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COMPUTING FUNCTIONS OF SYMMETRIC HIERARCHICALLY
SEMISEPARABLE MATRICES\ast 

ANGELO A. CASULLI\dagger , DANIEL KRESSNER\ddagger , AND LEONARDO ROBOL\S 

Abstract. The aim of this work is to develop a fast algorithm for approximating the matrix
function f(A) of a square matrix A that is symmetric and has hierarchically semiseparable (HSS)
structure. Appearing in a wide variety of applications, often in the context of discretized (fractional)
differential and integral operators, HSS matrices have a number of attractive properties facilitating
the development of fast algorithms. In this work, we use an unconventional telescopic decomposition
of A, inspired by recent work of Levitt and Martinsson on approximating an HSS matrix from matrix-
vector products with a few random vectors. This telescopic decomposition allows us to approximate
f(A) by recursively performing low-rank updates with rational Krylov subspaces while keeping the
size of the matrices involved in the rational Krylov subspaces small. In particular, no large-scale linear
system needs to be solved, which yields favorable complexity estimates and reduced execution times
compared to existing methods, including an existing divide-and-conquer strategy. The advantages
of our newly proposed algorithms are demonstrated for a number of examples from the literature,
featuring the exponential, the inverse square root, and the sign function of a matrix. For the special
case of matrix inversion, our algorithm reduces to a procedure previously proposed by Gillman,
Young, and Martinsson [Front. Math. China, 7 (2012), pp. 217--247].

Key words. functions of matrices, hierarchically semiseparable, rational Krylov

MSC codes. 65F60, 15B99

DOI. 10.1137/24M1642354

1. Introduction. Consider a symmetric matrix A \in \BbbR n\times n with spectral de-
composition A = V \Lambda V T , with the orthogonal matrix V and the diagonal matrix
\Lambda = diag(\lambda 1, . . . , \lambda n) containing the eigenvalues of A. Given a scalar function f
well defined on the eigenvalues of A, the matrix function f(A) \in \BbbR n\times n is defined
as V f(\Lambda )V T , where f(\Lambda ) := diag(f(\lambda 1), . . . , f(\lambda n)). Popular examples include the
matrix inverse, the matrix exponential, the sign function, and the (inverse) matrix
square root; see the monograph [16] for an overview. When A is of moderate size,
f(A) can simply be computed according to this definition, via computing the spectral
decomposition of A, or using a more specialized algorithm such as the scaling-and-
squaring method for the matrix exponential [17]. These methods typically require
\scrO (n2) memory and \scrO (n3) operations, and thus become infeasible for larger n. If
only the computation of f(A)B for a (block) vector B is needed, (rational) Krylov
subspace methods are well suited when A is large and (data) sparse; see [12] and the
references therein.

The task of approximating the whole matrix function f(A) for a large-scale matrix
A is rather challenging and certainly requires additional assumptions on the data
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2315

sparsity structure of A. For example, if A is a banded matrix and f can be well
approximated by a low-degree polynomial on the spectrum of A, then f(A) can also
be well approximated by a banded matrix [3], leading to fast algorithms, such as the
ones described in [6, 8, 26]. If, on the other hand, f does not admit good polynomial
approximations, then f(A) usually does not admit a good approximation by a banded
or, more generally, by a sparse matrix even when A is banded. Examples include the
(inverse) square root or the sign function when A has eigenvalues that are close to
zero relative to the width of the spectrum. For these examples, f still admits good
rational approximations and the approximation of f(A) can potentially be addressed
using hierarchical low-rank techniques [14].

A matrix A is said to be hierarchically off-diagonal low-rank (HODLR) if it can
be recursively block partitioned in a matrix with low-rank off-diagonal blocks, more
specifically, there exists a block partitioning

A=

\biggl[ 
A11 A12

A21 A22

\biggr] 
such that A12 and A21 are of low rank and A11 and A12 are square matrices that
can be recursively partitioned in the same way (until a minimal size of the diagonal
blocks is reached). Hierarchically semiseparable (HSS) matrices additionally impose
that the low-rank factors representing the off-diagonal blocks on the different levels of
the recursion are nested; see section 2 for the precise definition. Hierarchical matrices,
such as HODLR and HSS, admit data-sparse representations and cover a wide variety
of matrix structures, including banded matrices and rational functions thereof. In
particular, they can be used to approximate f(A) when A is banded or, more generally,
HSS whenever f admits a good rational approximation [6]. This property has been
exploited to develop iterate-and-truncate methods using hierarchical matrices [11, 19]
as well as a divide-and-conquer procedure based on low-rank updates and rational
Krylov subspaces [6]. While numerical experiments in [6] show that the latter method
is often preferable in terms of efficiency, it only exploits HODLR structure even when
the matrix is HSS, and therefore does not fully benefit from the nestedness of low-rank
factors in the HSS format.

To fully benefit from HSS structure, we will represent an HSS matrix in an un-
conventional way, via a telescopic decomposition. Such a decomposition was recently
used by Levitt and Martinsson [20] to compute an HSS approximation of a matrix
A from a few random matrix-vector products.1 A symmetric matrix A in (standard)
telescopic decomposition of depth L takes the form

A=\bfitD +\bfitU A(L - 1)\bfitU T

with the block diagonal matrices

\bfitD =

\left[     
A11

A22

. . .

A2L,2L

\right]     , \bfitU =

\left[     
U1

U2

. . .

U2L

\right]     ,

and A(L - 1) in telescopic decomposition of depth L - 1; see Figure 1 for an illustration
of L = 2. The number of columns of each Ui is determined by the HSS rank of A.

1It is worth mentioning that another method for approximating HSS matrices from random
matrix-vector products was recently presented by Halikias and Townsend [15], but this algorithm is
not based on the telescopic decompositions considered in this work.
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2316 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

Fig. 1. Telescopic decomposition of depth 2.

Our approach is based on two observations: (1) The evaluation of f(\bfitD ) reduces to
computing the small matrix functions f(Aii) for i= 1, . . . ,2L. (2) For small HSS rank,
the difference between A - \bfitD has low rank and thus the low-rank update techniques
from [1] apply. This allows us to (very accurately) approximate f(A) as follows:

f(A)\approx f(\bfitD ) +\bfitW 
\bigl( 
f
\bigl( 
\bfitW T (\bfitD +\bfitU A(L - 1)\bfitU T )\bfitW 

\bigr) 
 - f(\bfitW T\bfitD \bfitW )

\bigr) 
\bfitW T ,(1.1)

where \bfitW is the orthonormal basis of a rational Krylov subspace for the matrix \bfitD 
and starting block vector \bfitU . As we will see in section 4, \bfitW inherits the block
diagonal structure from \bfitD , \bfitU . Thus, f(\bfitW T\bfitD \bfitW ) again reduces to applying f to the
diagonal blocks of \bfitW T\bfitD \bfitW . More importantly, \bfitW T (\bfitD + \bfitU A(L - 1)\bfitU T )\bfitW is again
in telescopic decomposition, which allows us to approximate the first term of (1.1) by
recursively repeating the described procedure. The approximation to f(A) eventually
returned by the whole procedure is in a telescopic decomposition that differs from
the ones in [20] and [21]. This will require us to introduce a more general notion of
telescopic decompositions in this work.

Compared to the divide-and-conquer method described in [6], our algorithm fully
exploits the nestedness relations of the HSS format. In particular, our construction
only involves rational Krylov subspaces for block diagonal matrices instead of HSS
matrices. This translates into reduced complexity and, in many cases, significantly
lower execution times. Based on telescopic decompositions, our new algorithm com-
bines well with the method by Levitt and Martinsson. This combination allows one to
extract an approximation to f(A) from the product of A with a few random vectors.

The remainder of the paper is structured as follows: The usual data-sparse repre-
sentation of HSS matrices is described in section 2, while section 3 introduces a gen-
eral concept of telescopic decompositions and shows how to convert between different
forms of telescopic decompositions and the usual data-sparse representation of HSS
matrices. In section 4, our newly proposed algorithm for approximating matrix func-
tions is described and its convergence is analyzed. Section 5 recalls existing rational
approximation results, which yield favorable complexity estimates for our algorithm
in important special cases. This translates into superior efficiency, as demonstrated
with several numerical examples in section 6.

Note that for most of sections 2 and 3, we will not assume that A is symmetric.
Imposing symmetry would not simplify the exposition and our considerations on tele-
scopic decompositions in section 3 might be of independent interest. In section 3.4,
we will discuss the consequences of A being symmetric.

2. Hierarchically semiseparable matrices. To define hierarchically semisep-
arable (HSS) matrices we need to introduce a way to recursively split row and column
indices of a matrix. Given a vector of indices I = [1,2, . . . , n], we use a perfect binary

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2317

tree \scrT , called cluster tree, to define subsets of indices obtained by subdividing I. The
root \gamma of the tree is associated with the full vector I; the rest of the tree is recursively
defined in the following way: given a nonleaf node \tau associated with an index vec-
tor I\tau , its children \alpha ,\beta , are associated with two vectors of consecutive indices I\alpha , I\beta ,
such that I\tau is the concatenation of I\alpha and I\beta . The depth of a node is defined as
the distance from the root of the tree. The depth of the tree is denoted by L. We
observe that \scrT is uniquely defined by the index vectors associated with the nodes,
and, hence, cluster trees can be defined by simply specifying the indices associated
with the leaf nodes. For each leaf node \alpha , we use | \alpha | to denote the length of the vector
of indices associated with \alpha . We assume that the leaf nodes are ``small,"" that is, for
some prescribed threshold size t it holds that | \alpha | \leq t for every leaf \alpha .

Given a matrix A \in \BbbR n\times n, we let A\tau ,\tau \prime denote the submatrix of A obtained by
selecting the row and column indices associated with nodes \tau and \tau \prime , respectively.
In particular, we will consider diagonal blocks (\tau = \tau \prime ) and sub/supdiagonal blocks
(\tau and \tau \prime are siblings, i.e., children of the same node). We are now ready to state the
definition of an HSS matrix following [21, section 3.3].

Definition 2.1. Given a cluster tree \scrT for the indices [1, . . . , n], a matrix A \in 
\BbbR n\times n is called an HSS matrix of HSS rank r if the following hold:

1. For each pair of sibling nodes \tau , \tau \prime \in \scrT , there exist matrices U
(big)
\tau \in \BbbR | \tau | \times r,

V
(big)
\tau \prime \in \BbbR | \tau \prime | \times r with orthonormal columns and \~A\tau ,\tau \prime \in \BbbR r\times r, such that

A\tau ,\tau \prime =U (big)
\tau 

\~A\tau ,\tau \prime (V
(big)
\tau \prime )T .

2. For each nonleaf node \tau \in \scrT with children \alpha and \beta , there exist U\tau , V\tau \in \BbbR 2r\times r

with orthonormal columns, such that

U (big)
\tau =

\Biggl[ 
U

(big)
\alpha 

U
(big)
\beta 

\Biggr] 
U\tau and V (big)

\tau =

\Biggl[ 
V

(big)
\alpha 

V
(big)
\beta 

\Biggr] 
V\tau .

(2.1)

Remark 2.2. For the purpose of simplifying the description, Point 1 of Defini-
tion 2.1 imposes the same rank r on every sub/supdiagonal block A\tau ,\tau \prime . All definitions
and algorithms discussed in this work can be adapted to accommodate different ranks
for different \tau , \tau \prime . In particular, our software implementation allows for nonconstant
ranks in order to optimize storage and computational cost.

Definition 2.1 corresponds to the usual way of storing an HSS matrix A [28, 23].

For each leaf node \tau , the matrices U\tau :=U
(big)
\tau , V\tau := V

(big)
\tau and for each nonleaf node

\tau the matrices U\tau , V\tau from (2.1) are stored. The latter pair of matrices are usually
called translation operators. The nestedness relation (2.1) allows us to recursively

recover U
(big)
\alpha and V

(big)
\alpha for any \alpha \in \scrT from the (small) matrices U\tau , V\tau . We only

need to additionally store the r\times r matrices \~A\tau ,\tau \prime for every pair of sibling nodes \tau , \tau \prime 

and the small diagonal blocks A\tau ,\tau (of size at most t) for every leaf \tau in order to
recover the whole matrix A. To see this, let \alpha and \beta denote the children of the root \gamma .
Then

A=A\gamma ,\gamma =

\Biggl[ 
A\alpha ,\alpha U

(big)
\alpha 

\~A\alpha ,\beta (V
(big)
\beta )T

U
(big)
\beta 

\~A\beta ,\alpha (V
(big)
\alpha )T , A\beta ,\beta 

\Biggr] 
.(2.2)

If \alpha and \beta are nonleaf nodes, the matrices A\alpha ,\alpha and A\beta ,\beta can be recursively recovered
in the same fashion. Otherwise, if \alpha and \beta are leaves, these matrices are stored
explicitly. In summary, the matrices

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2318 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

\{ U\tau , V\tau : \tau \in \scrT \} , \{ \~A\tau ,\tau \prime : \tau , \tau \prime siblingnodes\} , \{ A\alpha ,\alpha : \alpha leaf node\} (2.3)

define a data-sparse representation of an HSS matrix A.

Remark 2.3. There is no need to impose orthonormality on U\tau , V\tau in the repre-
sentation (2.3). The orthogonality properties required by Definition 2.1 can always
be ensured by the orthogonalization procedure described in [21, section 4.2], without
changing the matrix A represented by (2.3) through the recursion (2.2).

2.1. Block diagonal matrices and depth reduction. To simplify notation,
we make use of the following form of block diagonal matrices. Let \{ M\tau \} \tau \in \scrT be a set
of matrices for a cluster tree \scrT . Then

\bfitM (\ell ) := blkdiag(M\tau : \tau \in \scrT ,depth(\tau ) = \ell )(2.4)

denotes the block diagonal matrix with the diagonal blocks consisting of all matrices
M\tau for which \tau has depth equal to \ell .

For example, given the data-sparse representation (2.3) of an HSS matrix A,
the matrices \bfitU (L) and \bfitV (L) are block diagonal matrices containing the orthonormal
matrices U\alpha and V\alpha , respectively, for every leaf \alpha \in \scrT as diagonal blocks. When
considering the product

\^A :=
\bigl( 
\bfitU (L)

\bigr) T
A\bfitV (L),

the representation (2.3) is affected as follows:

\{ U\tau , V\tau : depth(\tau )\leq L - 1\} , \{ UT
\alpha U\alpha , V

T
\alpha V\alpha : \alpha leaf node\} ,

\{ \~A\tau ,\tau \prime : \tau , \tau \prime siblingnodes\} , \{ UT
\alpha A\alpha ,\alpha V\alpha : \alpha leaf node\} .(2.5)

This representation allows us to reconstruct the matrix \^A by a recursion analogous to
(2.2). Since UT

\alpha U\alpha = I and V T
\alpha V\alpha = I, the orthogonality properties of Definition 2.1

are satisfied as well. However, the size of \^A is 2Lm, which is generally different from
n and requires the cluster tree \scrT to be adjusted accordingly.

Definition 2.4. Given integers m and L, consider the index vector [1,2, . . . ,2Lm].

Then \scrT (L)
m denotes the corresponding balanced cluster tree of depth L, having leaves

associated with [(i - 1)m+ 1, . . . , im] for i= 1, . . . ,2L.

In particular, the matrix \^A defined above is an HSS matrix associated with the
cluster tree \scrT (L)

m . When dropping the leaves, one obtains the balanced cluster tree
\scrT (L - 1)
2m of depth L - 1. The matrix \^A is still an HSS matrix associated with \scrT (L - 1)

2m

but its parametrization (2.5) reduces to

\{ U\tau , V\tau : \tau \in \scrT (L - 1)
2m \} , \{ \~A\tau ,\tau \prime : \tau , \tau \prime siblings in\scrT (L - 1)

2m \} , \{ \^A\alpha ,\alpha : \alpha leaf in\scrT (L - 1)
2m \} ,

which matches the form of (2.3).

3. Telescopic decompositions. To develop a randomized algorithm for recov-
ering an HSS matrix from matrix-vector products, Levitt and Martinsson [20] replaced
the classical data-sparse representation (2.3) with a certain type of telescopic decom-
position. A similar but different telescopic decomposition has been described in [9].
As discussed in [9] and section 3.2, this decomposition is directly linked with the data-
sparse representation (2.3). In section 3.1, we introduce a general class of telescopic
decompositions that includes both types. We also discuss how to convert between
these types of telescopic decompositions.
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2319

Algorithm 3.1. Recovering A from a telescopic decomposition.

Require: \{ U\tau , V\tau ,D\tau \} \tau \in \scrT telescopic decomposition of A for cluster tree \scrT of depth
L,

Ensure: A
A\leftarrow D\gamma where \gamma is the root of \scrT 
for \ell = 1, . . . ,L do

A\leftarrow \bfitD (\ell ) +\bfitU (\ell )A(\bfitV (\ell ))T  \triangleleft with \bfitD (\ell ),\bfitU (\ell ), \bfitV (\ell ) defined as in (2.4)
end for

3.1. A general telescopic decomposition. We start with a generalization of
the construction from [20], recursively defining a telescopic decomposition.

Definition 3.1. Let \scrT be a cluster tree of depth L for the indices [1, . . . , n]. A
matrix A \in \BbbR n\times n is in telescopic decomposition of telescopic rank r if there are real
matrices

\{ U\tau , V\tau : \tau \in \scrT , 1\leq depth(\tau )\} and \{ D\tau : \tau \in \scrT \} ,

for brevity denoted by \{ U\tau , V\tau ,D\tau \} \tau \in \scrT or simply \{ U\tau , V\tau ,D\tau \} , with the following
properties:

1. D\tau is of size | \tau | \times | \tau | if depth(\tau ) =L and 2r\times 2r otherwise;
2. U\tau , V\tau have orthonormal columns; they are of size | \tau | \times r if depth(\tau ) =L and

2r\times r otherwise;
3. if L= 0 (i.e., \scrT consists only of the root \gamma ), then A=D\gamma ;
4. if L\geq 1, then

A=\bfitD (L) +\bfitU (L)A(L - 1)(\bfitV (L))T ,(3.1)

where \bfitU (L),\bfitV (L), \bfitD (L) are the block diagonal matrices defined by U\tau , V\tau ,D\tau 

as in (2.4), and the matrix

A(L - 1) := (\bfitU (L))T (A - \bfitD (L))\bfitV (L)(3.2)

has the telescopic decomposition \{ U\tau , V\tau ,D\tau \} \tau \in \scrT (L - 1)
2r

, where \scrT (L - 1)
2r denotes

a balanced cluster tree of depth L - 1 (see Definition 2.4).

As we will see in the following, Definition 3.1 offers significant freedom in the
choice of diagonal blocks D\tau , giving rise to different types of telescopic decomposi-
tions. A simple procedure to explicitly reconstruct the matrix A from a telescopic
decomposition is described in Algorithm 3.1.

3.2. From HSS matrices to telescopic decompositions. The results of this
section are similar to and follow from the results in [9, section 4]. For completeness,
we provide the proofs of Propositions 3.2 and 3.4 in Appendix A.

The following proposition provides a construction that turns any HSS matrix into
a telescopic decomposition of the same rank.

Proposition 3.2. Let

\{ U\tau , V\tau , \~A\tau ,\tau \prime : \tau , \tau \prime sibling nodes\} and \{ A\tau ,\tau : \tau leaf node\} 
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2320 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

be the data-sparse representation defining an HSS matrix A of HSS rank r for a cluster
tree \scrT of depth L. For each node \tau \in \scrT , define

D\tau :=

\left\{     
A\tau ,\tau if \tau is a leaf node,\Biggl[ 

0 \~A\alpha ,\beta 

\~A\beta ,\alpha 0

\Biggr] 
if \tau has children \alpha and \beta .

Then \{ U\tau , V\tau ,D\tau \} is a telescopic decomposition of A of telescopic rank r associated
with \scrT .

The proof of Proposition 3.2 shows that the matrix A(L - 1) generated by the
telescopic decomposition \{ U\tau , V\tau ,D\tau \} \tau \in \scrT (L - 1)

2r
satisfies (A(L - 1))\tau ,\tau = D\tau for every

leaf \tau of \scrT (L - 1)
2r . Letting \scrT (\ell )

2r denote a balanced cluster tree of depth \ell \leq L - 1, we
can apply this property recursively and obtain

(A(\ell ))\tau ,\tau =D\tau for every leaf \tau of \scrT (\ell )
2r for all 1\leq \ell \leq L - 1,(3.3)

where A(\ell ) denotes the matrix generated by the telescopic decomposition \{ U\tau , V\tau ,
D\tau \} \tau \in \scrT (\ell )

2r
. It follows from Proposition 3.2 and Proposition 3.4 below that telescopic

decompositions with this property are in a simple one-to-one correspondence with
HSS matrices, which justifies the following definition.

Definition 3.3. A telescopic decomposition \{ U\tau , V\tau ,D\tau \} \tau \in \scrT of a matrix A is
called standard if D\tau =A\tau ,\tau for each \tau leaf node and (3.3) holds.

Proposition 3.4. Let \scrT be a cluster tree of depth L and let A be the matrix
generated by a standard telescopic decomposition \{ U\tau , V\tau ,D\tau \} \tau \in \scrT of telescopic rank
r. Then, for each nonleaf node \tau with children \alpha ,\beta , there exist matrices \~A\alpha ,\beta , \~A\beta ,\alpha \in 
\BbbR k\times k such that

D\tau =

\biggl[ 
0 \~A\alpha ,\beta 

\~A\beta ,\alpha 0

\biggr] 
.(3.4)

Moreover, A is an HSS matrix of HSS rank r with the data-sparse representation

\{ U\tau , V\tau : \tau \in \scrT \} , \{ \~A\tau ,\tau \prime : \tau , \tau \prime sibling nodes\} , \{ A\alpha ,\alpha : \alpha leaf node\} .

3.3. Converting a general telescopic decomposition into a standard one.
In the following, we describe a procedure that turns an arbitrary telescopic decomposi-
tion \{ U\tau , V\tau ,D\tau \} of a matrix A into a standard telescopic decomposition \{ U\tau , V\tau ,C\tau \} .
We stress that the matrices U\tau and V\tau remain unchanged. By the results of section 3.2,
this implies the equivalence between HSS matrices of HSS rank r and matrices that
admit a telescopic decomposition of telescopic rank r. In section 4, we will observe
that employing the standard telescopic decomposition is preferred over other, more
general telescopic decompositions because it allows us in a straightforward manner
to ensure that the developed algorithm for computing Hermitian matrix functions is
well defined.

For this purpose, it is crucial to understand how we can recover the principal
submatrices A\alpha ,\alpha for leaf nodes \alpha , since these matrices correspond to the matrices
C\alpha in the standard telescopic decomposition.

Proposition 3.5. For a cluster tree \scrT of depth L, let A be a matrix in telescopic
decomposition \{ U\tau , V\tau ,D\tau \} of telescopic rank r. Then the following hold:
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2321

1. if L= 0 (i.e., \scrT consists only of the root \gamma ), then A\gamma ,\gamma =D\gamma ;
2. if L\geq 1, any pair of sibling leaf nodes \alpha ,\beta with parent \tau satisfies

\biggl[ 
A\alpha ,\alpha 

A\beta ,\beta 

\biggr] 
=

\biggl[ 
D\alpha 

D\beta 

\biggr] 
+

\Biggl[ 
U\alpha 

\bigl[ 
(A

(L - 1)
\tau ,\tau )\sansone ,\sansone 

\bigr] 
V T
\alpha 

U\beta 

\bigl[ 
(A

(L - 1)
\tau ,\tau )\sanstwo ,\sanstwo 

\bigr] 
V T
\beta 

\Biggr] 
,

(3.5)

with the matrix A(L - 1) from Definition 3.1, and (A
(L - 1)
\tau ,\tau )\sansone ,\sansone and (A

(L - 1)
\tau ,\tau )\sanstwo ,\sanstwo 

denoting the (1,1) and (2,2) diagonal blocks of A
(L - 1)
\tau ,\tau \in \BbbR 2r\times 2r, respectively.

Proof. Point 1 follows directly from the definition of D\gamma . To prove point 2, we
observe that (3.1) implies\biggl[ 

A\alpha ,\alpha \ast 
\ast A\beta ,\beta 

\biggr] 
=A\tau ,\tau =

\biggl[ 
D\alpha 

D\beta 

\biggr] 
+

\biggl[ 
U\alpha 

U\beta 

\biggr] 
A(L - 1)

\tau ,\tau 

\biggl[ 
V T
\alpha 

V T
\beta 

\biggr] 
.

Therefore, taking the diagonal blocks concludes the proof.

The previous proposition combined with the fact that a telescopic decomposition
of the matrix A(L - 1) employed in (3.5) is given by \{ U\tau , V\tau ,D\tau \} depth(\tau )\leq L - 1 (see Def-
inition 3.1) results in a practical way to compute the matrices A\alpha ,\alpha for all leaves \alpha ;
see Algorithm 3.2.

To satisfy the definition of a standard telescopic decomposition on the leaf level,
we need to set

C\alpha :=A\alpha ,\alpha 

for each leaf node \alpha . Moreover, if L \geq 1, for each node \tau of depth L - 1 the matrix
C\tau is given by A

(L - 1)
\tau ,\tau , where A(L - 1) is now defined by (3.2) using the matrices C\alpha 

instead of D\alpha for a leaf \alpha , that is,

A(L - 1) := (\bfitU (L))T
\bigl( 
A - \bfitC (L)

\bigr) 
\bfitV (L) = (\bfitU (L))T

\bigl( 
A - \bfitD (L)

\bigr) 
\bfitV (L)

+ (\bfitU (L))T
\bigl( 
\bfitD (L)  - \bfitC (L)

\bigr) 
\bfitV (L),

Algorithm 3.2. Computation of principal submatrices of A given in telescopic de-
composition.

Require: Matrix A in telescopic decomposition \{ U\tau , V\tau ,D\tau \} for cluster tree \scrT of
depth L

Ensure: \{ A\alpha ,\alpha : \alpha leaf node\} 
\^A\gamma ,\gamma \leftarrow D\gamma for root \gamma of \scrT 
for \ell = 0, . . . ,L - 1 do

for each node \tau of depth \ell do

Denoting by \alpha ,\beta the children of \tau and defining ( \^A\tau ,\tau )\sansone ,\sansone , ( \^A\tau ,\tau )\sanstwo ,\sanstwo as in
Proposition 3.5\Bigl[ 

\^A\alpha ,\alpha 

\^A\beta ,\beta 

\Bigr] 
\leftarrow 

\Bigl[ 
D\alpha 

D\beta 

\Bigr] 
+

\biggl[ 
U\alpha 

\bigl[ 
( \^A\tau ,\tau )\sansone ,\sansone 

\bigr] 
V T
\alpha 

U\beta 

\bigl[ 
( \^A\tau ,\tau )\sanstwo ,\sanstwo 

\bigr] 
V T
\beta 

\biggr] 
end for

end for
for each leaf node \alpha do

A\alpha ,\alpha \leftarrow \^A\alpha ,\alpha 

end for
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2322 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

Algorithm 3.3. Computation of a standard telescopic decomposition of A given in
telescopic factors.

Require: Matrix A in telescopic decomposition \{ U\tau , V\tau ,D\tau \} for cluster tree \scrT of
depth L

Ensure: Standard telescopic decomposition \{ U\tau , V\tau ,C\tau \} of A
\{ C\alpha : \alpha leaf node\} \leftarrow Algorithm 3.2 applied to \{ U\tau , V\tau ,D\tau \} 
for each node \tau do

\^D\tau \leftarrow D\tau 

end for
for \ell =L - 1, . . . ,0 do

for each node \tau of depth \ell do
Denoting by \alpha ,\beta the children of \tau 

\^D\tau \leftarrow \^D\tau  - 

\Biggl[ 
UT
\alpha ( \^D\alpha  - C\alpha )V\alpha 

UT
\beta ( \^D\beta  - C\beta )V\beta 

\Biggr] 
end for

\{ C\tau : \tau \in \scrT of depth \ell \} \leftarrow Algorithm 3.2 applied to \{ U\tau , V\tau , \^D\tau \} depth(\tau )\leq l

end for

with the block diagonal matrices \bfitU (L),\bfitV (L),\bfitD (L), and \bfitC (L) defined from \{ U\tau \} ,
\{ V\tau \} ,\{ D\tau \} , and \{ C\tau \} , respectively, according to (2.4). By Definition 3.1, the ma-
trix (\bfitU (L))T

\bigl( 
A  - \bfitD (L)

\bigr) 
\bfitV (L) is generated by the telescopic decomposition \{ U\tau , V\tau ,

D\tau \} depth(\tau )\leq L - 1, hence defining

\^D\tau :=

\left\{     D\tau  - 

\Biggl[ 
UT
\alpha (D\alpha  - C\alpha )V\alpha 

UT
\beta (D\beta  - C\beta )V\beta 

\Biggr] 
if \tau hasdepthL - 1andchildren\alpha ,\beta ;

D\tau otherwise;

the matrix A(L - 1) is generated by the telescopic decomposition \{ U\tau , V\tau ,
\^D\tau \} depth(\tau )\leq L - 1. Therefore a standard decomposition of A can be computed by
iterating Algorithm 3.2, as summarized in Algorithm 3.3. In particular, the compu-
tational complexity of transforming a telescopic decomposition into a standard one is
\scrO (r32L), where r is the telescopic rank of A. Assuming the threshold size and the
telescopic rank to be constant, this shows linear complexity in the size of A.

3.4. Symmetric telescopic decompositions. For a symmetric matrix, the
definition of a telescopic decomposition can be adjusted to reflect symmetry.

Definition 3.6. A telescopic decomposition \{ U\tau , V\tau ,D\tau \} \tau \in \scrT is said to be sym-
metric if V\tau =U\tau and DT

\tau =D\tau hold for every \tau \in \scrT . In analogy to the nonsymmetric
case, we employ the term standard if (3.3) is satisfied. For simplicity, a symmetric
telescopic decomposition is denoted by \{ U\tau ,D\tau \} \tau \in \scrT , avoiding the repetition of U\tau .

If A is symmetric and has HSS rank r, there exist data-sparse representations
of the form (2.3), for which U\tau = V\tau have r columns and \~AT

\tau ,\tau \prime = \~A\tau \prime ,\tau holds for
each pair of sibling nodes \tau , \tau \prime (see [21, section 4.1]). Therefore, Proposition 3.2
implies that A admits a symmetric telescopic decomposition of rank r. We also
recall that the procedure described in section 3.3 converts a telescopic decomposition
\{ U\tau , V\tau ,D\tau \} into a standard one, without changing the matrices U\tau , V\tau . In turn, the
same procedure can be employed to convert a symmetric telescopic decomposition
into a standard symmetric telescopic decomposition.
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2323

4. Computing telescopic decompositions for functions of symmetric
HSS matrices. If A is a symmetric HSS matrix with spectrum contained in
[\lambda min, \lambda max] and the function f is analytic on [\lambda min, \lambda max], then f(A) can usually
be well approximated by an HSS matrix. While this has been observed before [6,
section 3], it is nontrivial to develop an algorithm that fully exploits this property.
In this section, we derive such an algorithm that computes a telescopic decomposi-
tion for an HSS approximation of f(A) starting from a standard symmetric telescopic
decomposition of A. If needed, this can be converted into a standard telescopic decom-
position, employing the results of section 3.3, and therefore into an HSS data-sparse
representation (2.3). If f is a rational function of a certain degree, we show that such
an approximation is exact and, otherwise, the approximation error is bounded using
a rational approximation of f on [\lambda min, \lambda max].

Block rational Krylov subspaces play a key role in our construction, and we briefly
recall their definition; see [7] for more details.

Definition 4.1. Let A \in \BbbR n\times n, B \in \BbbR n\times b, and let \bfitxi k = (\xi 0, . . . , \xi k - 1), with
\xi j \in \BbbC \cup \{ \infty \} , be a list of poles that are not eigenvalues of A. Then the associated
rational Krylov subspace is defined as

\scrQ (A,B,\bfitxi k) :=

\left\{   q(A) - 1
k - 1\sum 
j=0

AjBCj , with Cj \in \BbbR b\times b

\right\}   ,

where

q(x) :=
\prod 

\xi \in \bfitxi k,\xi \not =\infty 

(x - \xi ).

An orthonormal basis of a rational Krylov subspace can be computed by the ra-
tional Arnoldi method [7, Algorithm 2.1]. During the procedure, shifted linear systems
with the matrices2 A - \xi jI need to be solved, and this can become computationally
expensive for a large-scale matrix A. One novelty of this work is to employ rational
Krylov subspaces associated with small-size matrices for the computation of large-
scale matrix functions. Proposition 4.2 below is a simple but key result that allows
us to do this. We recall (2.4): Given a family of matrices (Ci \in \BbbR mi\times ni), the matrix
\bfitC = blkdiag(Ci) is the block diagonal matrix containing the matrices Ci as diagonal
blocks (in their natural order).

Proposition 4.2. Let \bfitA := blkdiag(Ai) and \bfitB := blkdiag(Bi) with Ai \in \BbbR ni\times ni

and Bi \in \BbbR ni\times bi and let \bfitxi k be a list of poles. Then an orthonormal basis of \scrQ (\bfitA ,\bfitB ,\bfitxi k)
is given by \bfitU := blkdiag(Ui), where Ui is an orthonormal basis of \scrQ (Ai,Bi,\bfitxi k).

Proof. By Definition 4.1, every element of \scrQ (\bfitA ,\bfitB ,\bfitxi k) takes the form

q(\bfitA ) - 1
k - 1\sum 
j=0

\bfitA j\bfitB Cj =

k - 1\sum 
j=0

blkdiag
\bigl( 
q(Ai)

 - 1Aj
iBi

\bigr) 
Cj

for some matrix Cj \in \BbbR b\times b with b =
\sum 

i bi. Because q(Ai)
 - 1Aj

iBi \in \scrQ (Ai,Bi,\bfitxi k) for
every i, j, it follows that \scrQ (\bfitA ,\bfitB ,\bfitxi k) = span(blkdiag(Ui)).

Summarizing results from [1], the following theorem shows how low-rank updates
of a matrix function can be approximated using rational Krylov subspaces.

2The linear system is replaced by a matrix product with A if \xi j =\infty .
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2324 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

Theorem 4.3 (see [1, Theorem 4.5]). Let A=C +Z \~AZT , where C \in \BbbR n\times n, \~A \in 
\BbbR m\times m are symmetric and Z \in \BbbR n\times m. Let [\lambda min, \lambda max] be an interval that contains
the spectra of A and C, and let \bfitxi k = (\xi 0, . . . , \xi k - 1), with \xi j \in \BbbC \cup \{ \infty \} , be a list of
poles closed under complex conjugation. For a function f analytic on [\lambda min, \lambda max], we
consider the approximation

f(A)\approx \^F := f(C) +W
\bigl( 
f(WTAW ) - f(WTCW )

\bigr) 
WT ,(4.1)

where W is an orthonormal basis of \scrQ (C,Z,\bfitxi k). Then the approximation error
E(f) := \^F  - f(A) satisfies

\| E(f)\| 2 \leq 4 min
r\in \BbbP k/qk

\| f  - r\| \infty ,

where qk =
\prod 

\xi \in \bfitxi k,\xi \not =\infty (x  - \xi ), \BbbP k denotes the set of polynomials of degree at most
k  - 1, and \| \cdot \| \infty denotes the supremum norm on [\lambda min, \lambda max]. In particular, the
approximation (4.1) is exact if f \in \BbbP k/qk.

We will apply Theorem 4.3 recursively to telescopic decompositions. In order
to do so conveniently, we slightly loosen our assumptions on a standard telescopic
decomposition. Given a cluster tree \scrT associated with [1, . . . , n] we assume that a
matrix A\in \BbbR n\times n can be written as

A= \~\bfitC 
(L)

+\bfitZ (L)A(L - 1)(\bfitZ (L))T ,(4.2)

where
\bullet A(L - 1) admits a standard symmetric telescopic decomposition \{ U\tau ,C\tau \} \tau \in \scrT (L - 1)

2r
;

\bullet \~\bfitC 
(L)

=blkdiag( \~C\tau : \tau leafnode in \scrT ), and \~C\tau =A\tau \tau ;
\bullet \bfitZ (L) =blkdiag(Z\tau : \tau leafnode in \scrT ), with Z\tau \in \BbbR | \tau | \times r.

The key difference to assuming that A has a standard symmetric telescopic decompo-
sition is that no orthogonality is enforced on \bfitZ (L), the factors on the leaf level. The
key advantage of (4.2) is that it remains unaffected when multiplying with certain
block diagonal matrices. The following proposition additionally shows how to move
one level up.

Proposition 4.4. Let A be an n\times n matrix admitting the decomposition (4.2),
and \bfitW (L) =blkdiag(W\tau : \tau leaf node) with W\tau \in \BbbR | \tau | \times m. Then,

(\bfitW (L))TA\bfitW (L) = \~\bfitC 
(L - 1)

+\bfitZ (L - 1)A(L - 2)(\bfitZ (L - 1))T ,

with the block diagonal matrices

\~\bfitC 
(L - 1)

=blkdiag( \~C\tau : depth(\tau ) =L - 1), \bfitZ (L - 1) =blkdiag(Z\tau : depth(\tau ) =L - 1)

containing the diagonal blocks

Z\tau =

\biggl[ 
WT

\alpha Z\beta 

WT
\alpha Z\beta 

\biggr] 
U\tau \in \BbbR 2m\times r,

\~C\tau =

\biggl[ 
WT

\alpha 
\~C\alpha W\alpha 

WT
\beta 
\~C\beta W\beta 

\biggr] 
+

\biggl[ 
WT

\alpha Z\alpha 

WT
\beta Z\beta 

\biggr] 
C\tau 

\biggl[ 
WT

\alpha Z\alpha 

WT
\beta Z\beta 

\biggr] T
\in \BbbR 2m\times 2m,

and the matrix \bfitA (L - 2) generated by the standard telescopic decomposition \{ U\tau ,
C\tau \} \tau \in \scrT (L - 2)

2r
, where the matrices U\tau and C\tau stem from the telescopic decomposition

of A(L - 1). Moreover, \~C\tau =A\tau ,\tau holds for each leaf node \tau \in \scrT (L - 1)
2m .
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2325

Proof. Considering (4.2) and applying the telescopic decomposition (3.1) of the
matrix A(L - 1), we get

(\bfitW (L))TA\bfitW (L)

= (\bfitW (L))T
\Bigl( 
\~\bfitC 
(L)

+\bfitZ (L)(\bfitC (L - 1) +\bfitU (L - 1)A(L - 2)(\bfitU (L - 1)))T (\bfitZ (L))T
\Bigr) 
\bfitW (L)

= \~\bfitC 
(L - 1)

+\bfitZ (L - 1)A(L - 2)(\bfitZ (L - 1))T

with \bfitC (L - 1),\bfitU (L - 1) defined from \{ C\tau \} , \{ U\tau \} , in accordance with (2.4). Moreover,
because \{ U\tau ,C\tau \} \tau \in \scrT (L - 1)

2r
is a standard decomposition of A(L - 1), the relation \~C\tau =

A\tau ,\tau holds for each leaf node \tau \in \scrT (L - 1)
2m .

To approximate f(A) for a matrix A admitting the decomposition (4.2), we use

the construction of Theorem 4.3 with C = \~\bfitC 
(L)

and Z = \bfitZ (L), which yields the
approximation

f(A)\approx f( \~\bfitC 
(L)

) +\bfitW (L)
\Bigl[ 
f
\bigl( 
(\bfitW (L))TA\bfitW (L)

\bigr) 
 - f

\bigl( 
(\bfitW (L))T \~\bfitC 

(L)
\bfitW (L)

\bigr) \Bigr] 
(\bfitW (L))T ,

(4.3)

where \bfitW (L) is an orthogonal basis for \scrQ ( \~\bfitC (L)
,\bfitZ (L),\bfitxi k). Note that the three eval-

uations of f are all well defined3 because \~\bfitC 
(L)

contains diagonal blocks of A and

(\bfitW (L))T \~\bfitC 
(L)

\bfitW (L), (\bfitW (L))TA\bfitW (L) are orthogonal compressions. By eigenvalue in-
terlacing, the spectra of these three matrices are contained in [\lambda min, \lambda max]. We now
make two observations:

(i) Proposition 4.2 implies that the n\times 2Lrk matrix \bfitW (L) takes the form

\bfitW (L)=blkdiag(W\tau : \tau leaf of\scrT ),with W\tau \in \BbbR | \tau | \times rk orthonormal basis of \scrQ (\~C\tau ,Z\tau ,\bfitxi k).

(ii) Proposition 4.4 implies that B(L - 1) := (\bfitW (L))TA\bfitW (L) admits the decompo-
sition

B(L - 1) = \~\bfitC 
(L - 1)

+\bfitZ (L - 1)A(L - 2)(\bfitZ (L - 1))T .(4.4)

In (4.3), the function f needs to be evaluated for three matrices. This is cheap

for \~\bfitC 
(L)

and \bfitW (L))T \~\bfitC 
(L)

\bfitW (L) because these matrices are block diagonal with small
diagonal blocks, for which the evaluation of f is computed explicitly. The expensive
part is the evaluation of f for B(L - 1) = (\bfitW (L))TA\bfitW (L). For this purpose, we use
the decomposition (4.4) and apply the approximation (4.3) again:

f(B(L - 1))\approx f( \~\bfitC 
(L - 1)

)

+ \bfitW (L - 1)
\Bigl[ 
f(B(L - 2)) - f((\bfitW (L - 1))T \~\bfitC 

(L - 1)
\bfitW (L - 1))

\Bigr] 
(\bfitW (L - 1))T ,

where B(L - 2) := (\bfitW (L - 1))TB(L - 1)\bfitW (L - 1) and

\bfitW (L - 1)

=blkdiag(W\tau : \tau leaf of \scrT (L - 1)
2rk ), with W\tau orthonormal basis of \scrQ ( \~C\tau ,Z\tau ,\bfitxi k).

3This is the main reason for using a standard telescopic decomposition of A. Indeed, for a
nonstandard telescopic decomposition, the well-defined evaluation of f is not guaranteed.
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2326 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

Since \~\bfitC 
(L - 1)

contains diagonal blocks of B(L - 1), the three evaluations of f are again
well defined.

The procedure described above is repeated recursively until reaching a tree of
depth 0, and at that point one simply computes the matrix function of the corre-
sponding dense matrix of size 2rk \times 2rk explicitly. The ith step of the recursive
procedure proceeds as follows: one assumes a decomposition of the form

B(L - i) = \~\bfitC 
(L - i)

+\bfitZ (L - i)A(L - i - 1)(\bfitZ (L - i))T ,(4.5)

where \~\bfitC 
(L - i)

, \bfitZ (L - i) are block diagonal matrices defined from \{ \~C\tau \} , \{ Z\tau \} , in accor-
dance with (2.4), and A(L - i - 1) admits a standard symmetric telescopic decomposition
\{ U\tau ,C\tau \} \tau \in \scrT (L - i - 1)

2r
. Then f(B(L - i)) is approximated by

f( \~\bfitC 
(L - i)

) +\bfitW (L - i)
\Bigl[ 
f(B(L - i - 1)) - f((\bfitW (L - i))T \~\bfitC 

(L - i)
\bfitW (L - i))

\Bigr] 
(\bfitW (L - i))T ,

(4.6)

where B(L - i - 1) := (\bfitW (L - i))TB(L - i)\bfitW (L - i) and

\bfitW (L - i)

=blkdiag(W\tau : \tau leaf of \scrT (L - i)
2rk ), with W\tau orthonormal basis of \scrQ ( \~C\tau ,Z\tau ,\bfitxi k),

explicitly computing f( \~\bfitC 
(L - i)

), f((\bfitW (L - i))T \~\bfitC 
(L - i)

\bfitW (L - i)) and recursively approx-
imating f(B(L - i - 1)). In particular, the procedure can be iterated considering the
decomposition

B(L - i - 1) = \~\bfitC 
(L - i - 1)

+\bfitZ (L - i - 1)A(L - i - 2)(\bfitZ (L - i - 1))T ,

given by Proposition 4.4.
Assuming that A admits a standard (symmetric) telescopic decomposition

\{ U\tau ,C\tau \} , the described procedure starts by taking Z\tau =U\tau and \~C\tau =C\tau for each leaf
node \tau . It results in a telescopic decomposition for an approximation of f(A), with
generators \{ W\tau ,D\tau \} ; the generators W\tau are defined by the rational Krylov subspaces
constructed throughout the process, whereas D\tau takes the form

D\tau :=

\Biggl\{ 
f( \~C\tau ) if \tau is the rootnode,

f( \~C\tau ) - W\tau f(W
T
\tau 
\~C\tau W\tau )W

T
\tau otherwise.

The procedure is summarized in Algorithm 4.1.
Let us emphasize that even if the decomposition (4.2) is used in the course of the

algorithm, the final result has a symmetric telescopic decomposition in the sense of
Definition 3.6. The nonorthogonal factors \bfitZ (\ell ) are only needed to represent interme-
diate stages.

To discuss the complexity of Algorithm 4.1, let r denote the HSS/telescopic rank
of A, and assume that n = 2Lt, with the threshold size t \sim kr and that the cluster
tree is balanced: \scrT = \scrT (L)

t . On the leaf level L, the computation of all W\tau and C\tau 

requires \scrO (2L(t3 + krt2)) = \scrO (nk2r2) operations. On level \ell < L, the complexity is
\scrO (2\ell k3r3) =\scrO (2 - (L - \ell )nk2r2). This gives a total complexity of

\scrO (nk2r2),(4.7)

which is linear in n if both r and k are considered constant.
We conclude this section with a result that bounds the approximation error of

Algorithm 4.1 by the rational approximation error of f on [\lambda min, \lambda max].
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2327

Algorithm 4.1. Computation of f(A) for symmetric HSS matrix A in telescopic
decomposition.

Require: \{ U\tau ,C\tau \} standard symmetric telescopic decomposition of matrix A,
function f , list of poles \bfitxi k = (\xi 0, . . . , \xi k - 1)\subseteq \BbbC \cup \{ \infty \} closed under complex
conjugation

Ensure: \{ W\tau ,D\tau \} telescopic factorization of an approximation to f(A)
for \ell =L,L - 1, . . . ,0 do

for each node \tau of depth \ell do
if \ell =L then

Z\tau \leftarrow U\tau 

\~C\tau \leftarrow C\tau 

else
Let \alpha and \beta be the children of \tau 

Z\tau \leftarrow 
\Bigl[ 
WT

\alpha Z\alpha 

WT
\beta Z\beta 

\Bigr] 
U\tau 

\~C\tau \leftarrow 
\Bigl[ 
WT

\alpha 
\~C\alpha W\alpha 

WT
\beta 

\~C\beta W\beta 

\Bigr] 
+
\Bigl[ 
WT

\alpha Z\alpha 

WT
\beta Z\beta 

\Bigr] 
C\tau 

\Bigl[ 
ZT

\alpha W\alpha 

ZT
\beta W\beta 

\Bigr] 
end if
if \ell = 0 then

D\tau \leftarrow f( \~C\tau )
else

W\tau \leftarrow orthonormal basis of \scrQ ( \~C\tau ,Z\tau ,\bfitxi k)

D\tau \leftarrow f( \~C\tau ) - W\tau f(W
T
\tau 
\~C\tau W\tau )W

T
\tau 

end if
end for

end for

Theorem 4.5. With the notation introduced in Theorem 4.3, let A be a symmetric
HSS matrix associated with a cluster tree \scrT of depth L. Let f be analytic on an inter-
val [\lambda min, \lambda max] containing the eigenvalues of A. Letting E(f) denote the difference
between f(A) and the output of Algorithm 4.1 applied to a standard decomposition of
A, it holds that

\| E(f)\| 2 \leq 4L min
r\in \BbbP k/qk

\| f  - r\| \infty .(4.8)

Proof. Let \{ W\tau ,D\tau \} \tau \in \scrT be the telescopic decomposition returned by Algorithm
4.1 applied to a standard symmetric telescopic decomposition \{ U\tau ,C\tau \} \tau \in \scrT . For each
1 \leq i \leq L - 1 let B(L - i) be the matrices defined in (4.5), and for each leaf node \tau \in 
\scrT (L - i)
2rk , let \~C\tau =B

(L - i)
\tau ,\tau . Moreover, to streamline the notation, we let B(L) :=A and

\~C\tau :=C\tau for each leaf node \tau \in \scrT . For each i, let E(L - i)(f) be the difference between
f(B(L - i)) and its approximation (4.6). Since [\lambda min, \lambda max] contains the eigenvalues of
B(L - i) and \~C\tau for each \tau , Theorem 4.3 implies

\| E(L - i)(f)\| 2 \leq 4 min
r\in \BbbP k/qk

\| f  - r\| \infty .(4.9)

Denoting by F (L - i) the matrix generated by the symmetric telescopic decomposition
\{ W\tau ,D\tau \} \tau \in \scrT L - i

2rk
for 0\leq i\leq L, we have
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2328 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

f(B(L - i))  - F (L - i)

=

\Biggl\{ 
0 if i=L;

f(B(L - i)) - \bfitD (L - i)  - \bfitW (L - i)F (L - i - 1)(\bfitW (L - i - 1))T otherwise,

where \bfitD (L - i), \bfitW (L - i) are the block diagonal matrices defined by \{ D\tau \} , \{ W\tau \} , in
accordance with (2.4). For i < L we observe that

f(B(L - i)) - \bfitD (L - i) =\bfitW (L - i)f(B(L - i - 1))(\bfitW (L - i))T +E(L - i)(f),

and, hence,

f(B(L - i)) - F (L - i) =\bfitW (L - i)
\bigl( 
f(B(L - i - 1)) - F (L - i - 1)

\bigr) 
(\bfitW (L - i))T +E(L - i)(f).

Using that the matrices \bfitW (L - i) have orthonormal columns, this implies

\| E(f)\| 2 = \| f(B(L)) - F (L)\| 2 \leq 
L - 1\sum 
i=0

\| E(L - i)(f)\| 2,

which concludes the proof after applying the inequality (4.9).

The upper bound (4.8) of Theorem 4.5 usually overestimates the error, as the
interval [\lambda min, \lambda max] represents a relaxation of the spectra of the matrices involved
in the construction. Although difficult to quantify rigorously, preliminary numeri-
cal experiments indicate that Algorithm 4.1 benefits from a phenomenon sometimes
called spectral adaptation [13] and performs significantly better than predicted by the
bound in situations where, for example, the matrix A has a few eigenvalues close to
a singularity of f .

5. Pole selection. Theorem 4.5 shows that the choice of poles in the rational
Krylov subspaces \scrQ ( \~C\tau ,Z\tau ,\bfitxi k) is critical to the convergence of Algorithm 4.1. Nor-
mally, repeated poles are preferred to reduce the cost of solving the shifted linear
systems needed for constructing a basis of the subspace [13]. However, such consid-
erations do not apply to Algorithm 4.1; solving linear systems with the small matrix
\~C\tau (shifted by a pole) is cheap.

By Theorem 4.5, if f is an analytic function on an interval [a, b] that contains the
eigenvalues of A and the list of poles \bfitxi k satisfies

min
r\in \BbbP k/qk

\| f  - r\| \infty \leq 
\epsilon 

4L
,(5.1)

then Algorithm 4.1 returns an approximation of f(A) within an error bounded by
a user-specified tolerance \epsilon > 0. In the following, we describe explicit pole selection
strategies that ensure (5.1) for two important classes of functions. For general f ,
general rational approximation methods, like the AAA algorithm [25], can be used to
select the poles.

5.1. Exponential function. In the context of the matrix exponential, it is not
uncommon to use polynomial approximations, that is, all poles are infinite. How-
ever, the corresponding (polynomial) Krylov subspace methods often converge poorly
when the spectrum is wide, that is, a \ll b; see [2, 18] for theoretical results. As
their computational overhead is small in our setting, it is preferable to use rational
approximations/Krylov subspaces. Assuming b\leq 0 (which can always be attained by
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COMPUTING FUNCTIONS OF SYMMETRIC HSS MATRICES 2329

shifting the matrix), it is well known [10] that for every k there exist a list of poles
\bfitxi k and a (universal) constant C such that

min
r\in \BbbP k/qk

\| f  - r\| \infty \leq CK - k
e , Ke \approx 9.289.

In turn, this means that it suffices to choose

k\geq log
\bigl( 
4LC\epsilon  - 1

\bigr) \big/ 
log(Ke)

such that Algorithm 4.1 applied to a symmetric negative semidefinite HSS matrix A
with nonpositive eigenvalues returns an approximation with an error \epsilon . In particular,
note that these estimates are independent of the width of the spectrum. Following
(4.7), this gives a complexity of

\scrO (n(log logn+ log \epsilon  - 1)2r2),

where r is the telescopic/HSS rank of A. For example, this implies that the fixed-
accuracy approximation to the exponential of any tridiagonal symmetric negative
semidefinite matrix A has nearly linear complexity \scrO (n(log logn)2). We are not aware
of any other algorithm that can achieve this.

5.2. Markov functions. Following the exposition in [1], we discuss pole selec-
tion for Markov functions, i.e., functions that can be represented as

f(z) =

\int \beta 

\alpha 

d\mu (x)

z  - x
(5.2)

for some positive measure \mu (x) and  - \infty \leq \alpha < \beta < \infty . Important examples of
functions in this class are

log(1 + z)

z
=

\int  - 1

 - \infty 

 - 1/x
z  - x

dx and z\gamma =
sin(\pi \gamma )

\pi 

\int 0

 - \infty 

| x| \gamma 

z  - x
dx,

with  - 1<\gamma < 0.
Now, let f be a Markov function (5.2) with \beta \leq 0 and let A be a symmetric

positive definite HSS matrix, with the smallest and largest eigenvalues given by a> 0
and b \geq a, respectively. The quasi-optimal rational approximation of f has been
discussed in, e.g., [2, section 6.2], which for every k provides a list of poles \bfitxi k such
that

min
r\in \BbbP k/qk

\| f  - r\| \infty \leq 4\| f\| \infty exp

\biggl( 
 - k \pi 2

log(16b/a)

\biggr) 
.

Hence, to achieve accuracy \epsilon in Algorithm 4.1, one can choose

k\geq log
\bigl( 
16L\| f\| \infty \epsilon  - 1

\bigr) 
log(16b/a)/\pi 2.(5.3)

Assuming a polynomial growth of the condition number b/a with respect to n, the
complexity of the algorithm for Markov functions is, according to (4.7), given by

\scrO (n log2 n(log logn+ log \epsilon  - 1 + log\| f\| \infty )2r2).

For example, the fixed-accuracy approximation to the inverse square root A - 1/2 re-
quires nearly \scrO (n log4 n) operations, when ignoring the log logn factor and assuming
the HSS rank r of A to be constant.
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2330 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

6. Numerical experiments. We have implemented Algorithm 4.1 in MATLAB
and have made the code freely accessible at https://github.com/numpi/HSS-matfun;
this implementation will be denoted by TelFun in the following. In our implementa-
tion, we allow for variable HSS/telescopic ranks (see Remark 2.2) and employ deflation
criteria in the computation of orthonormal bases for rational Krylov subspaces, re-
moving vectors that after the (re)orthogonalization step have a norm smaller than a
prescribed tolerance, proportional to the required accuracy. The threshold size t of
the employed HSS matrices is fixed to 256. In our experiments, all standard opera-
tions with HSS matrices, such as matrix-vector products, have been performed using
the hm-toolbox [23]. In the tables presented in this section, columns with the cap-
tion ``err"" denote the relative error in the Frobenius norm, compared with the result
computed by a standard dense solver. Columns with the caption ``time"" report the
observed execution time in seconds. All experiments have been executed on a server
with two Intel(R) Xeon(R) E5-2650v4 CPU running at 2.20 GHz and 256 GB of RAM,
using MATLAB R2021a with the Intel(R) Math Kernel Library Version 2019.0.3.

The main competitor, denoted by CKM, is the algorithm developed in [6], in which
the authors use the HSS structure ofA to perform a divide-and-conquer method for the
computation of f(A). The algorithm computes rational Krylov subspaces associated
with (possibly large) HSS matrices, exploiting the structure in solving linear systems.
The algorithm can also monitor the variation of the norm of the solution when a
new pole is employed; this quantity can be used to stop the procedure if the desired
accuracy is reached. We utilized an implementation of this algorithm available at
https://github.com/Alice94/MatrixFunctions-Banded-HSS.

6.1. Computation of the inverse. Algorithm 4.1 is an attractive method for
computing the inverse of a symmetric positive definite HSS matrix. By Theorem 4.5,
this algorithm returns the exact inverse (at least in exact arithmetic) when employing
only one zero pole. It is worth mentioning that in this case, the update formula (4.1)
reduces to the Sherman--Morrison formula; see also [1, section 3.3]. In turn, it follows
that Algorithm 4.1 is equivalent to the algorithm described in [9]. We have tested
TelFun in this situation for two different matrices. In Figure 2, we report the results
for the inversion of the discretized Laplacian, that is,

A= - 1

h2

\left[      
 - 2 1

1
. . .

. . .

. . .
. . . 1
1  - 2

\right]      \in \BbbR n\times n,(6.1)

where h = 1
n+1 . In Table 1, we show the results obtained when inverting a more

general HSS matrix (which is not banded) given by the Gr\"unwald--Letnikov finite
difference discretization of the symmetric fractional derivative operator L\alpha := \partial \alpha 

\partial x\alpha 

[24] for \alpha = 1.5. In contrast to (6.1), this finite difference approximation does not
yield a sparse matrix, coherently with the nonlocal properties of fractional differential
operators. It can be proven that the matrix can be approximated in the HSS format
[22] with an HSS rank \scrO (logn).

Additionally to CKM, we also compare to the randomized algorithm introduced by
Levitt and Martinsson in [20] (denoted by LM) based on the solution of a small number
of linear systems involving A and the inv procedure for HSS matrices implemented in
the hm-toolbox which is based on the ULV factorization described in [5] and explained
in [23, section 4.3]. The HSS ranks are calculated using the hssrank command from
[23], employing the default tolerance of 10 - 12.
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Fig. 2. Comparison of the newly proposed algorithm TelFun with CKM, LM, and the inv command
of the hm-toolbox based on the ULV decomposition, for computing A - 1, where A is the discretized
Laplacian (6.1).

Table 1
Comparison of the newly proposed algorithm TelFun with CKM, LM, and the inv command of the

hm-toolbox based on the ULV decomposition, for computing A - 1, where A is the Gr\"unwald--Letnikov
finite difference discretization of the fractional derivative of order \alpha = 1.5 [22, 24].

n HSS rank A time TelFun time CKM time LM time ULV time Dense

1024 29 0.11 0.65 0.31 0.26 0.08

2048 32 0.21 0.84 0.44 0.38 0.37
4096 35 0.36 2.17 1.06 0.63 1.72

8192 37 0.62 5.48 2.14 1.41 11.20

n HSS rank A err TelFun err CKM err LM err ULV

1024 29 5.50e-13 1.11e-12 4.16e-13 7.24e-12
2048 32 4.78e-13 3.26e-12 1.18e-12 2.11e-11

4096 35 2.08e-12 2.75e-11 2.53e-12 6.81e-11

8192 37 4.99e-12 4.36e-11 9.68e-12 1.75e-10

Although designed for general matrix functions, the results demonstrate that
TelFun is also competitive for the special case of matrix inversion, in terms of speed
and accuracy. Even the closest competitor ULV is significantly slower, by up to a
factor 3--4. We have verified that the (larger) error observed for ULV is entirely due
to the effects of roundoff error.

6.2. Computation of the exponential function. To show the effectiveness
of rational approximation of the exponential function, in Table 2 we compute the
matrix exponential of a tridiagonal matrix A, whose eigenvalues are uniformly dis-
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2332 A. A. CASULLI, D. KRESSNER, AND L. ROBOL

tributed in [ - 10a,0], for different values of a. For the computation, we compare the
presented method with optimal poles and CKM using rational Krylov subspaces (with
optimal poles) and/or polynomial Krylov subspaces; in the latter case the built-in
stopping criteria are employed. In Figure 3 we also report the comparison between
the presented method and the expm function implemented in the hm-toolbox for the
computation of exp(A) based on the Pad\`e approximant, where A is the discretized
Laplacian defined in (6.1).

Again, our newly proposed method TelFun is significantly faster than the com-
petitors, while resulting in comparable accuracy. Note that CKM Poly appears to not
use the correct stopping criterion for larger a, resulting in an unacceptably large er-
ror. The observation that CKM Rat is slower than TelFun can be explained by the
fact that CKM passes through the HODLR format, which incurs higher computational
complexity. The Pad\`e approximant employed in expm is evaluated using the ULV

Table 2
Computation of the matrix exponential of a matrix of size 4096, whose eigenvalues are uniformly

distributed in [ - 10a,0], for different values of a. The accuracy is set to 10 - 8.

a time TelFun time CKM Poly time CKM Rat err TelFun err CKM Poly err CKM Rat

0 0.82 1.38 13.06 1.04e-11 2.16e-10 1.52e-10
2 0.67 1.31 11.15 2.89e-10 1.75e-07 6.11e-09

4 0.76 0.48 10.32 2.50e-12 1.05e-03 1.20e-08

6 0.52 0.52 10.13 2.84e-10 1.03e-02 4.69e-11
8 0.53 0.48 10.14 3.36e-08 1.21e + 01 5.28e-08

Fig. 3. Computation of exp(A), where A is the discretized Laplacian (6.1) using TelFun and
the routine expm of the hm-toolbox. The accuracy is set to 10 - 8.
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Table 3
Comparison of the newly proposed algorithm TelFun (using optimal poles), CKM with extended

Krylov subspaces, and the evaluation of a rational approximation, for the computation of f(A) with
accuracy of 10 - 8, where f(x) = 1/

\surd 
x, and A is the sampling from a Gaussian Markov random field.

n HSS rank A time TelFun time CKM time Rat time Dense

512 22 0.13 0.22 1.28 0.03
1024 20 0.29 0.30 2.38 0.23

2048 21 0.57 0.73 5.09 0.87
4096 21 1.24 1.55 12.82 7.04

8192 23 3.36 4.07 27.32 63.07

16384 25 6.90 9.17
32768 28 13.83 20.05

65536 24 27.21 44.85

131072 27 54.50 104.01

n HSS rank A err TelFun err CKM err Rat

512 22 6.67e-14 2.02e-09 1.87e-09

1024 20 1.32e-13 2.70e-09 6.52e-09

2048 21 6.00e-11 3.64e-09 3.73e-09
4096 21 1.99e-13 3.39e-09 4.34e-09

8192 23 1.11e-13 3.72e-09 5.52e-09

factorization, which---as we have seen in section 6.1---is not an optimal choice, partly
explaining the observed differences between expm and TelFun.

6.3. Computation of the inverse square root. To test the presented algo-
rithm for the computation of the inverse square root of an HSS matrix, we consider
the problem of sampling from a Gaussian Markov random field (see [6, section 4.2]),
which reduces to the computation of the inverse of the square root of a banded ma-
trix. In Table 3 we compare our algorithm with optimal poles, with CKM with extended
poles (i.e., alternating 0 and \infty ); the latter choice of poles is the one made by the
authors of CKM for solving the presented problem: since the algorithm needs to solve
possibly large linear systems, the choice of using mutually different poles can often
not be the most advantageous strategy. The number of poles to employ in our method
is given by (5.3) (which is in practice very pessimistic), and the accuracy is only used
in the determination of the deflation tolerance. The termination of CKM is due to the
built-in stopping criteria. For completeness, we also approximate f(A) by explicitly
evaluating a rational approximation of f : the poles and the residuals of the rational
approximation have been derived using the AAA algorithm [25], and for the evalua-
tion, the HSS structure has been exploited using the hm-toolbox [23]. In all the cases
reported, the degree of the rational approximant constructed by AAA is 12. While
TelFun is still faster than CKM for sufficiently large n, thanks to reduced complexity,
its advantage in terms of speed is less evident for this example. Note, however, that
its error is significantly lower.

We also show a comparison between TelFun and CKM, both with (quasi-)optimal
poles, for the approximation of the fractional Laplacian, i.e., the computation of
( - A) - 1/2, where A is defined in (6.1). In Figure 4 we compare the timing and the
relative error between the presented algorithm and CKM using in both cases 50 optimal
poles and varying the size of A.
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Fig. 4. Comparison of the newly proposed algorithm TelFun with CKM, for the computation
of f(A) where f(x) = 1/

\surd 
x, and A is the discretization of the Laplacian. In both algorithms 50

quasi-optimal poles have been employed.

6.4. Computation of the sign function. In this section, we compute f(A),
where f is the sign function, i.e.,

f(x) =

\Biggl\{ 
1, x > 0,

 - 1, x\leq 0.

Assuming that A has both positive and negative eigenvalues (otherwise the computa-
tion of f(A) is trivial) the discontinuity of the function does not allow for a reasonable
rational approximation on an interval containing the eigenvalues of A. In particular,
our convergence result from Theorem 4.5 does not apply. On the other hand, if the
eigenvalues of A are contained in \BbbE = [ - b, - a] \cup [a, b], with a, b,> 0, then the best
rational approximation of the sign function on \BbbE is explicitly known in terms of el-
liptic functions; see [27, section 4.3]. In Table 4, we test the time and the accuracy
of the proposed method on tridiagonal matrices whose positive eigenvalues are loga-
rithmically distributed in the interval [10a,1] and the negative ones are given by the
symmetrization with respect to the imaginary axis. We compare the results with the
ones obtained by running CKM with optimal poles and with the evaluation of the ra-
tional approximation given by the AAA algorithm [25], using the routines contained
in the hm-toolbox [23].

While not covered by the theory, TelFun is clearly the best method and attains
good accuracy until a= - 7. For a= - 9, the accuracy of all methods suffers from the
fact that the eigenvalues get too close to zero.
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Table 4
Computation of sign(A), where A is a tridiagonal matrix of size 4096 with logarithmically spaced

eigenvalues, symmetric with respect to the imaginary axis contained in [ - 1, - 10a]\cup [10a,1].

a time TelFun time CKM time Rat err TelFun err CKM err Rat

 - 1 1.73 20.55 50.28 3.75e-10 3.72e-10 1.73e-09

 - 3 4.13 38.46 128.93 2.60e-10 4.10e-08 1.51e-08
 - 5 9.72 57.99 121.76 2.70e-10 2.12e-06 7.49e-08

 - 7 18.24 78.37 137.72 2.99e-08 1.79e-08 1.51e-05

 - 9 14.08 43.04 139.65 7.45e-02 7.83e-02 3.98e-02

4 6 8 10 12 14 16 18 20

10−6

10−3

100

103

k

er
ro
r

TelFun

error bound

Fig. 5. Comparison of the error behavior in approximating the square root of the discretized
Laplacian using the presented algorithm with the bound (4.8), as the number k of poles increases.

6.5. Sharpness of Theorem 4.5. In this section we assess the sharpness of
the bound (4.8); to this aim, we consider the matrix A \in \BbbR 1024\times 1024 defined in (6.1),
and the computation of the square root. We then determine the best rational approx-
imation of the square root over the interval [\lambda min, \lambda max], where \lambda min and \lambda max are
the minimum and maximum eigenvalues of A, respectively, using the rkfun gallery
[4] for MATLAB. Figure 5 illustrates the error behavior when applying the algorithm
TelFun to compute the square root of A, utilizing the poles from the best rational
approximation. This is compared with the bound provided by (4.8) as the number
of poles increases. From this comparison, we can infer that Theorem 4.5 accurately
describes the error behavior of the presented algorithm.

7. Conclusions. Generalizing the definition of telescopic decompositions, we
have linked different representations of HSS matrices used in the literature, providing
ways to convert between them. Exploiting the nested low-rank structure of telescopic
decompositions, we have developed a novel algorithm that computes an approxima-
tion of f(A) for a symmetric HSS matrix A. Our convergence results imply nearly
linear complexity for matrix exponentials and linear-polylogarithmic complexity for
inverse square roots in situations of practical relevance. This favorable complexity is
attained by using rational Krylov subspaces that involve small-sized matrices only,
avoiding the solution of potentially large linear systems usually associated with ratio-
nal Krylov subspace techniques. Several numerical experiments show that our newly
proposed algorithm is faster than existing algorithms for a variety of examples pre-
viously reported in the literature. Somewhat surprisingly, it even appears to be the
method of choice for computing matrix inverses. A number of questions remain open.
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This includes the extension to nonsymmetric matrices as well as a theoretical expla-
nation of the good results obtained for the sign function.

Appendix A. Proofs of Propositions 3.2 and 3.4.

Proof of Proposition 3.2. We proceed by induction on L. If L= 0, the tree only
consists of the root \gamma , and the statement trivially holds because of D\gamma =A.

Let us now assume that L \geq 1 and consider the matrices U
(big)
\tau and V

(big)
\tau from

Definition 2.1. Because of the recursion (2.1), we have

\bfitU (L)(\bfitU (L))T

\Biggl[ 
U

(big)
\alpha 

U
(big)
\beta 

\Biggr] 
=

\Biggl[ 
U

(big)
\alpha 

U
(big)
\beta 

\Biggr] 
,

and

\bfitV (L)(\bfitV (L))T

\Biggl[ 
V

(big)
\alpha 

V
(big)
\beta 

\Biggr] 
=

\Biggl[ 
V

(big)
\alpha 

V
(big)
\beta 

\Biggr] 
,

where \alpha , \beta are the children of the root \gamma and \bfitU (L), \bfitV (L) are the block diagonal
matrices employed in Definition 3.1. Combined with the HSS recursion (2.2), this
shows that

A - 
\biggl[ 
A\alpha ,\alpha 

A\beta ,\beta 

\biggr] 
=\bfitU (L)(\bfitU (L))T

\biggl( 
A - 

\biggl[ 
A\alpha ,\alpha 

A\beta ,\beta 

\biggr] \biggr) 
\bfitV (L)(\bfitV (L))T .(A.1)

Noting that A\alpha ,\alpha and A\beta ,\beta are HSS matrices associated with trees of depth L - 1, we
can apply induction to conclude that they are both in telescopic decomposition. This
means that relations of the form (3.1)--(3.2) hold for both matrices or, equivalently,\biggl[ 

A\alpha ,\alpha 

A\beta ,\beta 

\biggr] 
 - \bfitD (L) =\bfitU (L)(\bfitU (L))T

\biggl( \biggl[ 
A\alpha ,\alpha 

A\beta ,\beta 

\biggr] 
 - \bfitD (L)

\biggr) 
\bfitV (L)(\bfitV (L))T .

Adding this equation to (A.1) gives

A=\bfitD (L) +\bfitU (L)A(L - 1) (\bfitV (L))T , where A(L - 1) = (\bfitU (L))T
\bigl( 
A - \bfitD (L)

\bigr) 
\bfitV (L).

Together with the discussion from section 2.1, it follows that A(L - 1) is an HSS matrix
associated with \scrT (L - 1)

2r and defined by the data-sparse representation

\{ U\tau , V\tau : \tau \in \scrT (L - 1)
2r \} , \{ \~A\tau ,\tau \prime : \tau , \tau \prime siblings in\scrT (L - 1)

2r \} , \{ A(L - 1)
\tau ,\tau : \tau leaf in\scrT (L - 1)

2r \} .

If A
(L - 1)
\tau ,\tau = D\tau , this completes the proof by induction: the assumptions of this

theorem are satisfied for the level-(L  - 1) HSS matrix A(L - 1) and thus \{ U\tau , V\tau ,
D\tau \} depth(\tau )\leq L - 1 is a telescopic decomposition of A(L - 1). In turn, all conditions of
Definition 3.1 are satisfied and \{ U\tau , V\tau ,D\tau \} is a telescopic decomposition for A.

It remains to show that A
(L - 1)
\tau ,\tau =D\tau holds for any node \tau of depth L - 1. For this

purpose, let \alpha ,\beta denote its children, which are leaves in \scrT . Using that D\alpha = A\alpha ,\alpha 

and D\beta =A\beta ,\beta , we indeed obtain that

A(L - 1)
\tau ,\tau =

\biggl[ 
UT
\alpha 

UT
\beta 

\biggr] \biggl( 
A\tau ,\tau  - 

\biggl[ 
D\alpha 

D\beta 

\biggr] \biggr) \biggl[ 
V\alpha 

V\beta 

\biggr] 
=

\biggl[ 
0 UT

\alpha A\alpha ,\beta V\beta 

UT
\beta A\beta ,\alpha V\alpha 0

\biggr] 
=D\tau ,

where the last equality follows from Definition 2.1.
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Proof of Proposition 3.4. We proceed by induction on L. For L = 0, the result
trivially holds. Suppose now that L \geq 1. According to Definition 3.1, the matrix
generated by the standard telescopic decomposition \{ U\tau , V\tau ,D\tau \} \tau \in \scrT (L - 1)

2r
is the matrix

A(L - 1) defined in (3.2). Therefore, if \tau is a node of depth L - 1 with children \alpha and
\beta , it follows from (3.3) that

D\tau =A(L - 1)
\tau ,\tau =

\biggl[ 
0 UT

\alpha A\alpha ,\beta V\beta 

UT
\beta A\beta ,\alpha V\alpha 0

\biggr] 
=

\biggl[ 
0 \~A\alpha ,\beta 

\~A\beta ,\alpha 0

\biggr] 
,

where we set \~A\alpha ,\beta =UT
\alpha A\alpha ,\beta V\beta and \~A\beta ,\alpha =UT

\beta A\beta ,\alpha V\alpha . This proves (3.4).
It remains to establish the HSS property of A, that is, point 1 of Definition 2.1

(note that point 2 is satisfied by construction). Combining (3.4) with the telescopic
relation (3.1), we obtain that

A\tau ,\tau =

\biggl[ 
D\alpha 

D\beta 

\biggr] 
+

\biggl[ 
U\alpha 

U\beta 

\biggr] 
D\tau 

\biggl[ 
V\alpha 

V\beta 

\biggr] 
=

\biggl[ 
D\alpha U\alpha 

\~A\alpha ,\beta V
T
\beta 

U\beta 
\~A\beta ,\alpha V

T
\alpha D\beta 

\biggr] 
.

In particular, A\alpha ,\beta = U\alpha 
\~A\alpha ,\beta V

T
\alpha , which establishes point 1 of Definition 2.1 for two

sibling leaves \tau = \alpha , \tau \prime = \beta . To show the corresponding property for two siblings \tau 
and \tau \prime of depth \ell < L, let \alpha 1, . . . , \alpha 2L - \ell and \alpha \prime 

1, . . . , \alpha 
\prime 
2L - \ell denote the leaf nodes in the

corresponding subtrees. Using (3.1), the proof is completed by noting that

A\tau ,\tau \prime =blkdiag(U\alpha i)A
(L - 1)
\tau ,\tau \prime blkdiag(V\alpha \prime 

i
)T

=blkdiag(U\alpha i)blkdiag(U\alpha i)
TU (big)

\tau 
\~A\tau ,\tau \prime 

\bigl( 
V

(big)
\tau \prime 

\bigr) T
blkdiag(V\alpha \prime 

i
)blkdiag(V\alpha \prime 

i
)T

=U (big)
\tau 

\~A\tau ,\tau \prime (V
(big)
\tau \prime )T ,

where the second equality uses induction: A(L - 1) is an HSS matrix and satisfies a
relation of the form (2.2) for the parent \gamma of \tau , \tau \prime .
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