrix is converted into an HSS matrix
by first incorporating the (dense) diagonal blocks and then performing a sequence of
low-rank updates in order to add the off-diagonal blocks that appear on each level.
In order to keep the HSS rank as low as possible, recompression is performed after
each sum; see also section 4.5 below. The whole procedure has a cost of O(k?nlogn),
where k is the HSS rank of the argument.

HODLR and HSS matrices are converted into dense matrices using the full

function. In analogy to the sparse format in MATLAB, an arithmetic operation

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C5h2 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

TABLE 2
Format of the outcome of a matriz-matriz operation op € {+,—,*,\,/} depending on the
structure of the two inputs.

op HSS HODLR Dense
HSS HSS HODLR Dense
HODLR | HODLR HODLR Dense
Dense Dense Dense Dense

between different types of structure always results in the “less structured” format. As
we consider HSS to be the more structured format compared to HODLR, this induces
the hierarchy reported in Table 2.

Some matrices, like inverses of banded matrices, are HODLR and approximately
sparse at the same time. In such situations, it can be of interest to convert a HODLR
matrix into a sparse matrix by neglecting entries below a certain tolerance. The over-
loaded function sparse effects this conversion efficiently by only considering those
off-diagonal entries for which the corresponding rows of the low-rank factors are suf-
ficiently large. In the following example, entries below 10~8 are neglected.

1ln = 27(14);

2 |A = spdiags(ones(n, 1) * [1 3 -1], -1:1, n, n);

3 |hodlrA = hodlr(A); hodlrA = inv(hodlrA);

4 |spA = sparse(hodlrA, 1e-8);

5 | fprintf (’Bandwidth: %d, Error = %e\n’,...

¢ | bandwidth (spA), normest(spA * A - speye(n), le-4));
7 | Bandwidth: 14, Error = 3.131282e-08

For an HSS matrix, the sparse function proceeds indirectly via first converting to
the HODLR format by means of hss2hodlr.

In summary, the described functionality allows us to switch back and forth be-
tween HODLR, HSS, and sparse formats.

3.6. Auxiliary functionality. The hm-toolbox contains several functions that
make it convenient to work with HODLR and HSS matrices. For example, the
MATLAB functions diag, imag, real, trace, tril, triu have been overloaded to
compute the corresponding quantities for HODLR /HSS matrices. We also provide the
command spy to inspect the structure of an hodlr or hss instance by plotting the
ranks of off-diagonal blocks in the given partitioning. Two examples for the output
of spy(A) will be given in Figure 5.

3.7. Nonstandard cluster trees. A cluster tree 7, is determined by the parti-
tioning of the index set on the deepest level and can thus be represented by the vector
c = [ngp), . ,né’;)]; see Definition 2.1. For example, the cluster tree in Figure 1 is
represented by ¢ = [1,2,...,8]7.

Note that it is possible to construct cluster trees for which the index sets are not
equally partitioned on one level. In fact, some index sets can be empty. For instance,
the cluster tree in Figure 4 is represented by the vector ¢ = [2,4,8, 8]7.

The vector ¢ is used inside the hm-toolbox to specify a cluster tree. For all
constructors discussed above, an optional argument can be provided to specify the
cluster tree for the rows and columns. For those constructors that also allow for
rectangular matrices (see below), different cluster trees can be specified for the rows
and columns. For example, the partitioning of Figure 4 can be imposed on an 8 x 8
matrix A as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES Ch3

I=1{1,2,3,4,5,6,7,8}
I ={1,2,3,4} I ={5,6,7,8}
— T /\
It ={1,2} I3 = {3,4} I3 = {5,6,7,8} 13 =10

Fic. 4. Ezample of a cluster tree with a leaf node containing an empty index set.

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

F1G. 5. Output of the command spy for a Cauchy matriz (left) and for a matriz with a non-
standard cluster tree (right).

1lc = [2 4 8 8];
2 |hodlrA = hodlr (A, ’cluster’, c);
3 | spy (hodlrA) ;

The output of spy for such a matrix is reported in Figure 5.
The vectors describing the row and column clusters of a given HODLR/HSS
matrix can be retrieved using the cluster command.

3.8. Rectangular matrices. The hm-toolbox also allows us to create rectan-
gular HODLR /HSS matrices by means of the dense/sparse constructors or one of the
following arguments for the constructor: ’cauchy’, *handle’, ’low-rank’, ’ones’,
>toeplitz’,’zeros’. This requires building two cluster trees, one for the row indices
and one for the column indices. If these clusters are not specified, they are built in
the default way discussed in section 3.2, such that the children of each node have
nearly equal cardinality. The procedure is carried out simultaneously for the row and
column cluster trees and it stops when either both index sets are smaller than the
minimal block size or one of the two reaches cardinality 1. In particular, this ensures
that the returned row and column cluster trees have the same depth.

We remark that some operations for a HODLR/HSS matrix are available only
when the row and column cluster trees are equal (which in particular implies that
the matrix is square), such as the solution of linear systems, matrix powers, and the
determinant.

4. Arithmetic operations. The HODLR and HSS formats allow us to carry
out several arithmetic operations efficiently, a fact that greatly contributes to the
versatility of these formats in applications. In this section, we first illustrate the
design of fast operations for matrix-vector products and then give an overview of the
operations provided in the hm-toolbox, many of which have already been described
in the literature. However, we also provide a few operations that are new to the best
of our knowledge. In particular, this holds for the algorithms for computing A~!B in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

Ch4 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

the HSS format and the Hadamard product in both formats described in sections 4.3
and 4.4, respectively. As arithmetic operations often increase the HODLR /HSS ranks,
it is important to combine them with recompression, a matter discussed in section 4.5.

4.1. Matrix-vector products. The block partitioning (1) suggests the use of
a recursive algorithm for computing the matrix-vector product Av. Partitioning v in
accordance with the columns of A, one obtains

Av — A A| (n1 _ Ar1vr + Aravo
Ag1 Asz| |v2 Agivq + Aggvg |’

In turn, this reduces Av to smaller matrix-vector products involving low-rank off-
diagonal blocks and diagonal blocks. If A is HODLR, the diagonal and off-diagonal
blocks are not coupled and Ajjvy, Assve are simply computed by recursion. The
resulting procedure has complexity O(knlogn); see Figure 6 (left).

If A is HSS, then the off-diagonal blocks A1s, A2y are not directly available, unless
the recursion has reached a leaf. To address this issue, the following four-step proce-
dure is used; see, e.g., [17, section 3|. In step 1, the (column) cluster tree is traversed
from bottom to top in order to multiply the right-factor matrices (Vj(g))* with the cor-
responding portions of v via the recursive representation (3). More specifically, letting
v(IP) denote the restriction of v to a leaf I7, we first compute vf := (V;))*v(I”) on
the deepest level and then retrieve all quantities v} := (Vi(@)*v(lf) fort=p—1,...,1
by applying the translation operators R% in a bottom-up fashion. In step 2, all

core blocks Sf,j are applied. In step 3—analogous to step 1—the (row) cluster tree is
traversed from top to bottom in order to multiply the left-factor matrices UZ-(K) with
the corresponding portions of v via the recursive representation (3). In step 4, the
contributions from the diagonal blocks are added to the vectors obtained at the end
of step 2. The resulting procedure has complexity O(kn); see Figure 6 (right).

procedure HODLR_MATVEC(A,v) 1: procedure HSS_MATVEC(A,v)

1:
2 if A is dense then 2: On level £ = p compute
3 return Av P (Vi(p))*v(lf), i=1,...,2°
4: end if d? «— AP, I?)v(I7)
5: y1 + HODLR_MATVEC(A11,v1) 3 fort=p—1,...,1,i=1,...,2 do
6: Y2 A12v2 ¢ (£) \ % Uétl
4: ; . ;
7 ys < As1vn i & (RV’Z) ’ngrl
8 y4 < HODLR_MATVEC(A22,v2) 5: end for
. _ 1 1
o return {yl +y2] 6: forZz 1,...,p—1,4 1,.(.@.),2 do)
Ys + Ya 7, |:U2i—1:| - 0 S3i21,2i |:U2i—1:|
10: end procedure vé; Sé?)%il 0 ve,
8: end for
9: fort=1,....,p—1,i=1,...,2° do
£41 41
10: |:’U227j;11:| - l:v2£i+711:| + Rg)ﬂf
Vg, Vg ’
11: end for

12: On level £ = p compute

y(IP) « UPP 4 dP, i=1,...,2°
13: return y
14: end procedure

Fia. 6. Pseudocodes of HODLR matriz-vector product (on the left) and HSS matriz-vector
product (on the right).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C55

TABLE 3

Complexity of arithmetic operations in the hm-toolbox;
HODLR/HSS rank k and v is a vector of length n.

A,B are n X n matrices with

Operation HODLR complexity | HSS complexity

Axv O(knlogn) O(kn)

A\v O(k?nlog? n) O(k%n)

A+B O(k%nlogn) O(k%n)

AxB O(k?nlog?n) O(k3n)

A\B O(k?nlog?n) O(k3n)

inv(A) O(k?nlog?n) O(k%n)

A.%B6 O(k*nlogn) O(k*n)
1u(A), chol(A) O(k?nlog? n) —

ulv(A), chol(A) O(k%n)
qr(4) O(k2n10g2 n) —

compression O(k%nlog(n)) O(k%n)

4.2. Overview of fast arithmetic operations in the hm-toolbox. The fast
algorithms for performing matrix-matrix operations and matrix factorizations and
solving linear systems are based on extensions of the recursive paradigms discussed
above for the matrix-vector product. In the HODLR format the original task is split
into subproblems that are solved either recursively or relying on low-rank matrix arith-
metic; see, e.g., [28, Chapter 3] for an overview and [38] for the QR decomposition.
In the HSS format, the algorithms have a tree-based structure and a bottom-to-top-
to-bottom data flow; see [44, 54]. The HSS solver for linear systems is based on an
implicit ULV factorization of the coefficient matrix [17]. A list of the matrix op-
erations available in the toolbox, with the corresponding complexities, is given in
Table 3. In the latter, we assume the HODLR/HSS ranks of the matrix arguments to
be bounded by k. Moreover, for the matrix-matrix multiplication and factorization
of HODLR matrices, repeated recompression is needed to limit rank growth of inter-
mediate quantities and we assume that these ranks stay O(k). We refer to [18] for an
alternative approach for matrix-matrix multiplication based on the randomized SVD.

4.3. A7'B in the HSS format. Matrix iterations for solving matrix equa-
tions or computing matrix functions [32] sometimes involve the computation of A1 B
for square matrices A, B. Being able to perform this operation in HODLR/HSS
arithmetic in turn gives the ability to address large-scale structured matrix equation-
s/functions; see [8] for an example.

For HODLR matrices A, B, the operation A~!B can be implemented in a rela-
tively simple manner, by first computing an LU factorization of A and then applying
the factors to B; see [28]. For HSS matrices A, B, this operation is more delicate and
in the following we describe an algorithm based on the ideas behind the fast ULV
solvers from [16, 17].

Our algorithm for computing A~'B performs the following four steps:

1. The HSS matrix A is sparsified as A = Q*AZ by means of orthogonal trans-
formation @) acting on the row generators at level p, and Z triangularizing
the diagonal blocks. B is updated accordingly by left multiplying it with Q*.

2. The sparsified matrix is decomposed as a product A = A, - Ay such that A7 !
is easy to apply to B; the matrix A, is, up to permutation, of the form I@Ag,

SThe complexity of the Hadamard product is dominated by the recompression stage due to the
k? HODLR/HSS rank of A o B. Without recompression the cost is O(k2nlogn) for HODLR and
O(k2%n) for HSS.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C56 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

where A, is again HSS with the same tree of A, but with smaller blocks.
3. The leaf nodes of A, are merged, yielding an HSS matrix with p — 1 levels.
The procedure is recursively applied for applying fl; ! to the corresponding
rows and columns of A7 'Q*B.
4. Finally, A~'B is recovered by applying the orthogonal transformation Z from
the left to A; A7 'Q*B.
We now discuss the four steps in detail. To simplify the description, we assume that
all involved ranks are equal to k,
Step 1. For each left basis Ui(p) of the HSS matrix A, we compute a QL factor-

ization Ui(p) = QiUi(p) with a square unitary matrix ; such that

0 ~ X
fj(P):| , UZ_(P) c Ckxk_

K3

0w — iy — {

We define Q = Q1@ - - @ Q2r and, in turn, the matrix Q* A takes the shape displayed
in the left plot of Figure 7, where D; := Q!D;, and D, are the diagonal blocks of
A. Similarly, we consider an orthogonal transformation Z = Z; @ - - - @ Zo» such that
each Q! D;Z; has the form

D; 0 ~ . ~
<61l , D; 11 lower triangular and D; 22 €
D;21 Do

QD Z; = Chxk,

Then A := Q*AZ has the sparsity pattern displayed in the right plot of Figure 7.
Step 2. The matrix A is decomposed into a product A = Ay - Ay as follows.
For each block column of A on the lowest level of recursion we partition ,Z(;, If) =:
[C’l, C’g] such that C5 has k columns. The corresponding block column of the identity
matrix is partitioned analogously: I(:, If) =: [El, EQ]. Now, the matrices Aq, Ay are
built by setting
Al(Z,If) = [Cl,EQ], AQ(,I;D) = [El,CQ].

The resulting sparsity patterns of these factors are displayed in Figure 8.

Letting [Qi’n 0 | denote a diagonal block of A;, we construct the block diagonal
D; 21 Iy

matrix A; p with the diagonal blocks lNDi,u @ I for i = 1,...,2P. We decompose

T R

> um@

- =

| M N

D e— o
mE b

LK

8]

Fic. 7. Sparsity patterns of the transformations of A during step 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES Ch7

N T BT T—

' -

AL ol

A= E:mhﬂ.: se==| " 13 e
Umh@ U
A el

T

l:)i,ll 0 B,
Do Iy 522

Fic. 8. Sparsity patterns of the factors Ay, Aa constructed in step 2.

Ai=A1p+U AV;{, where U AV;{ is a low-rank factorization of the off-diagonal part
of Ay. In particular, the factors U4, V4 have 2Pk columns and, thanks to their sparsity
pattern (see the left matrix in Figure 8), they satisfy the relations VI U4 = 0 and
A pUs = AilDUA = Upyb. In turn, by the Woodbury matrix identity, we obtain

ATl = (A1 p+UaVE) ' = (I —UAVI) AL

Therefore, computing Ale*B comes down to applying the block diagonal matrix
AilD’ followed by a correction which involves the multiplication with the matrix U4V
which is (7,, k)-HSS.

Step 3. To apply A;l to Al_lQ*B, we follow the strategy of the fast implicit ULV
solver for linear systems presented in [16, section 4.2.3]. After a suitable permutation,
As has the form I@AQ, where As is a 2Pk x 2Pk HSS matrix (of level p) assembled by
selecting the indices corresponding to the trailing k x k£ minors of the diagonal blocks.
As a principal submatrix, the HSS structure of A, is directly inherited from the one
of A at no cost. Then we call the whole procedure recursively to apply 1212_ ! to the
corresponding rows in A;'Q* B, which are viewed as a (rectangular) HSS matrix of
depth p — 1.

Step 4. To conclude, we apply the block diagonal orthogonal transformation Z,
arising from step 1, to AQIAIIQ*B.

4.4. Hadamard product in the HODLR and in the HSS format. To carry
out the Hadamard (or elementwise) product Ao B of two HODLR/HSS matrices A, B
with the same cluster trees, it is useful to recall the Hadamard product of two low-rank
matrices. More specifically, given Uy B1V;* and Us B2 V5" we have that (see Lemma 3.1
in [36])

(4) ULB1VY 0 Uz B2 Vs = (Ur @ Us)(By ® Ba)(V1 O Va)*,

where ® denotes the Kronecker product and ®7 is the transpose Khatri-Rao product
defined as

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C58 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

1: procedure HODLR_HADAM(A, B) 1: procedure HSS_HADAM(A, B)

2 if A, B are dense then 2: On level £ =p, fori=1,...,2°
3 return AoB O, I?) — A(I?,I*) o B(I?, I?)
4 endif cUu® =AU o BUP

5: C11 + HODLR,HADAM(AH,BH) C.V;-@) _ A~Vi(p> ®T B.Vi(p)

6: Cag }IODLP{,I—;ADAM(Agz7 B22) 3 for ¢ I(D —1,...,1do

7 g-gw “ ﬁ'gw © BB.‘(/le 4: C.R{Y), « AR} @ B.R(})
8 Yz = AV O B V12 . 6)))
9: C.Uz1 <+ AU @T B.Usy b CR(‘?)Z < A}%(‘;)vl ® B'}(%[‘)/vi
10: C. Va1 + AVey ©T B. Vo 6: C.5;; < A.S;j ® B.S; ;
11 C e Cu C.Uix C VY 7 end for

' T C.Ux C Vs, Coao 8: return C

12: return C 9: end procedure

13: end procedure

Fi1G. 9. Pseudocodes of Hadamard product C = Ao B in the HODLR format (on the left) and
the HSS format (on the right). We used the dot notation (e.g., C.U12) to distinguish the parameters
in the representation of the matrices A, B,C.

o @df

' @dl
cec™i, pecvm, coTD= |77 %] epmom,
cz;®d£

with ¢! and dI" denoting the ith rows of C' and D, respectively.

Equation (4) applied to the off-diagonal blocks immediately provides a HODLR
representation, where the HODLR ranks multiply; see Figure 9 (left).

For the HSS format we need to specify how to update the translation operators.
To this end we remark that

U, 0 (U 0 Ui 0| +1Us 0
~ | R ® ~ | R = ~ ~ | (Ru1 ®R
(0 U, U’1> (0 Us U’2> 0 0 0 U, (Fu1 @ Rus)
U, 0T U, 0
_ Y | (r Ru»),
0 U, 0T U, (Fu1 ® Ruz)

where we used [36, property (4) in section 2.1] to obtain the first identity. Putting
all the pieces together yields the procedure for the Hadamard product of two HSS
matrices; see Figure 9 (right).

4.5. Recompression. The term recompression refers to the following task:
Given a (7,, k)-HODLR/HSS matrix A and a tolerance 7 we aim at constructing a
(Tp, k)-HODLR/HSS matrix A, with k < k as small as possible, such that || A— Al|, <
c¢- 7 for some constant ¢ depending on the format and the cluster tree 7.

The recompression of a HODLR matrix applies a well-known QR-based proce-
dure [28, section 2.5] to efficiently recompress each (factorized) off-diagonal block.
This procedure ensures that the error in each block is bounded by 7, yielding an
overall accuracy |A— Al <p-7.

The recompression of an HSS matrix uses the algorithm from [54, section 5], which
proceeds in two phases. In the first phase, the HSS representation is transformed
to the so-called proper form such that all factors UZ.(Z) and Vi(é) have orthonormal
columns on every level £ =1,...,p. This moves all (near) linear dependencies to the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C59

core factors. In the second phase, these core factors are compressed by truncated
SVD in a top-to-bottom fashion, while ensuring the nestedness and the proper form
of the representation. The output A satisfies || A — Al|y < 2 \/\/55:11 T R /N /NminT; see
Appendix A for a more detailed description of the algorithm and an error analysis.

The command compress carries out the recompression discussed above. Addi-
tionally to this explicit involvement, most of the algorithms in the toolbox involve
recompression techniques implicitly. Performing arithmetic operations often leads to
HODLR/HSS representations with ranks larger than necessary to attain the desired
accuracy. For instance, if A and B are (7,,ka)-HSS and (7,, kp)-HSS matrices, re-
spectively, then both A+ B and A - B are exactly represented as (7,, ka + kp)-HSS
matrices. However, k4 + kp is usually an overestimate of the required HSS rank and
recompression can be used to limit this rank growth.

When applying recompression to the output A of an arithmetic operation, the
toolbox proceeds by first estimating ||A]l2 by means of the power method on AA*.
Then recompression is applied with the tolerance 7 = ||Al|2 - €, where € is the global
tolerance discussed in section 3.

The matrix-matrix multiplication in the HODLR format requires some additional
care due to the accumulation of low-rank updates from recursive calls [18]. Currently,
our implementation performs intermediate recompression after each low-rank update
with accuracy 7.

5. Examples and applications. In this section, we illustrate the use of the
hm-toolbox for a range of applications.

All experiments have been performed on a server with a Xeon CPU E5-2650 v4
running at 2.20GHz; for each test the running process has been allocated 8 cores and
128 GB of RAM. The algorithms are implemented in MATLAB and tested under
MATLAB2017a, with MKL BLAS version 11.3.1, using the 8 cores available.

If not stated otherwise, the parameters ¢ and nj, are set to their default values.

5.1. Fast Toeplitz solver. HSS matrices can be used to design a superfast
solver for Toeplitz linear systems. We briefly review the approach in [55] and describe
its implementation that is contained in the function toeplitz_solve of the toolbox.

Let T be an n x n Toeplitz matrix

to t1 ... lp-1
T — t_1 to
: . . t1
ti—m ... t_1 to

In particular, the entries on every diagonal of T' are constant and the matrix is com-
pletely described by the 2n — 1 real or complex scalars t1_,,,...,th—1-

It is well known that a Toeplitz matrix T satisfies the so-called displacement
equation

(5) ZT—-TZ 1 =GHT,
where
1 2t0 tl—n - tl 0
0 tp—1+t_1 ton—t2 O
= |0 th2+it_2 = : |0t
G . . , H : 0], Ty : [In_l ol
: : th—th1
0 t1+tip 0 1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C60 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

Here, Z; is a circulant matrix, which is diagonalized by the normalized inverse discrete
Fourier transform

1 o i _ .
= %(wr(f DO ¢4 <, 0,21 = diag(1,wn, ..., w""Y) = Dy,
(n—1)

with w, = e . Let us call Dy := diag(1,wan, . ..,ws,). Then, applying €, from
the left and D§Q from the right of (5) leads to another displacement equation [31],

(6) DiC—CD_y =GFT,

where
C=Q,TDiY, G=Q,G, F=Q,DH

and D_; = wy,Dy. Since the linear coeflicients of (6) are diagonal matrices, the
matrix C is a Cauchy-like matrix of the following form:

&.A7
@ C=\ 1 !
w —w 1<i,j<n

2n 2n

where éi, ﬁj indicate the ith and jth rows of G and H, respectively.

The fundamental idea of the superfast solver from [55] consists of representing
the Cauchy matrix C in the HSS format. A linear system Tx = b can be turned into
Cy = z, with y = QDgx and z = Q,b. Exploiting the HSS structure of C provides an
efficient solution of Cy = z. The solution x of the original system is retrieved with an
inverse FFT and a diagonal scaling, which can be performed with O(nlogn) flops.

The compression of C in the HSS format is performed using the handle’ con-
structor described in section 3. Indeed, given a vector x € C" we see that Cx =
Q,TD;y z. Therefore, we can evaluate the matrix vector product by means of FFTs
and a diagonal scaling. We assume to have at our disposal an FFT-based matrix-
vector multiplication for Toeplitz matrices. The latter is used to implement an effi-
cient routine C_matvec that performs the matrix vector product with C. Analogously,
a routine C_matvec_transp for C* is constructed.

The MATLAB code of toeplitz_solve (which is included in the toolbox) is
sketched in the following:

1 [function x = toeplitz_solve(c, r, b)

2 |%n, Gh and Fh defined as above

3/d0 = exp(1li * pi / n .x (0 : n - 1));
4 |dl = dO0 .~ 2;

5 |dml = exp(1li * pi / n) * di;

6 |C = hss(’handle’,...

7 1@(v) C_matvec(c, r, 40, v),

s |@(v) C_matvec_transp(c, r, d0, v), .

9o [@(i,3j) (Gh(i,:) * Fh(j,:)’) ./ (d1(i).’ - dm1(j)), n, n)
ifft (b);

ul|ly = C\ z;

12 |x = d0°’ .x fft(y);

13 | end

10 |2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C61

101;‘” RELERRN E 105?\\ T T T T T TTT] E
r g | —e—toeplitz_solve]
i i 10* | —w— Backslash E
i | 103 L O(nlog®n)]
o E o@m?) |
2 w0 12 10}
g b 1 @ B §
5 i 1 & 10 f £
i | B : :
I | W
107 | w0
:H\ Lo ! \: 1072%\\ (| é

103 10* 103 10*

n n

Fic. 10. Left: Ezxecution time (in seconds) for toeplitz_solve applied to the Toeplitz matrices
A to F from [55] and a dashed line indicating an O(n log? n) growth. Right: Ezecution times for
toeplitz_solve versus MATLAB “backslash” applied to the Toeplitz matriz A.

TABLE 4
Relative residuals for toeplitz_solve with global tolerance e = 10710 applied to the Toeplitz
matrices A to F from [55].

Size A B C D E F

1,024 6.24-10- 1.49-107% 1.07-107'* 5.02-107'% 352.107'5 1.19-1010
2,048 1.14-10710 122.107% 1.31-107'2 295.10°15 947.1071% 1.7.10°10
4,09 9.04-10"1! 158.107% 523.10718 944.10°16 3.91.1071% 1.3.10°10
8,192 1.44-1071° 281.1079 1.11-1072 1.7-107'® 1.26-10"'* 1.28.10°10
16,384 9.08-1010 592.107% 3.17-107'2 6.08-10"16 2.58.10"1* 1.5.10°10
32,768 2.17-1079 7.4-10711 264.10712 5.99-10-17 272.1071% 1.9.10710

The whole procedure can be carried out in O(k?n+knlogn) flops, where k is the HSS
rank of the Cauchy-like matrix C. Since k is O(logn) [55], the solver has a complexity
of O(nlog®n) (assuming that the HSS constructor for the Cauchy-like matrix needs
O(k) matrix-vector products).

We have tested our implementation on the matrices—named from A to F— con-
sidered in [55]. The right-hand side is obtained by calling randn(n, 1) and we set € to
10719, The timings are reported in Figure 10 and the relative residuals %
in Table 4.

5.2. Matrix functions for banded matrices. The computation of matrix
functions arises in a variety of settings. When A is banded, the banded structure
is sometimes numerically preserved by f(A) [6, 7], in the sense that f(A) can be
well approximated by a banded matrix. For example, this is the case for an entire
function f of a symmetric matrix A, provided that the width of the spectrum of A
remains modest. In other cases, such as for matrices arising from the discretization of
unbounded operators, f(A) may lose approximate sparsity. Nevertheless, as discussed
in [23], and demonstrated in the following, f(A) can be highly structured and admit
an accurate HSS or HODLR approximation.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C62 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

TABLE 5
Relative errors for the approximation of the matrix exponential in the HODLR and HSS formats.

n Error (HSS) Error (HODLR) Error (expm) [|A|l2
512 429109 4.12-107° 6.56-10"11 1.04-10
1,024 1.74-108 1.79-10—8 2.86-10710 419106
2,048 7.37-1078 7.24-1078 1.47-1079 1.68 - 107
4,096 3.08-10"7 2.97-10"7 4.74-107% 6.71-107
8,192 1.15-10~6 1.14-10°6 1.88-10°8 2.68 - 108
16,384 4.81-10~6 4.68-10~6 6.53 1078 1.07 - 109

As an example, we consider the function f(z) = e* and the 1D discrete Laplacian

The expm function included in the toolbox computes the exponential of A in the HSS
and HODLR formats via a Padé expansion of degree [13/13] combined with scaling
and squaring [33]. For relatively small sizes (up to 16384), we compare the execution
time with the one of the expm function included in MATLAB. We compute a reference
solution from the spectral decomposition of A, which is known in closed form, and use
it to check the relative accuracy (in the spectral norm) of MATLAB expm and the cor-
responding HODLR and HSS functions; see Table 5. The left plot of Figure 11 shows
that the break-even point for the matrix size, where exploiting structure becomes ben-
eficial in terms of execution time, is around 8192. For nonsymmetric matrices, this
threshold reduces to around 1000. For example, computing the exponential of the
stiffness matrix of the convection diffusion problem in [35, section 5.3], for n = 1024,
requires a computational time of about 1 second with all three versions of expm. For
n = 4096 we measure a computational time of about 110 seconds for MATLAB’s expm
and of about 4.5 seconds for the corresponding HODLR/HSS functions. One can also
observe, in Figure 11, the slightly better asymptotic complexity of HSS with respect
to HODLR.

As the norm of A grows as O(n?), the decay of off-diagonal entries can be expected
to stay moderate. To verify this, we have computed a sparse approximant to e by
discarding all entries smaller than 107° - max; ; [(e!);;| in the result obtained with
MATLAB expm. The threshold has been chosen a posteriori to ensure an accuracy
similar to the one obtained with HODLR/HSS arithmetic. The right plot of Figure 11
shows that approximate sparsity is not very effective in this setting; the memory
consumption still grows quadratically with n. In contrast, the growth is much slower
for the HODLR and HSS formats.

5.3. Matrix equations and 2D fractional PDEs. It has been recently no-
ticed that discretizations of 1D fractional differential operators 8‘971, a € (1,2), can be
efficiently represented by HODLR matrices [40]. We consider 2D separable operators
arising from a fractional PDE of the form

{aagigy) + ZH@Y) = f(ayy), (z,y) € Q:=(0,1)

Y

©) u(z,y) =0, (r,y) € R?\ Q.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C63

TTTTTT T T T T T T T TTTT TTTTTT R T T T
103? E —e— HSS
102;] 104 7+HODLR |
- I] —e— Sparse ./.
o 1ot 1m
g 100; ; E 102 - |
= i —e— HSS ||
1071 ¢ —= HODLR [
o —e— expm || 0l N
10 2;\\\\\\\ LT T T TTT7T = 10 Ll Lol Lol
103 10* 10° 103 104 10°
n n

FIG. 11. Left: Ezecution times for computing of e, with A being the discrete 1D Laplacian.
Right: Memory consumption (in MBytes) in the HODLR and HSS formats, compared to the sparse
approximant obtained by thresholding entries.

Discretizing (9) on a tensorized (n + 2) X (n + 2) grid provides an n? x n? matrix of
the foom M = A® I+ 1 ® A and a vector b € R™ containing the representation
of the right-hand side f(x,y). Thanks to the Kronecker structure, the linear system
Mz = b can be recast into the matrix equation

(10) AX + XAT =, vec(C') = b, vee(X) = x.

If C is a low-rank matrix—a condition sometimes satisfied in the applications—the
solution X is numerically low-rank and it is efficiently approximated via rational
Krylov subspace methods [46]. The latter require fast procedures for the matrix-
vector product and the solution of shifted linear systems with the matrix A. If A is
represented in the HODLR or HSS format this requirement is satisfied. In particular,
the Lyapunov solver ek_lyap included in the hm-toolbox is based on the eztended
Krylov subspace method, described in [46].

We consider a simple example where we choose o = 1.7 and the finite difference
discretization described in [42]. In this setting, the matrix A is given by

WO A 0 e 0 0]
R AR S ERRPR
o o T g g
Lok gl g gl

where gj(-a) = (—1)7(%). The matrix A has Toeplitz structure and it has been proven
to have off-diagonal blocks of (approximate) low rank in [40]. The source term is
f(z,y) = sin(2nrz) sin(27y) and the matrix C containing its samplings has rank 1.

To retrieve the HODLR representation of A we rely on the Toeplitz constructor:

1/Dx = 1/(n + 2);

2| [c, r] = fractional_symbol (alpha, n);

s | T hodlr (’toeplitz’, c, r, n) / Dx~alpha;
4 | A T + T’;

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C64 STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

TABLE 6
Performances of ek_-lyap with HODLR and HSS matrices.

hodlr hss
Size Thuild Ttot Res Thuild Ttot Res rank(X)
1,024 0.06 0.14 1.21-108 0.14 0.33 1.21-108 23
2,048 0.06 0.2 1.19-108 0.24 0.66 1.19.10"8 27
4,096 0.14 0.54 9.03-107° 0.47 1.45 9.03-107? 31
8,192 0.3 1.28 9.95-109 1.03 3.2 9.95-107° 35
16,384 0.65 299 8.17-107Y 1.98 6.42 84-107Y 39
32,768 1.32 6.68 1.15-10"8 4.13 12.98 8.82.107° 42
65,536 2.83 1491 1.08-10% 812 27.06 9.83-107Y 46
1.31-10° 5.71 32.7 5.5-10~8 16.89 60.32 2.74-10°8 50

We combine this with ek_lyap in order to solve (10):

1|u = sin(2 * pi * (1:n) / (n + 2))°;

2 [Xu = ek_lyap(A, u, inf, 1le-6);

3 [X hodlr (’low-rank’, Xu, Xu);

4 |U hodlr(’low-rank’, u, u);

5 |Res = norm(A * X + X * A + U) / norm(U);

The obtained results are reported in Table 6, where
e Tiuiq indicates the time for constructing the HODLR or HSS representation,
e T, indicates the total time of the procedure,
e Res denotes the residual associated with the approximate solution X: |AX +
XA+ C2/[C]s.
The results demonstrate the linear polylogarithmic asymptotic complexity of the pro-
posed scheme.

6. Conclusions. We have presented the hm-toolbox, a MATLAB software for
working with HODLR and HSS matrices. Based on state-of-the-art and newly de-
veloped algorithms, its functionality matches much of the functionality available in
MATLAB for dense matrices, while most existing software packages for matrices with
hierarchical low-rank structures focus on specific tasks, most notably linear systems.
Nevertheless, there is room for further improvement and future work. In particular,
the range of constructors could be extended further by advanced techniques based on
function expansions and randomized sampling. Also, the full range of matrix functions
and other nonstandard linear algebra tasks is not fully exhausted by our toolbox.

Appendix A. HSS recompression: Algorithm and error analysis. Here,
we provide a description and an analysis of the algorithm from [54, section 5], which
performs the recompression of an HSS matrix A with respect to a certain tolerance
7. As discussed in section 4.5, we suppose that A is already in proper form, i.e., its
factors Ui(é), Vi(e) have orthonormal columns for all ¢, /.

The recompression procedures handle HSS block rows and HSS block columns
in an analogous manner; to simplify the exposition we only describe the compres-
sion of HSS block rows. For this purpose, we consider the following partition of the
translation operators:

Ry, € CF =12

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES C65

For each level £ = 1,...,pand every i = 1,...,2¢ the algorithm has access to a matrix
W;—having k rows—such that the ¢th HSS block row can be written as

UQ(fi_ll) Rg,)i,l Wi ‘N/z*

(11) 5
Uz(fH)R(UZ,)i,zWin‘*

for some matrix V; having orthonormal columns. At level £ = 1 the algorithm chooses
Wy = 582), Wy = Sé’ll), i = V2(1), and Vp = Vl(l). Note that the relation (11) allows
us to write the HSS block rows at level £ + 1 as

41 14 4 o 141 14 I %
U2(ii_1) 51(;11) REJ,)mWi Vi, U2(i+) Si(++1,1i) R§J7)i,2Wi vy

where ‘71, V, are suitable row permutations of ‘72 &) VQ(f) and XZ @ V;fll, respectively.
The algorithm proceeds with the following steps:
e Compute the truncated SVDs (neglecting singular values below the
tolerance 7)
770 | U | o~ |0l ¢
0.5 [y V)~ [s9, RE,W
5o [ox o] o [a® ¢
UzS2 [V21 V22} ~ [51(4311 R§]12W1:| .
In particular, we have the approximate factorizations

Uity (s RO W] Ve = 0NV 00 (81 OFRY, W Vi
U2(f+1) [Sfi"!l‘i) R[(jey)iﬁgwi} ‘\'/2* ~ U2(f+1)fj2 [3\2‘72*1 ﬁ;Rg’)ljwz} ‘72*

e The above factorizations are equivalent to performing the following updates:

~

s ~ U
St =8V Ry =Ry 0L Ry =T | R
Si(?l,i = §‘72*17 joe;;) = Rﬁf)ﬁz-

The analogous operations are performed on the HSS block columns. We notice that
the truncated SVDs introduced an error with norm bounded by 7 in every HSS block
row and column on every level. This leads to the following.

PROPOSITION A.1. Let A be a (Tp, k)-HSS matriz for some p,k € N and A the
output of the recompression algorithm described above, using the truncation tolerance

7> 0. Then, || A - As < 29Z=1r.

Proof. We remark that at each level ¢ the algorithm introduces row and column
perturbations of the form

E(z)+(F(€))T: [E}Z) Eéf)} + [Ffe) Féf)r’

where Ej(-é), F]@ have norm bounded by 7 for every j. Since |[E®||y, ||F®) ||y < v/2¢7,
the claim follows by summing for / =1,...,p.]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C66

18]

[19]

20]

(21]

22]

(23]

24]

STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

REFERENCES

S. AMBIKASARAN, D. FOREMAN-MACKEY, L. GREENGARD, D. W. HoGa, AND M. O’NEIL, Fast
direct methods for Gaussian processes, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2016),
pp. 252-265, https://doi.org/10.1109/TPAMI.2015.2448083.

S. AMBIKASARAN, K. SINGH, AND S. SANKARAN, HODLRIib: A Library for Hierarchical Ma-
trices, J. Open Source Software, 4 (2019), 1167, https://doi.org/10.21105/joss.01167.

J. BALLANI AND D. KRESSNER, Matrices with hierarchical low-rank structures, in Exploiting
Hidden Structure in Matrix Computations: Algorithms and Applications, Lecture Notes
in Math. 2173, Springer, Cham, 2016, pp. 161-209.

M. BEBENDORF, AHMED, https://github.com/xantares/ahmed, (2019).

M. BEBENDORF AND W. HACKBUSCH, Fxistence of H-matrix approrimants to the inverse FE-
matriz of elliptic operators with L°° -coefficients, Numer. Math., 95 (2003), pp. 1-28, https:
//doi.org/10.1007/s00211-002-0445-6.

M. BENzI, P. Boito, AND N. RAZOUK, Decay properties of spectral projectors with applica-
tions to electronic structure, SIAM Rev., 55 (2013), pp. 364, https://doi.org/10.1137/
100814019.

M. BeNzI AND N. RAZOUK, Decay bounds and O(n) algorithms for approzimating functions of
sparse matrices, Electron. Trans. Numer. Anal., 28 (2007), pp. 16-39.

D. A. Bini, S. Massel, AND L. RoBoL, Efficient cyclic reduction for quasi-birth-death problems
with rank structured blocks, Appl. Numer. Math., 116 (2017), pp. 37-46, https://doi.org/
10.1016/j.apnum.2016.06.014.

D. A. Bini, S. MAsSEI, AND L. RoBOL, On the decay of the off-diagonal singular values in
cyclic reduction, Linear Algebra Appl., 519 (2017), pp. 27-53, https://doi.org/10.1016/].
laa.2016.12.027.

S. BORM, HLIBPro, https://www.hlibpro.com/.

S. BORM, Ha-Matrices—An Efficient Tool for the Treatment of Dense Matrices, Habilitation-
sschrift, Christian-Albrechts-Universitat zu Kiel, 2006.

S. BORM, Efficient Numerical Methods for Non-Local Operators: H2-Matriz Compression,
Algorithms and Analysis, EMS Tracts Math. 14, European Mathematical Society, Ziirich,
2010, https://doi.org/10.4171/091.

S. BORM, H2Lib, https://github.com/H2Lib/H2Lib, (2019).

S. BORM, L. GRASEDYCK, AND W. HACKBUSCH, Hierarchical Matrices, Lecture Note 21/2003,
MPI-MIS Leipzig, 2006, http://www.mis.mpg.de/preprints/In/lecturenote-2103.pdf.

P. BUSINGER AND G. H. GOLUB, Linear least squares solutions by Householder transformations,
Numer. Math., 7 (1965), pp. 269-276, https://doi.org/10.1007/BF01436084.

S. CHANDRASEKARAN, P. DEwILDE, M. Gu, T. PALs, X. SuN, A.-J. VAN DER VEEN, AND
D. WHITE, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341-364, https://doi.org/10.1137/S0895479802405884.

S. CHANDRASEKARAN, M. Gu, AND T. PALS, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603-622, https:
//doi.org/10.1137/S0895479803436652.

J. DOLz, H. HARBRECHT, AND M. D. MULTERER, On the best approzimation of the hierarchical
matriz product, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 147-174, https://doi.org/10.
1137/18M1189373.

Y. EIDELMAN, I. GOHBERG, AND 1. HAIMOVICI, Separable Type Representations of Matrices and
Fast Algorithms, Volume 1: Basics. Completion Problems. Multiplication and Inversion
Algorithms, Oper. Theory Adv. Appl. 234, Birkhduser/Springer, Basel, 2014.

Y. EDELMAN, I. GOHBERG, AND I. Haimovici, Separable Type Representations of Matri-
ces and Fast Algorithms, Volume 2: FEigenvalue Method, Oper. Theory Adv. Appl. 235,
Birkh&user/Springer, Basel, 2014.

M. FAUSTMANN, J. M. MELENK, AND D. PRAETORIUS, Ezistence of H-matriz approximants to
the inverse of BEM matrices: The hyper-singular integral operator, IMA J. Numer. Anal.,
37 (2017), pp. 1211-1244, https://doi.org/10.1093/imanum/drw024.

I. P. GAVRILYUK, W. HACKBUSCH, AND B. N. KHOROMSKLJ, H-matriz approzrimation for the
operator exponential with applications, Numer. Math., 92 (2002), pp. 83-111, https://doi.
org/10.1007/s002110100360.

I. P. GAVRILYUK, W. HACKBUSCH, AND B. N. KHOROMSK1J, Data-sparse approximation to the
operator-valued functions of elliptic operator, Math. Comp., 73 (2004), pp. 1297-1324,
https://doi.org/10.1090/S0025-5718-03-01590-4.

C. J. GEOGA, M. ANITESCU, AND M. L. STEIN, Scalable Gaussian process computations using
hierarchical matrices, J. Comput. Graph. Statist., https://doi.org/10.1080/10618600.2019.
1652616.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1109/TPAMI.2015.2448083
https://doi.org/10.21105/joss.01167
https://github.com/xantares/ahmed
https://doi.org/10.1007/s00211-002-0445-6
https://doi.org/10.1007/s00211-002-0445-6
https://doi.org/10.1137/100814019
https://doi.org/10.1137/100814019
https://doi.org/10.1016/j.apnum.2016.06.014
https://doi.org/10.1016/j.apnum.2016.06.014
https://doi.org/10.1016/j.laa.2016.12.027
https://doi.org/10.1016/j.laa.2016.12.027
https://www.hlibpro.com/
https://doi.org/10.4171/091
https://github.com/H2Lib/H2Lib
http://www.mis.mpg.de/preprints/ln/lecturenote-2103.pdf
https://doi.org/10.1007/BF01436084
https://doi.org/10.1137/S0895479802405884
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1137/18M1189373
https://doi.org/10.1137/18M1189373
https://doi.org/10.1093/imanum/drw024
https://doi.org/10.1007/s002110100360
https://doi.org/10.1007/s002110100360
https://doi.org/10.1090/S0025-5718-03-01590-4
https://doi.org/10.1080/10618600.2019.1652616
https://doi.org/10.1080/10618600.2019.1652616

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

[25]

[26]

27]

(28]

[29]

(30]

[41]

[42]

(43]

[44]

[46]

[47]

hm-toolbox: MATLAB SOFTWARE FOR HODLR/HSS MATRICES Cc67

P. Guysers, X. S. Li, F.-H. RoueT, S. WILLIAMS, AND A. NAPOv, An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized sampling,
SIAM J. Sci. Comput., 38 (2016), pp. S358-S384, https://doi.org/10.1137/15M1010117.

G. H. GoLuB AND C. F. VAN LOAN, Matriz Computations, 4th ed., Johns Hopkins Stud. Math.
Sci., Johns Hopkins University Press, Baltimore, MD, 2013.

L. GRASEDYCK, Ezistence of a low rank or H-matriz approzimant to the solution of a Sylvester
equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371-389, https://doi.org/10.1002/
nla.366.

W. HACKBUSCH, Hierarchical Matrices: Algorithms and Analysis, Springer Ser. Comput. Math.
49, Springer, Heidelberg, 2015, https://doi.org/10.1007/978-3-662-47324-5.

W. HackBuscH, B. N. KHOROMSKIJ, AND R. KRIEMANN, Hierarchical matrices based on a
weak admissibility criterion, Computing, 73 (2004), pp. 207-243, https://doi.org/10.1007/
s00607-004-0080-4.

N. HaLko, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matriz decompositions, SIAM Rev., 53
(2011), pp. 217-288, https://doi.org/10.1137,/090771806.

G. HEINIG, Inversion of generalized Cauchy matrices and other classes of structured matrices,
in Linear Algebra for Signal Processing (Minneapolis, MN, 1992), IMA Vol. Math. Appl. 69,
Springer, New York, 1995, pp. 63-81, https://doi.org/10.1007/978-1-4612-4228-4_5.

N. J. HiGHAM, Functions of Matrices, STAM, Philadelphia, 2008.

N. J. HicHAM, The scaling and squaring method for the matriz exponential revisited, SIAM
Rev., 51 (2009), pp. 747-764, https://doi.org/10.1137/090768539.

D. KRESSNER, P. KURSCHNER, AND S. MASSEI, Low-rank updates and divide-and-conquer meth-
ods for quadratic matriz equations, Numer. Algorithms, (2019), https://doi.org/10.1007/
$11075-019-00776-w.

D. KRESSNER, S. MASSEI, AND L. RoBOL, Low-rank updates and a divide-and-conquer method
for linear matriz equations, SIAM J. Sci. Comput., 41 (2019), pp. A848-A876, https:
//doi.org/10.1137/17M1161038.

D. KRESSNER AND L. PERISA, Recompression of Hadamard products of tensors in Tucker
format, SIAM J. Sci. Comput., 39 (2017), pp. A1879-A1902, https://doi.org/10.1137/
16M1093896.

D. KRESSNER AND A. SUSNJARA, Fast computation of spectral projectors of banded matri-
ces, STAM J. Matrix Anal. Appl., 38 (2017), pp. 984-1009, https://doi.org/10.1137/
16M1087278.

D. KRESSNER AND A. SUSNJARA, Fast QR Decomposition of HODLR Matrices, preprint,
arXiv:1809.10585, 2018.

P. G. MARTINSSON, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matriz, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 12511274, https:
//doi.org/10.1137/100786617.

S. Masser, M. Mazza, AND L. ROBOL, Fast solvers for two-dimensional fractional diffusion
equations using rank structured matrices, STAM J. Sci. Comput., 41 (2019), pp. A2627—
A2656, https://doi.org/10.1137/18M1180803.

S. MASSEI AND L. ROBOL, Decay bounds for the numerical quasiseparable preservation in matriz
functions, Linear Algebra Appl., 516 (2017), pp. 212-242, https://doi.org/10.1016/j.laa.
2016.11.041.

M. M. MEERSCHAERT AND C. TADJERAN, Finite difference approximations for fractional
advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65-77,
https://doi.org/10.1016/j.cam.2004.01.033.

F. RouET, X. S. L1, P. GHYSELS, AND A. NAprov, A distributed-memory package for dense hi-
erarchically semi-separable matriz computations using randomization, ACM Trans. Math.
Software, 42 (2016), 27, https://doi.org/10.1145/2930660.

Z. SHENG, P. DEWILDE, AND S. CHANDRASEKARAN, Algorithms to solve hierarchically semi-
separable systems, in System Theory, the Schur Algorithm and Multidimensional Analysis,
Oper. Theory Adv. Appl. 176, Birkhduser, Basel, 2007, pp. 255-294, https://doi.org/10.
1007/978-3-7643-8137-0_5.

H. D. SiMmON AND H. ZHA, Low-rank matriz approximation using the Lanczos bidiagonalization
process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257-2274, https://doi.
org/10.1137/510648275973273009.

V. SIMONCINI, Computational methods for linear matriz equations, SIAM Rev., 58 (2016),
pp. 377-441, https://doi.org/10.1137/130912839.

R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, Matriz Computations and Semisepara-
ble Matrices, Volume 1: Linear Systems, Johns Hopkins University Press, Baltimore, MD,
2008.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/15M1010117
https://doi.org/10.1002/nla.366
https://doi.org/10.1002/nla.366
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/s00607-004-0080-4
https://doi.org/10.1007/s00607-004-0080-4
https://doi.org/10.1137/090771806
https://doi.org/10.1007/978-1-4612-4228-4_5
https://doi.org/10.1137/090768539
https://doi.org/10.1007/s11075-019-00776-w
https://doi.org/10.1007/s11075-019-00776-w
https://doi.org/10.1137/17M1161038
https://doi.org/10.1137/17M1161038
https://doi.org/10.1137/16M1093896
https://doi.org/10.1137/16M1093896
https://doi.org/10.1137/16M1087278
https://doi.org/10.1137/16M1087278
https://arxiv.org/abs/1809.10585
https://doi.org/10.1137/100786617
https://doi.org/10.1137/100786617
https://doi.org/10.1137/18M1180803
https://doi.org/10.1016/j.laa.2016.11.041
https://doi.org/10.1016/j.laa.2016.11.041
https://doi.org/10.1016/j.cam.2004.01.033
https://doi.org/10.1145/2930660
https://doi.org/10.1007/978-3-7643-8137-0_5
https://doi.org/10.1007/978-3-7643-8137-0_5
https://doi.org/10.1137/S1064827597327309
https://doi.org/10.1137/S1064827597327309
https://doi.org/10.1137/130912839

Downloaded 10/29/25 to 146.48.83.26 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C68

(48]

[49]

STEFANO MASSEI, LEONARDO ROBOL, AND DANIEL KRESSNER

R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, Matriz Computations and Semisepara-
ble Matrices, Volume 2: Eigenvalue and Singular Value Methods, Johns Hopkins University
Press, Baltimore, MD, 2008.

J. VOGEL, J. X1A, S. CAULEY, AND V. BALAKRISHNAN, Superfast divide-and-conquer method
and perturbation analysis for structured eigenvalue solutions, STAM J. Sci. Comput., 38
(2016), pp. A1358-A1382, https://doi.org/10.1137/15M1018812.

A. SUSNJARA AND D. KRESSNER, A Fast Spectral Divide-and-Conguer Method for Banded Ma-
trices, arXiv:1801.04175, 2018.

S. Wang, X. S. L1, F.-H. RougrT, J. Xi1A, AND M. V. DE Hoopr, A parallel geometric multifrontal
solver using hierarchically semiseparable structure, ACM Trans. Math. Software, 42 (2016),
21, https://doi.org/10.1145/2830569.

Y. X1, J. X1a, S. CAULEY, AND V. BALAKRISHNAN, Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 44-72, https://doi.org/10.1137/120895755.

J. X1A, S. CHANDRASEKARAN, M. GU, AND X. S. L1, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382—
1411, https://doi.org/10.1137/09074543X.

J. Xi1a, S. CHANDRASEKARAN, M. Gu, AND X. S. Li, Fast algorithms for hierarchically
semiseparable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953-976, https:
//doi.org/10.1002/nla.691.

J. X1, Y. X1, AND M. Gu, A superfast structured solver for Toeplitz linear systems via
randomized sampling, SIAM J. Matrix Anal. Appl.,, 33 (2012), pp. 837-858, https:
//doi.org/10.1137/110831982.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/15M1018812
https://arxiv.org/abs/1801.04175
https://doi.org/10.1145/2830569
https://doi.org/10.1137/120895755
https://doi.org/10.1137/09074543X
https://doi.org/10.1002/nla.691
https://doi.org/10.1002/nla.691
https://doi.org/10.1137/110831982
https://doi.org/10.1137/110831982

	Introduction
	Preliminaries and MATLAB classes |hodlr|, |hss|
	HODLR matrices
	HSS matrices
	Appearance of HODLR and HSS matrices

	Construction of HODLR/HSS representation
	Parameter settings for constructors
	Construction from dense or sparse matrices
	Construction from handle functions
	Construction from structured matrices
	Conversion between formats
	Auxiliary functionality
	Nonstandard cluster trees
	Rectangular matrices

	Arithmetic operations
	Matrix-vector products
	Overview of fast arithmetic operations in the hm-toolbox
	A-1B in the HSS format
	Hadamard product in the HODLR and in the HSS format
	Recompression

	Examples and applications
	Fast Toeplitz solver
	Matrix functions for banded matrices
	Matrix equations and 2D fractional PDEs

	Conclusions
	Appendix A. HSS recompression: Algorithm and error analysis
	References

