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Abstract. Linear matrix equations, such as the Sylvester and Lyapunov equations, play an
important role in various applications, including the stability analysis and dimensionality reduction
of linear dynamical control systems and the solution of partial differential equations. In this work, we
present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the
solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate
how our algorithm can be utilized to accelerate the Newton method for solving continuous-time
algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach
for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as
hierarchically off-diagonal low-rank structures, hierarchically semiseparable, and banded matrices.
Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches,
in terms of computational time and memory consumption.
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1. Introduction. This work is concerned with linear matrix equations of the
form

(1) AX +XB = C

for given matrices A ∈ Cn×n, B ∈ Cm×m, and C ∈ Cn×m. It is well known that
this equation admits a unique solution X if and only if the spectra of A and −B are
disjoint. For general coefficient matrices, (1) is usually called the Sylvester equation.
In the special case B = A∗ and C = C∗, (1) is called the Lyapunov equation and its
solution can be chosen Hermitian. If, moreover, C is negative semidefinite and A is
stable (i.e., its spectrum is contained in the open left half plane), then the solution is
positive semidefinite.

We specifically target the setting where both m,n are large and A,B,C admit cer-
tain data-sparse representations, such as sparsity or (hierarchical) low rank structures.
The need for solving such large-scale linear matrix equations arises in various appli-
cation fields. In dynamical systems and control, Lyapunov equations arise in model
reduction [3], linear-quadratic optimal control [13], and stability analysis [21, 24]. In
these applications, it is often but not always the case that C has low rank. Partial
differential equations (PDEs) are a frequent source of Sylvester equations, where they
typically arise from highly structured discretizations of PDEs with separable coef-
ficients; see [29, 41, 53, 56] for recent examples. Other applications arise from the
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LOW-RANK UPDATES FOR LINEAR MATRIX EQUATIONS A849

linearization of nonlinear problems, such as stochastic dynamic general equilibrium
models in macroeconmics [37].

In this work, we study low-rank updates for Lyapunov and Sylvester equations.
Given the solution X0 of the reference equation

(2) A0X0 +X0B0 = C0,

we aim at computing a correction δX such that X0+δX solves the perturbed equation

(3) (A0 + δA)(X0 + δX) + (X0 + δX)(B0 + δB) = C0 + δC,

where the perturbations δA, δB, δC all have ranks much smaller than min{m,n}. This
is not only a natural problem to study but it also occurs in some applications. For
example, it arises when optimizing dampers in mechanical models [43] or, as we will
see below, in the Newton method for solving Riccati equations. However, we expect,
and it will be demonstrated in the second part of this paper, that the availability of
a fast technique for computing δX will open up a range of other applications.

The literature is scarce on updates of the form (3). Kuzmanović and Truhar [43]
view the left-hand side (3) as a low-rank perturbation L + 4L of the operator
L : X0 → A0X0 + X0B0. In turn, this allows us to apply operator variants of the
Sherman–Morrison–Woodbury formula discussed, e.g., in [22, 43, 52]. This approach
is mathematically equivalent to applying the standard Sherman–Morrison–Woodbury
to the n2×n2 linear system corresponding to (3) and it allows us to deal with a much
larger class of perturbations, leaving the realm of Sylvester equations. However, it
also comes with the major disadvantage of increasing the ranks significantly. For ex-
ample, if δA has rank r, then the operator X → δAX, with the matrix representation
In ⊗ A, has rank rn. This makes it impossible to address large values of n with
existing techniques for solving Sylvester equations.

The approach proposed in this work proceeds by subtracting (2) from (3), which
gives the correction equation

(4) (A0 + δA)δX + δX(B0 + δB) = δC − δA ·X0 −X0 · δB.

This is again a Sylvester equation, but—in contrast to (3)—the right-hand side always
has low rank; it is bounded by rank(δA) + rank(δB) + rank(δC). This allows for the
use of large-scale Sylvester solvers tailored to low-rank right-hand sides, such as low-
rank ADI and (rational) Krylov subspace methods; see [13, 56] for overviews. These
techniques return a low-rank approximation to δX and can potentially address very
large values of m,n, as long as the data sparsity of A0 + δA and B0 + δB allows
for fast matrix-vector multiplication and/or solution of (shifted) linear systems with
these matrices. Let us emphasize that our approach is of little use when the rank of
C0 is at the same level as the ranks of the perturbations or even lower. In this case,
it is more efficient to solve (3) directly.

In the second part of this work, we devise fast methods for Sylvester equations
with coefficients A,B,C that feature hierarchical low-rank structures. In this work,
we focus on hierachically off-diagonal low-rank (HODLR) matrices [2], a special case
of hierarchical matrices [34], and hierachically semiseparable (HSS) matrices [59], a
special case of H2-matrices [17]. Both formats include banded matrices as an impor-
tant special case. In fact, there has been recent work by Haber and Verhaegen [33]
that aims at approximating the solution X by a banded matrix for Lyapunov equa-
tions with banded coefficients. Palitta and Simoncini [48] consider the approximation
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A850 DANIEL KRESSNER, STEFANO MASSEI, AND LEONARDO ROBOL

of X by the sum of a banded matrix and a low-rank matrix. Both approaches work
well for well-conditioned Lyapunov equations but their memory consumption grows
considerably as the condition number increases. As we will see below, this difficulty
is avoided when approximating X with a hierarchical low-rank matrix instead, even
when the coefficients are banded.

Most existing algorithms for solving Lyapunov or Sylvester equations with hi-
erarchical low-rank structure are based on the matrix sign function iteration [23],
exploiting the fact that the iterates can be conveniently evaluated and approximated
in these formats. The use of the matrix sign function requires the spectra of A and
−B to be not only disjoint but separable by a (vertical) line. Sign function based
algorithms have been developed for hierarchical matrices [8, 30], sequentially semi-
separable matrices [51], HSS matrices [49], and HODLR matrices [47]. Another, less
explored direction is to apply numerical quadrature to an integral representation for
X and evaluate the resulting matrix inverses or exponentials in a hierarchical low-rank
format; see [26] for an example. All these methods exploit the structure indirectly by
performing approximate arithmetic operations in the format. This incurs a repeated
need for recompression, which often dominates the computational time.

In this work, we develop a new divide-and-conquer method that directly exploits
hierarchical low-rank structure and does not require separability of the spectra of A
and −B. The main idea of the method is to split the coefficients A,B,C into a block
diagonal part and an off-diagonal part. The block diagonal part is processed recur-
sively and the off-diagonal part, which is assumed to be of low rank, is incorporated
by solving the correction equation (4).

The rest of this paper is organized as follows. In section 2 we recall theoretical
tools from the literature that ensure the low-rank approximability of the solution δX
of (4). Section 3 describes in detail the low-rank solver employed for approximating
δX. We also discuss how to rephrase the Newton’s iteration, for solving continuous-
time algebraic Riccati equations (CAREs), as the updating of a matrix equation.
Numerical tests regarding this application are reported in section 3.5.1. In section 4
we introduce a divide-and-conquer method for solving linear matrix equations whose
coefficients can be hierarchically partitioned as block diagonal plus low-rank matrices.
We provide an analysis in the case of coefficients represented in the HODLR and
HSS formats. The algorithm is tested on examples coming from the discretization of
PDEs and linear-quadratic control problems for second-order models. The results are
reported in section 5. Finally, in section 6 we draw conclusions and we comment on
some open questions.

2. Low-rank approximability. In this section, we recall existing results indi-
cating when the correction δX to the solution of the perturbed Sylvester equation (3)
admits a good low-rank approximation. For this purpose, we write (4) more compactly
as

(5) AδX + δX B = D, rank(D) ≤ s := rank(A) + rank(B) + rank(C).

In the following, we say that δX admits an ε-approximation of rank k if there is a
matrix Y of rank at most k such that ‖δX −Y ‖2 ≤ ε, where ‖ · ‖2 denotes the matrix
2-norm. Clearly, this is the case if and only if the (k + 1)th largest singular value
σk+1(δX) is bounded by ε (or the size of δX is smaller than k + 1).

There are numerous results in the literature on the singular value decay of solu-
tions of equations of the form (5); see [4, 5, 30, 31, 50, 54] for examples. Recent work
by Beckermann and Townsend [10] yields a general framework for obtaining such re-
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LOW-RANK UPDATES FOR LINEAR MATRIX EQUATIONS A851

sults. Let Rh,h denote the set of rational functions with numerator and denominator
of degree at most h. The proof of [10, Thm. 2.1] shows that for every r ∈ Rh,h there
is a matrix Yh of rank at most kh such that δX − Yh = r(A) δX r(−B)−1, provided
that the expression on the right-hand side is well defined. In turn,

(6) σkh+1(δX) ≤ ‖r(A)‖2‖r(−B)−1‖2‖X‖2.

To proceed from here, we recall that the numerical range of a matrix A is defined as

W(A) :=
{x∗Ax
x∗x

∣∣∣ x ∈ Cn\{0}
}
.

Theorem 2.1. Consider the Sylvester equation (5) and let E and F be disjoint
compact sets containing the numerical ranges of A and −B, respectively. Then

σ1+kh(δX)

‖X‖2
6 Zh(E,F ) := KC min

r∈Rh,h

maxE |r(z)|
minF |r(z)|

,

where KC = 1 if A,B are normal matrices and 1 ≤ KC ≤ (1 +
√

2)2 otherwise.

Proof. The result for normal matrices, which is also covered in [10], follows imme-
diately from (6) by diagonalizing A,B. To address the general case, we use Crouzeix’s
theorem [20], which implies

‖r(A)‖2 ≤ (1 +
√

2) max
z∈E
|r(z)|,

‖r(−B)−1‖2 ≤ (1 +
√

2) max
z∈E
|1/r(z)| = (1 +

√
2)
(

min
z∈F
|r(z)|

)−1
.

Combined with (6), this completes the proof.

The result of Theorem 2.1 links the (relative) singular values of δX with the
quantity Zh(E,F ), usually called the hth Zolotarev number [10]. Intuitively, this
number becomes small when E and F are well separated. The case when E, F are
intervals is particularly well understood and the considerations from [10, sect. 3] lead
to the following result.

Corollary 2.2. Let A,B be Hermitian positive definite matrices with spectra
contained in an interval [a, b], 0 < a < b <∞. Then the solution δX of (5) satisfies

(7)
σ1+kh(δX)

‖δX‖2
6 4ρ−h, ρ := exp

(
π2

log(4b/a)

)
.

Similar results have been derived in [18, 54]. The inequality (7) implies that δX
admits an ε-approximation of rank kh with ε exponentially decaying to zero as h
increases. Moreover, the relative separation b/a of the spectra has a very mild loga-
rithmic influence on the exponential decay rate.

Corollary 2.2 easily extends to the case of diagonalizable coefficients with real
spectra [14, Cor. 4.3]. Letting κeig(A) and κeig(B) denote the condition numbers of
eigenvector matrices of A and B, respectively, one has

σ1+kh(δX)

‖δX‖2
6 4κeig(A)κeig(B)ρ−h.

When E,F are not intervals, it appears to be difficult to derive bounds for
Zh(E,F ) that match (7) in terms of strength and elegance; see [10, 45] and the
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A852 DANIEL KRESSNER, STEFANO MASSEI, AND LEONARDO ROBOL

references therein. Under reasonable assumptions, Zh(E,F ) can be bounded with
a function that depends on the so-called logarithmic capacity of the condenser with
plates E and F [27]. In particular, Ganelius in [25] showed the inequality

(8) Zh(E,F ) 6 γρ−h, ρ := exp

(
1

Cap(E,F )

)
,

where the constant γ depends only on the geometry of E and F and Cap(E,F )
denotes the logarithmic capacity of the condenser with plates E and F . The decay
rate in (8) is tight, i.e., limh→∞ Zh(E,F )

1
h = ρ−1; see [27]. However, the estimation

of Cap(E,F ) is strongly problem dependent and its asymptotic behavior, when the
plates approach each other, has been the subject of quite recent investigations; see [16]
and the references therein.

A rather different approach, for getting singular values inequalities, has been
suggested by Grasedyck [28]. Letting ΓA, ΓB denote disjoint contours encircling
the spectra of A and −B, respectively, the solution δX of (5) admits the integral
representation

δX =
1

4π2

∫
ΓA

∫
ΓB

1

ξ − η
(ξI −A)−1D(ηI +B)−1dξdη.

Then ΓB is split up into s parts such that 1
ξ−η admits a good semiseparable (poly-

nomial) approximation on each part. Each approximation corresponds to a low-rank
matrix and by summing up all s parts of ΓB one obtains a low-rank approximation
of δX. Although this technique is shown to establish exponential decay for certain
shapes of ΓA and ΓB , a small relative separation may require use of a very large s,
resulting in unfavorable decay rates.

3. Updating algorithm and application to algebraic Riccati equations.
Algorithm 1 summarizes the procedure outlined in the introduction for updating the
solution X0 of A0X0 + X0B0 = C0 such that X0 + δX approximates the solution of
the perturbed Sylvester equation (3). In the following, we discuss details of the im-
plementation of Algorithm 1 and then present a modification for Lyapunov equations
as well as an application to Riccati equations.

Algorithm 1 Strategy for solving (A0+δA)(X0+δX)+(X0+δX)(B0+δB) = C0+δC.

procedure update Sylv(A0, δA,B0, δB,C0, δC,X0) . δA, δB and δC have low
rank

1: Compute U, V such that δC − δAX0 −X0δB = UV ∗

2: δX ← low rank Sylv(A0 + δA,B0 + δB,U, V )
3: return X0 + δX

end procedure

3.1. Step 1: Construction of low-rank right-hand side. Given (low-rank)
factorizations of the perturbations to the coefficients,

δA = UAV
∗
A, δB = UBV

∗
B , δC = UCV

∗
C ,

a factorization δC− δAX0−X0δB = UV ∗ can be cheaply obtained by simply setting

(9) U = [UC ,−UA,−X0UB ], V = [VC , X
∗
0VA, VB ],

where U, V both have s = rank(δA) + rank(δB) + rank(δC) columns.

D
ow

nl
oa

de
d 

10
/2

9/
25

 to
 1

46
.4

8.
83

.2
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK UPDATES FOR LINEAR MATRIX EQUATIONS A853

The computational cost of low-rank solvers for Sylvester equations, such as the
extended Krylov subspace method discussed in the next section, critically depends on
the rank of the right-hand side. It is therefore advisable to perform a compression of
the factors (9) in order to decrease the rank. For this purpose, we compute reduced QR
decompositions U = QURU and V = QVRV such that QU ∈ Rm×s, QV ∈ Rn×s have
orthonormal columns and RU , RV ∈ Rs×s are upper triangular. We then compute
the singular values σ1, . . . , σs of the s × s matrix RUR

∗
V . We only retain the first

s̃ ≤ s singular values, such that σs̃+1/σ1 ≤ τσ for a user-specified tolerance τσ > 0.
Letting UR and VR contain the first s̃ left and right singular vectors, respectively, and
Σ := diag(σ1, . . . , σs̃), we set

Ũ := QUUR
√

Σ, Ṽ := QV VR
√

Σ.

By construction, ‖ŨṼ
∗−UV ∗‖2
‖UV ∗‖2 6 τσ and we can therefore safely replace the factoriza-

tion UV ∗ by Ũ Ṽ ∗. Dominated by the computation of the two QR decompositions
and the SVD, the described compression procedure requires O((m + n)s2 + s3). In
our setting, this method is attractive because s� min{n,m}.

3.2. Step 2: Solution of correction equation. Step 2 of Algorithm 1 requires
solving a Sylvester equation of the form

(10) AX +XB = UV ∗,

where A = A0 + δA, B = B0 + δB, and U, V have s � min{n,m} columns. We
assume that X can be well approximated by a low-rank matrix, which is the case—
for example—when the hypotheses of Theorem 2.1 are satisfied with two sets E and
F ensuring a fast decay of Z`(E,F ). The most common solvers for (10) are ADI-type
methods and Krylov subspace projection algorithms [56]. One particularly effective
approach to obtain a low-rank approximation of X is the rational Krylov subspace
method [12] with the poles determined, e.g., by the rational approximation from
Theorem 2.1. On the other hand, the extended Krylov subspace method introduced
in [55] does not require the estimation of such parameters and has been observed to
be quite effective for many situations of interest. In the following, we therefore use
this method for its simplicity but stress that any of the low-rank solvers mentioned
above can be used instead.

The extended Krylov subspace method constructs orthonormal bases Ut and Vt
of the subspaces

Ut : = EKt(A,U) = span{U,A−1U,AU,A−2U, . . . , At−1U,A−tU},
Vt : = EKt(B∗, V ) = span{V, (B∗)−1V,B∗V, (B∗)−2V, . . . , (B∗)t−1V, (B∗)−tV }

for some t satisfying 2ts < min{m,n}. This is done by means of two extended block
Arnoldi processes. Then, the compressed equation

ÃXt +XtB̃ = C̃, Ã = U∗t AUt, B̃ = V ∗t BVt, C̃ = U∗t UV
∗Vt,

is solved by the Bartels–Stewart method [7]. Note that the matrices Ã, B̃, and C̃ do
not need to be computed explicitly but can be obtained from the coefficients generated
during the extended block Arnoldi processes; see [55, Proposition 3.2] for more details.

The matrix X̃ = UtXtV
∗
t is returned as approximation to the solution of (10). The

resulting method is summarized in Algorithm 2.
We offer a few remarks concerning the implementation of Algorithm 2:
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Algorithm 2 Extended Krylov subspace method for solving AX +XB = UV ∗.

1: procedure low rank Sylv(A,B,U, V ) . U, V have both s columns
2: [U1,−] = qr([U,A−1U ]), [V1,−] = qr([V,A−1V ])
3: for t = 1, 2, . . . do
4: Ã← U∗t AUt, B̃ ← V ∗t BVt, C̃ ← U∗t UV

∗Vt
5: Xt ← dense Sylv(Ã, B̃, C̃)
6: if Converged then
7: return X̃ = UtXtV

∗
t

8: end if
9: Select the last 2s columns: Ut = [U (0), U (+), U (−)], Vt = [V (0), V (+), V (−)]

10: Ũ = [AU (+), A−1U (−)], Ṽ = [B∗V (+), (B∗)−1V (−)]

11: Ũ ← Ũ − UtU∗t Ũ , Ṽ ← Ṽ − VtV ∗t Ṽ . Orthogonalize w.r.t. Ut and Vt
12: [Ũ ,−] = qr(Ũ), [Ṽ ,−] = qr(Ṽ )
13: Ut+1 = [Ut, Ũ ], Vt+1 = [Vt, Ṽ ]
14: end for
15: end procedure

• The number of iterations t is chosen adaptively to ensure that the relation

(11) ‖AX̃ + X̃B − UV ∗‖2 6 τ

is satisfied for some tolerance τ , which is chosen to be small relative to the
norm of X̃, i.e., τ = τEK ·‖X̃‖2 for a small τEK. This relation can be efficiently
verified as described in [35, 55].

• The matrices generated in line 11 of Algorithm 2 might become numeri-
cally rank deficient. Several techniques have been proposed to deal with this
phenomenon; see [15, 32] and the references therein. We use the strategy
described in [15, Algorithm 7.3], which performs pivoted QR decompositions
in line 13 and only retains columns corresponding to nonnegligible diagonal
entries in the triangular factors. This reduces the size of the block vectors in
all subsequent steps.

• For applying A−1, B−1 in Algorithm 2, (sparse) LU factorizations of A and
B are computed once before starting the extended block Arnoldi process.

• When the algorithm is completed, we perform another compression of the
returned solution by computing the truncated SVD of Xt and using the same
threshold τσ employed for compressing the right-hand side.

3.3. Residual. As the correction equation is solved iteratively and inexactly,
until the stopping criterion (11) is satisfied, it is important to relate the accuracy of the
solution X to the accuracy of X0 and δX. Suppose that the computed approximations
X̂0 and δX̂ satisfy

‖A0X̂0+X̂0B0−C0‖ 6 τ0, ‖(A0+δA)δX̂0+δX̂0(B0+δB)−(δC−δAX̂0−X̂0δB)‖ 6 τδ.

By the triangular inequality, we can then conclude that X̂ = X̂0 + δX̂ satisfies

‖(A0 + δA)X̂ + X̂(B0 + δB)− (C0 + δC)‖ 6 τ0 + τδ.

Hence, in order to avoid unnecessary work, it is advisable to choose τδ not smaller
than τ0.
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3.4. Stable Lyapunov equations. We now consider the special case of a
Lyapunov equation A0X0 + X0A

∗
0 = C0, where A0 ∈ Cn×n is stable and C0 ∈

Cn×n is Hermitian negative semidefinite. We assume that the perturbed equation
A(X0 + δX) + (X0 + δX)A∗ = C0 + δC, with A = A0 + δA, has the same properties,
implying that both X0 and X0 + δX are Hermitian positive semidefinite. In general,
this does not ensure that the corresponding correction equation

(12) AδX + δX A∗ = δC − δAX0 −X0 δA
∗

inherits these properties. In particular, the right-hand side may be indefinite. In
turn, large-scale solvers tailored to stable Lyapunov equations with low-rank right-
hand side [46] cannot be directly applied to (12). Following [11, sect. 2.3.1], this issue
can be addressed by splitting the right-hand side.

To explain the idea of splitting, suppose we have low-rank factorizations δA =
UAV

∗
A, δC = UCΣCU

∗
C , with ΣC Hermitian. In turn, the right-hand side of (12) can

be written as

δC − δAX0−X0δA
∗ = ŨΣŨ∗ with Ũ = [UC , UA, X0VA], Σ =

ΣC
−I

−I

 .
After computing a reduced QR factorization Ũ = QŨRŨ , we compute a (reduced)
spectral decomposition of RŨΣR∗

Ũ
such that

RŨΣR∗
Ũ

=
[
Q1 Q2

] [D1 0
0 −D2

] [
Q1 Q2

]∗
,

where D1, D2 are diagonal matrices with positive diagonal elements. After setting
U1 = QŨQ1

√
D1, U2 = QŨQ2

√
D2, this allows us to write RŨΣR∗U = U1U

∗
1 − U2U

∗
2 .

Hence, after solving the two stable Lyapunov equations

(13) AδX1 + δX1A
∗ = −U1U

∗
1 , A δX2 + δX2A

∗ = −U2U
∗
2 ,

the solution of (12) is obtained as δX = δX2 − δX1.
The extended Krylov subspace method applied to (13) operates with the sub-

spaces EKt(A,U1) and EKt(A,U2). This is more favorable than a naive application
of the method to the original nonsymmetric factorization

[UC ,−UA,−X0VA][UC , X0VA, UA]∗,

which would operate with two subspaces of double dimension.
Another approach, which does not require the splitting of the right-hand side, re-

lies on projecting the Lyapunov equation onto the extended Krylov subspace EK(A, Ũ).
In this way, we only need to generate a single Krylov subspace, even though with a
larger block vector. In our experience, the performances of the two approaches are
analogous.

3.5. Solving algebraic Riccati equation by the Newton method. We
now present a practical situation that requires solving several perturbed Lyapunov
equations sequentially.

Consider the CARE

(14) AX +XA∗ −XBX = C,
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where A ∈ Cn×n is a general matrix, while B ∈ Cn×n is Hermitian positive semidef-
inite and C ∈ Cn×n is Hermitian negative semidefinite. We also assume that the
pair (A∗, B) is stabilizable, i.e., there exists X0 ∈ Cn×n such that A−X0B is stable.
Moreover, we suppose that (C,A∗) is detectable, that is, equivalent to the stabiliz-
ability of (A,C∗). Under these assumptions, there exists a unique Hermitian positive
semidefinite solution X ∈ Cn×n of (14) such that A−XB is stable [42]. This is called
the stabilizing solution.

Kleinman’s formulation [38] of the Newton method (14) requires solving the ma-
trix equation

(15) (A−XkB)Xk+1 +Xk+1(A∗ −BXk) = C −XkBXk

for determining the next iterate Xk+1. Assuming that the starting matrix X0 is
Hermitian, the matrices Xk are Hermitian too and (15) is a Lyapunov equation with
Hermitian right-hand side.

Under mild hypotheses, any Hermitian starting matrix X0 such that A − X0B
is stable yields a quadratically convergent Hermitian sequence whose limit is the
stabilizing solution [44]. Moreover, the sequence is nonincreasing in terms of the
Loewner ordering. If A is already stable, a natural choice is X0 = 0.

In many examples of linear-quadratic control problems [1], the coefficient B has
low-rank, i.e., it takes the form B = BUB

∗
U , where BU only has a few columns.

In turn, two consecutive equations (15) can be linked via low-rank updates. More
explicitly, (15) can be rewritten as

(Ak−1 + (Xk−1 −Xk)B)Xk+1 +Xk+1(A∗k−1 +B(Xk−1 −Xk))

= Ck−1 +Xk−1BXk−1 −XkBXk,

where Ak−1 := A−Xk−1B and Ck−1 := C −Xk−1BXk−1.
Thus, after the—possibly expensive—computation of X1 one can compute the

updates δXk := Xk+1 −Xk by solving

(16) (A−XkB)δXk + δXk(A∗ −BXk) = δXk−1BδXk−1, k = 1, 2, . . . .

For this purpose, we use a variant of Algorithm 2 tailored to Lyapunov equations,
denoted by low rank Lyap. In contrast to the more general situation discussed
in section 3.4, the right-hand side is always positive semidefinite and therefore no
splitting is required. The resulting method is described in Algorithm 3. For large-scale
problems, matrix Ak at line 7 is not formed explicitly and we rely on the Sherman–
Morrison–Woodbury formula to compute the action of A−1

k . If the final solution is
rank structured, then recompression is advised after the sum at line 10.

3.5.1. Numerical experiments. We demonstrate the performance of Algo-
rithm 3 with two examples. Details of the implementation, the choice of parameters,
and the computational environment are discussed in section 5.1 below.

Example 3.1. We first consider the convective thermal flow problem from the
benchmark collection [40], leading to a CARE with coefficients A ∈ R9669×9669, BU ∈
R9669×1, C = −CUC∗U for CU ∈ R9669×5. The matrix A is symmetric negative definite
and sparse, and only 67391 entries are nonzero. When applying the standard Newton
method to this CARE, the right-hand side of the Lyapunov equation (15), which
needs to be solved in every step, has rank at most 6. On the other hand, the right-
hand side of (16) has rank 1. As the computational effort of low-rank solvers for
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Algorithm 3 Low-rank update Newton method for solving AX+XA∗−XBUB∗UX =
C.

1: procedure newt Riccati(A,BU , C,X0)
2: A0 ← A−X0BUB

∗
U

3: C0 ← C −X0BUB
∗
UX0

4: X1 ←solve Lyap(A0, C0) . Any Lyapunov solver
5: δX0 ← X1 −X0

6: for k = 1, 2, . . . do
7: Ak ← A−XkBUB

∗
U

8: CU ← δXk−1BU
9: δXk ← low rank Lyap(Ak, CU )

10: Xk+1 = Xk + δXk

11: if ‖δXk‖2 < τNW · ‖X1‖2 then
12: return Xk+1

13: end if
14: end for
15: end procedure

Table 1
Performance of Algorithm 3 and the standard Newton method for the CARE from Example 3.1.

Algorithm 3 Standard Newton method

n ‖X̂‖2 Ttot
Tstep 1

Ttot
Tavg Res it Ttot Tavg Res it

9,669 2.96 · 101 53.35 0.14 4.16 1.21 · 10−7 12 89.84 7.49 1.65 · 10−7 13

Lyapunov equations typically grows linearly with the rank, this makes Algorithm 3
more attractive. In particular, this is the case for the extended Krylov subspace
method, Algorithm 2, used in this work.

The performance of both variants of the Newton method is reported in Table 1.
While Ttot denotes the total execution time (in seconds), Tavg denotes the average
time needed for solving the Lyapunov equation in every step of the standard Newton
method or Algorithm 3 (after the first step). The quantity

Tstep 1

Ttot
shows the fraction

of time spent by Algorithm 3 on the (more expensive) first step. it refers to the
number of iterations and Res refers to the relative residual ‖AX̂ + X̂A∗ − X̂BX̂ −
C‖2/‖AX0 +X0A

∗ −X0BX0 − C‖2 of the approximate solution X̂ returned by each
of the two variants. The results reveal that Algorithm 3 is faster while delivering the
same level of accuracy.

Example 3.2. We now consider Example 4.3 from [1], a CARE with coefficients

A =

[
0 − 1

4K
Iq −Iq

]
, K =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 ∈ Rq×q,

B = BUB
∗
U , BU =

[
0

1
4D

]
∈ R2q×2, D =

[
e1 eq

]
∈ Rq×2, C = I2q,

where ej denotes the jth unit vector of length q. Except for one zero eigenvalue, the
spectrum of A is contained in the open left half plane. A stabilizing initial guess is
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Table 2
Performance of Algorithm 3 and the standard Newton method for the CARE from Example 3.2.

Algorithm 3 Standard Newton method

n ‖X̂‖2 Ttot
Tstep 1

Ttot
Tavg Res it Ttot Tavg Res it

512 1.55 · 104 1.21 0.39 0.07 3.42 · 10−9 11 5.37 0.49 1.69 · 10−13 12
1,024 6.19 · 104 6.23 0.84 0.09 1.52 · 10−8 12 53.18 4.43 4.70 · 10−13 13
1,536 1.39 · 105 22.7 0.91 0.18 3.05 · 10−8 12 252.58 21.05 7.95 · 10−13 13
2,048 2.48 · 105 62.37 0.96 0.25 5.78 · 10−8 12 735.99 61.33 1.34 · 10−12 13

given by

X0 = EE∗, E = 2

[
−eq e1

−eq e1

]
∈ R2q×2.

Note that C has full rank, which prevents us from the use of low-rank solvers for
addressing the Lyapunov equation (15) in the standard Newton iteration and we
need to resort to the (dense) Bartels–Stewart method implemented in the MATLAB
function lyap. In contrast, the right-hand side of (16) has rank 2, which allows us to
use such low-rank solvers in every but the first step of Algorithm 3.

The obtained results, for varying n := 2q, are shown in Table 2. Not surprisingly,
Algorithm 3 is much faster in this example because it only relies on the dense solver
in the first step.

4. A divide-and-conquer approach. In this section we use low-rank updates
to devise a new divide-and-conquer method for the Sylvester equation (1). For sim-
plicity, we consider the case m = n and hence the solution X is a square n×n matrix.
In principle, our developments extend to the case m 6= n but additional technicalities
come into play, e.g., the hierarchical low-rank formats need to be adjusted.

Suppose that the coefficients of (1) can be decomposed as

(17) A = A0 + δA, B = B0 + δB, C = C0 + δC,

where A0, B0, C0 are block diagonal matrices of the same shape and the corrections
δA, δB, δC all have low rank. This is, in particular, the case when all coefficients are
banded but (17) allows us to handle more general situations. We apply Algorithm 1
to deal with the low-rank corrections. It thus remains to solve the smaller Sylvester
equations associated with the diagonal blocks of A0X0 +X0B0 = C0. If the diagonal
blocks of A0, B0, C0 again admit a decomposition of the form (17), we can recursively
repeat the procedure. Keeping track of the low-rank corrections at the different levels
of the recursions requires us to work with hierarchical low-rank formats, such as the
HODLR and the HSS formats.

4.1. HODLR matrices. A HODLR matrix A ∈ Cn×n, as defined in [2, 6],
admits a block partition of the form

(18) A =

[
A11 A12

A21 A22

]
,

where A12, A21 have low rank and A11, A22 are again of the form (18). This recursive
partition is continued until the diagonal blocks have reached a certain minimal block
size. For later purposes, it is helpful to give a formal definition of the HODLR format
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I = {1, 2, 3, 4, 5, 6, 7, 8}

I11 = {1, 2, 3, 4} I12 = {5, 6, 7, 8}

I21 = {1, 2} I22 = {3, 4} I23 = {5, 6} I24 = {7, 8}

I31 = {1} I32 = {2} I33 = {3} I34 = {4} I35 = {5} I36 = {6} I37 = {7} I38 = {8}

Fig. 1. Example of a cluster tree of depth 3.

` = 0 ` = 1 ` = 2 ` = 3

Fig. 2. Block partitions induced by each level of a cluster tree of depth 3.

that proceeds in the opposite direction, from the finest block level to the full matrix.
Given an integer p, let us consider an integer partition

(19) n = n1 + n2 + · · ·+ n2p ,

where p and ni are usually chosen such that all ni are nearly equal to the minimal
block size. We build a perfectly balanced binary tree, the so-called cluster tree, from

this partition by setting n
(p)
i :=

∑i
j=1 nj and defining the leaf nodes to be

Ip1 = {1, . . . , n(p)
1 }, Ip2 = {n(p)

1 + 1, . . . , n
(p)
2 }, . . . , Ip2p = {n(p)

2p−1 + 1, . . . , n}.

The nodes of depth ` < p are defined recursively by setting I`i = I`+1
2i−1 ∪ I

`+1
2i for

i = 1, . . . , 2`. At the root, I0
1 = I := {1, . . . , n}.

Figure 1 provides an illustration of the cluster tree obtained for n = 8, with the
(impractical) minimal block size 1. We use Tp to denote the cluster tree associated
with (19).

There are 2` nodes on level ` of Tp and they partition a matrix A ∈ Cn×n into
a 2` × 2` block matrix with the blocks A(I`i , I

`
j ) for i, j = 1, . . . , 2`. For the HODLR

format, only the off-diagonal blocks appearing in the recursive partition (18) are
relevant. These are given by
(20)
A(I`i , I

`
j ) and A(I`j , I

`
i ) for (i, j) = (2, 1), (4, 3), . . . , (2`, 2` − 1), ` = 1, . . . , p,

and marked with stripes in Figure 2.

Definition 4.1. Consider a cluster tree Tp and let A ∈ Cn×n. Then
1. for k ∈ N, A is said to be a (Tp, k)-HODLR matrix if each of the off-diagonal

blocks listed in (20) has rank at most k;
2. the HODLR rank of A (with respect to Tp) is the smallest integer k such that
A is a (Tp, k)-HODLR matrix.
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Fig. 3. Pictorial description of the HODLR format for cluster trees of different depths. The
subblocks filled in gray are dense blocks; the others are stored as low-rank outer products.

A (Tp, k)-HODLR matrix A can be stored efficiently by replacing each off-diagonal

block A(I`i , I
`
j ) featuring in Definition 4.1 by its low-rank factorization U

(`)
i

(
V

(`)
j

)∗
.

Both, U
(`)
i and V

(`)
j have at most k columns. In turn, the only full blocks that need

to be stored are the diagonal blocks at the lowest level: A(Ipi , I
p
i ) for i = 1, . . . , 2p;

see also Figure 3. If n = 2pk and ni = k in (19), O(nk) memory is needed for storing
the diagonal blocks as well as the low-rank factors on each level `. Hence, the storage
of such a HODLR matrix requires O(pnk) = O(kn log n) memory in total.

4.2. Divide-and-conquer in the HODLR format. We are now prepared to
describe the divide-and-conquer method for a Sylvester equation (1) with (Tp, k)-
HODLR matrices A, B, C. By definition, we can write
(21)

A=

[
A11 0
0 A22

]
+

[
0 A12

A21 0

]
=

[
A11 0
0 A22

]
+

[
0 U1V

∗
2

U2V
∗
1 0

]
=

[
A11 0
0 A22

]
+UAV

∗
A,

where

(22) UA :=

[
U1 0
0 U2

]
, VA :=

[
0 V1

V2 0

]
have at most 2k columns each. The matrices UB , VB , UC , VC are defined analogously.
Note that the diagonal blocks are (Tp−1, k)-HODLR matrices for a suitably defined
cluster tree Tp−1. After solving (recursively) for these diagonal blocks, we apply the
technique described in Algorithm 1 to incorporate the low-rank corrections for A, B,
C. The described procedure is summarized in Algorithm 4.

When implementing Algorithm 4 it is advisable to recompress the right-hand
side UV ∗, obtained in line 9, using the procedure described in section 3.1. Similarly,
line 11 aims at recompressing the entire HODLR matrix to mitigate the increase of
the HODLR rank due to the addition of δX. For this purpose, the procedure from sec-
tion 3.1 is applied, with truncation tolerance τ , to each off-diagonal block (20). This
step is optional because it is expensive and we cannot expect a significant rank re-
duction for Sylvester equations with general HODLR coefficients; see also Remark 4.4
below.

When Algorithm 4 is applied to a stable Lyapunov equation, the techniques from
section 3.4 are employed in line 10 in order to preserve the symmetry of δX. Note,
however, that Algorithm 4 does not preserve definiteness, that is, δX is, in general, not
positive semidefinite. We pose it as an open problem to design a divide-and-conquer
method that has this desirable property, implying that the solution is approached
monotonically from below.

4.2.1. A priori bounds on the HODLR rank of X. The numerical rank of
the correction δX, computed in line 10, can be bounded using the tools introduced
in section 2.
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Algorithm 4 Divide-and-conquer method for Sylvester equations with HODLR co-
efficients.

1: procedure D&C Sylv(A,B,C) . Solve AX +XB = C
2: if A,B are dense matrices then
3: return dense Sylv(A,B,C)
4: else
5: Decompose

A =

[
A11 0
0 A22

]
+ UAV

∗
A, B =

[
B11 0
0 B22

]
+ UBV

∗
B , C =

[
C11 0
0 C22

]
+ UCV

∗
C

with UA, VA, UB , VB , UC , VC defined as in (22).
6: X11 ← D&C Sylv(A11, B11, C11)
7: X22 ← D&C Sylv(A22, B22, C22)

8: Set X0 ←
[
X11 0

0 X22

]
9: Set U = [UC ,−UA,−X0UB ] and V = [VC , X

∗
0VA, VB ].

10: δX ← low rank Sylv(A,B,U, V )
11: return Compress(X0 + δX, τ) . Compression is optional
12: end if
13: end procedure

Lemma 4.2. Let A,B,C ∈ Cn×n be (Tp, k)-HODLR matrices and suppose that
W(A) ⊆ E, W(−B) ⊆ F for sets E,F ⊂ C satisfying E ∩ F = ∅, and run Algorithm
4 with input arguments A,B, and C. Then for every recursion of Algorithm 4, the
correction δX satisfies

(23)
σ6kh+1(δX)

‖δX‖2
6
(
1 +
√

2
)
· Zh(E,F ).

Proof. As the matrices A and B appearing in each recursion of Algorithm 4 are
principal submatrices of the input matrices A and B, their numerical ranges are
contained in E and −F , respectively. Moreover, the rank of the right-hand-side UV ∗

is bounded by 6k. Thus, applying Theorem 2.1 to AδX + δX B = UV ∗ establishes
the claim.

We now use Lemma 4.2 to derive an a priori approximation result for X. Let
δX` ∈ Cn×n be the block diagonal matrix for which the diagonal blocks contain all
corrections computed at recursion level ` ≤ p − 1 of Algorithm 4. Note that the
block partitioning of δX` corresponds to level ` of Tp; see also Figure 2. Similarly,
let X0 ∈ Cn×n be the block diagonal matrix that contains all the solutions of dense
Sylvester equations at level p. Then X = X0 + δX0 + · · · + δXp−1. Given ε̃ > 0,
suppose that h is chosen such that (1 +

√
2)Zh(E,F ) 6 ε̃. Lemma 4.2 applied to

each diagonal block of δX` implies that there is a block diagonal matrix δX̃j , with
the same block structure as δX`, such that each diagonal block has rank at most 6kh
and ‖δX` − δX̃`‖2 ≤ ε̃‖δX`‖2. By construction, X̃ = X0 + δX̃0 + · · · + δX̃p−1 is a

(Tp, 6khp)-HODLR matrix such that ‖X − X̃‖2 ≤ ε̃pmax` ‖δX`‖2. This establishes
the following result.

Corollary 4.3. Under the assumptions of Lemma 4.2, let X be the solution
of (1) and suppose that the norm of all corrections computed by Algorithm 4 is bounded
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by M . Given ε > 0, let h be the smallest integer that satisfies (1+
√

2)Zh(E,F ) 6 ε
pM .

Then there exists a (Tp, 6khp)-HODLR matrix X̃ such that ‖X − X̃‖2 6 ε.

Remark 4.4. To turn Corollary 4.3 into an asymptotic statement on the HODLR
rank as n → ∞, one needs to assume a model for the behavior of E, F as n → ∞.
In the simplest case, E,F stay constant, for example, when A and B are symmetric
positive definite and their condition numbers remain bounded as n → ∞. In this
case, the integer h from Corollary 4.3 is constant and, in turn, the HODLR rank of
the approximate solution is O(k log(n)). Numerical tests, involving random HODLR
matrices which satisfy these assumptions, indicate that the factor log(n) is in general
not avoidable.

In many cases of practical interest, A and B are symmetric positive definite
but their condition numbers grow polynomially with respect to n. For example,
the condition number of A = B = trid(−1, 2,−1) is O(n2). Using the result of
Corollary 2.2 one now has h = O(log(n)) and, in turn, Corollary 4.3 yields the HODLR
rank O(k log2(n)).

4.2.2. Complexity of divide-and-conquer in the HODLR format. The
complexity of Algorithm 4 depends on the convergence of the extended Krylov sub-
space method used for solving the correction equation in line 10 and, in turn, on
spectral properties of A,B; see [9, 39]. To give some insight into the complexity, we
make the following simplifying assumptions:

(i) the conditions of Lemma 4.2 are satisfied for sets E,F independent of n, and
Algorithm 2 converges in a constant number of iterations;

(ii) n = 2ps and the input matrices A,B, and C are (Tp, k)-HODLR matrices;
(iii) Tp is the perfectly balanced binary tree of depth p,
(iv) the compression in line 11 of Algorithm 4 is not performed.

We recall that the LU decomposition of a (Tp, k)-HODLR matrix requires
O(k2n log2(n)) operations, while multiplying a vector with such a matrix requires
O(kn log(n)) operations; see, e.g., [34].

Now, let C(n, k) denote the complexity of Algorithm 4. Assumption (i) implies
that the cost of Algorithm 10, called at line 10, is O(k2n log2(n)), because it is dom-
inated by the cost of precomputing the LU decompositions for A and B. According
to Corollary 4.3 and Remark 4.4, assumption (i) also implies that X0 (see line 8) has
HODLR rank O(k log(n)). This, together with the fact that UB and VA each have
2k columns, shows that the matrix multiplications X0UB and X∗0VA at line 9 require
O(k2n log2(n)) operations. Finally, observe that the solution of a dense Sylvester
equation with s× s coefficients requires O(s3) operations. In summary,

C(n, k) =

{
O(s3) if n = s,

O(k2n log2(n)) + 2C(n2 , k) otherwise.

Applying the master theorem [19, Theorem 4.1] to this relation yields C(n, k) =
O(k2n log3(n)).

4.3. HSS matrices. The storage of a matrix of HODLR rank k requires
O(kn log n) memory in the HODLR format. Under stronger conditions on the matrix,
the factor log n can be avoided by using nested hierarchical low-rank formats, such as
the HSS format.

An HSS matrix is partitioned in the same way as a HODLR matrix. By Defini-
tion 4.1, a matrix A is a (Tp, k)-HODLR matrix if and only if every off-diagonal block
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A(I3
4 , I \ I3

4 ) A(I \ I2
3 , I

2
3 )

Fig. 4. Illustration of an HSS block row and an HSS block column for a cluster tree of depth 3.

A(I`i , I
`
j ), i 6= j, has rank at most k. Thus, we have a factorization

A(I`i , I
`
j ) = U

(`)
i S

(`)
i,j (V

(`)
j )∗, S

(`)
i,j ∈ Ck×k, U

(`)
i ∈ Cn

(`)
i ×k, V

(`)
j ∈ Cn

(`)
j ×k,

where we assume exact rank k to simplify the description. The crucial extra assump-
tion for HSS matrices is that the bases matrices of these low-rank representations are
nested across the different levels. That is, one assumes that there exist matrices, the

so-called translation operators, R
(`)
U,i, R

(`)
V,j ∈ C2k×k such that

(24) U
(`)
i =

[
U

(`+1)
2i−1 0

0 U
(`+1)
2i

]
R

(`)
U,i, V

(`)
j =

[
V

(`+1)
2j−1 0

0 V
(`+1)
2j

]
R

(`)
V,j .

This nestedness condition allows us to construct the bases U
(`)
i and V

(`)
i for any level

` = 1, . . . , p− 1 recursively from the bases U
(p)
i and V

(p)
i at the deepest level p using

the matrices R
(`)
U,i and R

(`)
V,j . In turn, one only needs O(nk) memory to represent A, for

storing the diagonal blocks A(Ipi , I
p
i ), the bases U

(p)
i , V

(p)
i as well as S

(`)
2i−1,2i, S

(`)
2i,2i−1,

R
(`)
U,i, R

(`)
V,i.

As explained in [59], the described construction is possible if and only if all the
corresponding block rows and columns, without their diagonal blocks, have rank at
most k on every level. The following definition formalizes and extends this condition.

Definition 4.5. Consider a cluster tree Tp and let A ∈ Cn×n. Then,
(a) A(I`i , I \I`i ) is called an HSS block row and A(I \I`i , I`i ) is called an HSS block

column for i = 1, . . . , 2`, ` = 1, . . . , p;
(b) for k ∈ N, A is called a (Tp, k)-HSS matrix if every HSS block row and column

of A has rank at most k;
(c) the HSS rank of A (with respect to Tp) is the smallest integer k such that A

is a (Tp, k)-HSS matrix;
(d) for k ∈ N and ε > 0, A is called an ε-(Tp, k)-HSS matrix if every HSS block

row and column of A admits an ε-approximation of rank k.

An illustration of HSS block rows and columns is given in Figure 4.
By Definition 4.5(b), a matrix A with bandwidth b (i.e., aij = 0 for |i − j| > b)

has HSS rank at most 2b.
It is intuitive that a matrix satisfying Definition 4.5(d) can be approximated by

a (Tp, k)-HSS matrix with an error of norm proportional to ε. Such a result has been
shown for the Frobenius norm in [58, Corollary 4.3]. In the following, we show such
a result for the matrix 2-norm, with a constant that is tighter than what can be
directly concluded from [58]. For this purpose, we first introduce some notation and
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preliminary results. In the following, we say that a block diagonal matrix D conforms
with Tp if it takes the form

D = D1 ⊕D2 ⊕ · · · ⊕D2p , Di ∈ Cn
(p)
i ×ki ,

for integers ki ≤ n
(p)
i . In particular, this ensures that the multiplications DTA and

AD do not mix different HSS block rows and columns, respectively. In the following

lemma, we let T (k)
p denote the tree associated with the partition k1 + k2 + · · ·+ k2p .

Lemma 4.6. Let A be an ε-(Tp, k)-HSS matrix. Then,

(a) UUTA and UTAV are ε-(Tp, k)-HSS and ε-(T (k)
p , k)-HSS matrices, respec-

tively, for any block diagonal matrices U , V conforming with Tp and satisfying
UTU = V TV = I;

(b) A is an ε-(Tp−1, k)-HSS matrix for the tree Tp−1 obtained from Tp by omitting
all leaves.

Proof. (a) Consider a node I`i of Tp and the corresponding node Ĩ`i of T (k)
p .

Because of the block diagonal structure of U , an HSS block row of UUTA takes
the form ΠA(I`i , I \ I`i ), where Π = U(I`i , Ĩ

`
i )U(I`i , Ĩ

`
i )
T is an orthogonal projector.

By assumption, there is a perturbation C with ‖C‖2 ≤ ε such that A(I`i , I \ I`i ) + C
has rank at most k. In turn, ΠA(I`i , I \ I`i ) + ΠC also has rank at most k with
‖ΠC‖2 ≤ ‖Π‖2‖C‖2 = ‖C‖2 ≤ ε. By an analogous argument, the HSS block column
U(I \ I`i , Ĩ \ Ĩ`i )U(I \ I`i , Ĩ \ Ĩ`i )TA(I \ I`i , I`i ) is shown to admit a rank-k approximation
of norm ε. This proves that UUTA is an ε-(Tp, k)-HSS matrix.

Now, consider an HSS block row of UTAV given by U(I`i , Ĩ
`
i )
TA(I`i , I \ I`i )V (I \

I`i , Ĩ \ Ĩ`i ), where both the left and right factors have orthonormal columns because of
the structure of U , V . Using the matrix C from above, set

C̃ := U(I`i , Ĩ
`
i )
TC(I \ I`i , Ĩ \ Ĩ`i )V (I \ I`i , Ĩ \ Ĩ`i ).

This perturbation reduces the rank of the HSS block row to at most k and has norm
bounded by ε because of the ortogonality of U, V . By swapping the roles of U and
V , the same holds for an HSS block column of UTAV . This proves that UTAV is an

ε-(T (k)
p , k)-HSS matrix.
(b) This part trivially holds because the block rows and columns corresponding

to Tp−1 are a subset of the block rows and columns corresponding to Tp.
Theorem 4.7. Let A ∈ Cn×n be an ε-(Tp, k)-HSS matrix. Then there exists

δA ∈ Cn×n with ‖δA‖2 ≤
√

2p+2 − 4 · ε such that A+ δA is a (Tp, k)-HSS matrix.

Proof. The result is proven by induction on the tree depth p. The result trivially
holds for p = 0.

Let us now consider p ≥ 1 and suppose that the result holds for any ε-(Tp−1, k)-
HSS matrix and for any tree Tp−1 of depth p − 1. To establish the result for a tree
Tp of depth p, we consider the off-diagonal part Aoff, that is, Aoff is obtained from
A by setting the diagonal blocks A(Ipi , I

p
i ) to zero for i = 1, . . . , 2p. This allows us

to consider the complete block rows Aoff(Ipi , I) ∈ Cn
(p)
i ×n instead of the depth-p HSS

block rows of A. Let Ui ∈ Cn
(p)
i ×k contain the k left dominant singular vectors of

Aoff(Ipi , I) (if k ≤ n(p)
i , we set Ui = I

n
(p)
i

). Because Aoff is an ε-(Tp, k)-HSS matrix, it

holds that ‖(I−UiUTi )Aoff(Ipi , I)‖2 ≤ ε. The block diagonal matrix U := U1⊕· · ·⊕U2p

conforms with Tp and it is such that

(25) ‖(I − UUT )Aoff‖2 ≤
√

2pε.
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By Lemma 4.6, UUTAoff is again an ε-(Tp, k)-HSS matrix. This allows us to apply
analogous arguments to the depth-p HSS block columns of UUTAoff, yielding a block
diagonal matrix V conforming with Tp such that UUTAoffV V

T has depth-p HSS block
rows/columns of rank at most k, and

‖UUTAoff (I − V V T )‖2 ≤
√

2pε.

Using the notation from Lemma 4.6, UTAoffV is an ε-(T (k)
p , k)-HSS matrix and,

in turn, an ε-(T (k)
p−1, k)-HSS matrix. We recall that T (k)

p−1 is the tree of depth p − 1

obtained by eliminating the leaves of T (k)
p . Hence, the induction hypothesis implies

the existence of δp−1A such that UTAoffV + δp−1A is a (T (k)
p−1, k)-HSS matrix and

(26) ‖δp−1A‖2 ≤
√

2p+1 − 4ε.

The matrix UUTAoffV V
T +Uδp−1AV

T is not only a (Tp−1, k)-HSS matrix but also a
(Tp, k)-HSS matrix because, by construction, its depth-p HSS block rows and columns
all have rank at most k. In summary, A+ δA is a (Tp, k) matrix with

δA := −(I − UUT )Aoff − UUTAoff(I − V V T ) + Uδp−1AV
T .

Exploiting the orthogonality of (co-)ranges and using (25)–(26), the norm of this
perturbation satisfies

‖δA‖22 ≤ ‖(I − UUT )Aoff‖22 + ‖UUTAoff(I − V V T ) + Uδp−1AV
T ‖22

≤ ‖(I − UUT )Aoff‖22 + ‖UUTAoff(I − V V T )‖22 + ‖Uδp−1AV
T ‖22

≤ 2pε2 + 2pε2 + (2p+1 − 4)ε2 = (2p+2 − 4)ε2,

which completes the proof.

4.4. Compressibility of solution X in the HSS format. We now consider
the equation AX +XB = C for (Tp, k)-HSS coefficients A,B,C. Algorithm 4 can be
adapted to this situation by simply replacing operations in the HODLR format by
operations in the HSS format. In our numerical tests, the HSS compression algorithm
from [59] is used in line 11. Moreover, sparse LU factorizations of the matrices A and
B are obtained with the MATLAB function lu, in Algorithm 2. When A and B are
nonsparse HSS matrices, one can use the algorithms described in [59] for precomputing
either their ULV or Cholesky factorization.

In the following, we show that the solution X can be well approximated by an
HSS matrix.

Lemma 4.8. Let A,B,C ∈ Cn×n be (Tp, k)-HSS matrices and suppose thatW(A) ⊆
E and W(−B) ⊆ F for sets E,F ⊂ C satisfying E ∩ F = ∅. Let Y be an HSS block
row or column of the solution X of (1). Then

σ3kh+1(Y )

‖Y ‖2
6
(
1 +
√

2
)
· Zh(E,F ).

Proof. We establish the result for an HSS block column X(I \ I`i , I`i ); the case of
an HSS block row is treated analogously. Our proof follows the proof of Theorem 2.7
in [47].
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Let us define A11 = A(I`i , I
`
i ), A21 = A(I \ I`i , I`i ), A12 = A(I`i , I \ I`i ), A22 =

A(I \ I`i , I \ I`i ), and Bij , Cij , Xij analogously for 1 6 i, j 6 2. Extracting the indices
(I \ I`i , I`i ) from the equation AX +XB = C, we obtain the relation

A21X11 +A22X21 +X21B11 +X22B21 = C21.

This shows that X21 satisfies a Sylvester equation with right-hand side of rank at
most 3k:

A22X21 +X21B11 = C21 −A21X11 −X22B21.

Since W(A22) ⊆ W(A) and W(−B11) ⊆ W(−B), and X(I \ I`i , I`i ) = X21, the claim
follows from Theorem 2.1.

Combining Lemma 4.8 with Theorem 4.7 yields the following result.

Corollary 4.9. Under the assumptions of Lemma 4.8, let X be the solution of
(1). Given ε > 0, let h be the smallest integer that satisfies (1 +

√
2)Zh(E,F ) 6

ε√
2p+2−4

. Then there exists a (Tp, 3kh)-HSS matrix X̃ such that ‖X − X̃‖2 6 ε.

4.4.1. Complexity of divide-and-conquer in the HSS format. The com-
plexity analysis of Algorithm 4 from section 4.2.2 extends to the HSS format as follows.
We retain assumptions (i) and (iii) from section 4.2.2 and replace (ii) and (iv) by the
following:

(ii′) n = 2ps and the input matrices A,B, and C are (Tp, k)-HSS matrices of size
n× n;

(iv′) the compression in line 11 of Algorithm 4 is performed and returns HSS rank
O(k).

The second part of assumption (iv′) is motivated by the fact that the (exact) matrix
X0 + δX is the solution of a Sylvester equation with the coefficients satisfying the
conditions of Corollary 4.9. Applied recursively, assumption (iv′) implies that X11

and X22 have HSS rank O(k). Using the fact that matrix-vector multiplications with
these matrices have complexity O(kn), line 9 requires O(k2n) operations. The LU
factorizations of A and B needed in line 10 and the compression in line 11 have the
same complexity [59]. Hence, by recursion, the overall complexity of Algorithm 4 in
the HSS format is O(k2n log(n)).

4.4.2. Reducing the rank of updates in the Hermitian case. The split-
ting (21), the basis of our divide-and-conquer method, leads to perturbations of rank
2k for general (Tp, k)-HODLR and HSS matrices. For a Hermitian positive definite
(Tp, k)-HSS matrix A, let A21 = UΣV ∗ be the SVD of the subdiagonal block on level
1. Instead of (21) we then consider the splitting
(27)

A =

[
A11 V ΣU∗

UΣV ∗ A22

]
= A0+δA :=

[
A11 + V ΣV ∗ 0

0 A22 + UΣU∗

]
+

[
V
−U

]
Σ

[
−V
U

]∗
.

The obvious advantage is that the perturbation now has rank k. However, in order to
be a useful basis for the divide-and-conquer method, A0 needs to inherit the favorable
properties of A. This is shown by the following lemma.

Lemma 4.10. Let A be a Hermitian positive definite (Tp, k)-HSS matrix, parti-
tioned as in (27). Then A0 is also a Hermitian positive definite (Tp, k)-HSS matrix.

Proof. Note that

A11 + V ΣV ∗ =
[
A11 V ΣU∗

] [ I
UV ∗

]
=
[
I V U∗

] [ A11

UΣV ∗

]
.
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The first relation implies that the rank of an HSS block row of A11+V ΣV ∗ is bounded
by the rank of the corresponding HSS block row of

[
A11 V ΣU∗

]
, which is bounded by

k. The second relation implies that the rank of an HSS block column of A11 + V ΣV ∗

is bounded by the rank of the corresponding HSS block column of
[
A11

UΣV ∗

]
, which

is also bounded by k. An analogous argument applies to the HSS block rows and
columns of A22 + UΣU∗. Thus, A0 is a (Tp, k)-HSS matrix. It is straightforward to
verify that A0 is Hermitian positive definite.

The right-hand side C = C0 + δC in (1) is treated similarly, for lowering the
rank of the right-hand side of (4). Since we do not need to preserve any positive
definiteness in C0, we are allowed to choose

δC =

[
θV
−U

]
Σ

[
−V
θ−1U

]∗
for θ 6= 0.

Remark 4.11. In the special case when A is a Hermitian banded matrix, with
bandwidth smaller than s, the updates V V ∗ and UU∗ only affect the smallest diagonal
blocks in the southeast corner of A11 and in the northwest corner of A22, respectively.
In particular, the sparsity pattern of the off-diagonal blocks is maintained.

5. Numerical results. In this section, we illustrate the performance of our
divide-and-conquer method from section 4 for a number of different examples. In
particular, we consider linear matrix equations AX +XB = C for which A,B,C are
efficiently representable as HSS or HODLR matrices. We exclude cases where C has
low rank (or low numerical rank), since these can be treated more efficiently directly
by ADI or Krylov subspace methods.

We compare our method with other techniques developed for linear matrix equa-
tions with rank-structured coefficients. In particular, this includes the matrix sign
function iteration for HODLR matrices proposed in [30] and recently tested in [47].
When the coefficients A and B are symmetric positive definite, well conditioned, and
banded, we also compare with the approach proposed in [48], a matrix version of the
CG that exploits the approximate sparsity in the solution.

A number of approaches are based on applying numerical quadrature to X =∫∞
0
e−tACe−tBdt, for example, in [33] in the context of sparsity and in [47] in the

context of HODLR matrices. As demonstrated in [47] such approaches are less com-
petitive compared to the sign iteration and they are therefore not included in our
comparison.

5.1. Details of the implementation. All experiments have been performed
on a laptop with a dual-core Intel Core i7-7500U 2.70 GHz CPU, 256 KB of level 2
cache, and 16 GB of RAM. The algorithms are implemented in MATLAB and tested
under MATLAB 2016a, with MKL BLAS version 11.2.3 utilizing both cores.

The methods described in sections 3 and 4 require the choice of several parameters:
• τNW = tolerance for stopping the Newton method (see line 11 of Algorithm 3);
• τEK = tolerance for stopping the extended Krylov subspace method, (see (11));
• s = size of the diagonal blocks in the HODLR/HSS block partitioning;
• τσ = tolerance for low-rank truncations when compressing the right-hand

side (see section 3.1), the output of Algorithm 2, as well as HODLR and HSS
matrices in line 11 of Algorithm 4.

Concerning the compression in the HODLR and HSS formats, we specify that in each
off-diagonal block we discard the singular values that are relatively small with respect
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Table 3
Choices of parameters used in the experiments.

Test τNW τEK s τσ

Example 3.1 10−8 10−8 - -
Example 3.2 10−8 10−12 - -
Section 5.2 - 10−12 256 10−12

Section 5.3 - 10−12 256 10−12

Section 5.4 - 10−6 256 10−6

Section 5.5 10−8 10−12 256 10−12

Section 5.6 10−8 10−12 256 10−12

to the norm of the whole matrix, which can be cheaply estimated with a few steps of
the power method.

The values of the parameters used in the various experiments are reported in
Table 3. We have found that the performance of the proposed algorithms is not very
sensitive to the choices of the tolerances reported in Table 3: smaller tolerances lead
to more accurate results, as one would expect. It is, however, advisable to choose
τEK and τσ on a similar level, in order to avoid wasting computational resources. The
tolerance τNW can be chosen larger because the quadratic convergence of the Newton
method implies that the actual error ‖Xk+1 −X∗‖ is proportional to τ2

NW.

To assess the accuracy of an approximate solution X̂ of a Sylvester equation, we
report the residual Res(X̂) = ‖AX̂+X̂B−C‖2/((‖A‖2 +‖B‖2)‖X̂‖2) which is linked
to the relative backward error on the associated linear system [36]. For CAREs we
consider the quantity Res(X̂) = ‖AX̂+X̂A∗−X̂BX̂−C‖2/‖AX0 +X0A

∗−X0BX0−
C‖2 instead.

5.2. Discretized two-dimensional Laplace equation. We consider the two-
dimensional Laplace equation

(28)

{
−∆u = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
∆u =

∂2u

∂x2
+
∂2u

∂y2
,

for the square domain Ω = [0, 1]2 and f(x, y) = log(1 + |x− y|). It is well known that
the central finite difference discretization (28) on a regular grid leads to a Lyapunov
equation AX+XA = C with coefficients A = (n+1)2·trid(−1, 2,−1) and C containing
samples of f(x, y) on the grid. The latter matrix does not have low (numerical) rank,
but it can be well approximated in the HODLR and HSS formats relying on the
Chebyshev expansion of f in the off-diagonal subdomains of Ω; see the discussion
in [47, Example 6.1].

Table 4 and Figure 5 compare the performance of the matrix sign function itera-
tion in the HODLR format with the divide-and-conquer method in both the HODLR
and HSS formats.

The divide-and-conquer method is based on extended Krylov subspaces with prin-
cipal submatrices of A. As these matrices inherit the tridiagonal structure of A, they
can be easily applied and inverted. In contrast, the matrix sign iteration method does
not preserve bandedness and needs to operate with general HODLR matrices. This is
significantly less efficient; in turn, our divide-and-conquer method is always faster and
scales more favorably as n increases. Moving from the HODLR to the HSS format
results in further (modest) speedup. The HODLR and HSS ranks remain reasonably
small in all approaches. One major advantage of the HSS format is its reduced mem-
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Table 4
Execution times (in seconds) and relative residuals for the matrix sign function iteration and

the divide-and-conquer method applied to the discretized two-dimensional Laplace equation from
section 5.2.

n TSign ResSign TD&C HODLR ResD&C HODLR TD&C HSS ResD&C HSS

512 0.57 9.04 · 10−13 0.42 4.32 · 10−13 0.32 6.71 · 10−13

1,024 1.85 1.60 · 10−12 1.16 7.70 · 10−13 1.38 7.36 · 10−13

2,048 5.45 2.09 · 10−12 3.19 7.51 · 10−13 3.33 9.86 · 10−13

4,096 15.22 3.39 · 10−12 7.45 6.85 · 10−13 8.32 8.03 · 10−13

8,192 40.48 5.69 · 10−12 16.89 8.01 · 10−13 16.85 7.47 · 10−13

16,384 97.3 7.04 · 10−12 39.87 6.84 · 10−13 38.59 7.37 · 10−13

32,768 242.96 8.94 · 10−12 86.28 7.08 · 10−13 88.27 8.89 · 10−13

65,536 591.21 1.01 · 10−11 189.73 6.45 · 10−13 184.94 9.64 · 10−13

1.31 · 105 1,433.9 9.99 · 10−12 393.95 7.10 · 10−13 377.44 1.06 · 10−12

103 104 105
10−1

100

101

102

103

104

n

T
im

e
(s

)

Sign
D&C HODLR

D&C HSS

O(n log n)

103 104 105

20

25

30

35

n

R
an

k
HODLR rank

HSS rank

Fig. 5. On the left, timings of the algorithms applied to the Laplacian equation with respect to
the grid size. The dashed lines report the expected theoretical complexity of the divide-and-conquer
strategies. On the right, HODLR and HSS rank of the solutions returned by the divide-and-conquer
methods.

ory requirements; for example, for n = 1.31 · 105, 433 MB and 267 MB are required
to store the approximate solution in the HODLR and HSS formats, respectively.

5.3. Convection diffusion. We repeat the experiment from section 5.2 for the
convection-diffusion equation{

−∆u+ v∇u = f(x, y), (x, y) ∈ Ω := [0, 1],

u(x, y) = 0, (x, y) ∈ ∂Ω,

where v = [10, 10] and, once again, f(x, y) = log(1 + |x − y|). A standard finite
difference discretization now leads to a Lyapunov equation AX +XAT = C with the
nonsymmetric matrix

A = (n+ 1)2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

+
5

2
(n+ 1)



3 −5 1

1 3 −5
. . .

. . .
. . .

. . . 1
1 3 −5

1 3
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Table 5
Execution times (in seconds) and relative residuals for the matrix sign function iteration and

the divide-and-conquer method applied to the discretized convection-diffusion equation from section
5.3.

n TSign ResSign TD&C HODLR ResD&C HODLR TD&C HSS ResD&C HSS

512 0.6 1.15 · 10−12 0.42 4.85 · 10−13 0.38 4.85 · 10−13

1,024 1.87 9.51 · 10−13 1.47 6.59 · 10−13 1.47 7.66 · 10−13

2,048 5.42 1.78 · 10−12 3.22 4.51 · 10−13 3.48 5.57 · 10−13

4,096 15.82 2.94 · 10−12 8.37 4.62 · 10−13 8.08 7.64 · 10−13

8,192 40.15 4.38 · 10−12 21.48 7.56 · 10−13 19.64 6.47 · 10−13

16,384 99.18 6.52 · 10−12 40.41 6.23 · 10−13 40.99 8.83 · 10−13

32,768 236.81 8.12 · 10−12 94.9 8.30 · 10−13 89.72 6.96 · 10−13

65,536 603.59 8.37 · 10−12 198.04 8.63 · 10−13 207.62 8.06 · 10−13

1.31 · 105 1,365.6 7.85 · 10−12 430.47 8.52 · 10−13 418.08 8.43 · 10−13

Table 6
Execution times (in seconds) and relative residuals for the sparse CG method and the divide-

and-conquer method applied to the head equation from section 5.4.

n TCG ResCG TD&C HODLR ResD&C HODLR TD&C HSS ResD&C HSS

1,536 0.86 5.95 · 10−8 0.86 1.23 · 10−8 0.76 1.23 · 10−8

3,072 1.77 5.86 · 10−8 2.03 1.24 · 10−8 2.5 1.23 · 10−8

6,144 4.39 5.76 · 10−8 4.62 1.24 · 10−8 4.61 1.23 · 10−8

12,288 8.08 5.71 · 10−8 11.79 1.24 · 10−8 10.98 1.23 · 10−8

24,576 17.06 5.68 · 10−8 22.72 1.23 · 10−8 24.61 1.23 · 10−8

49,152 35.55 5.67 · 10−8 58.24 1.23 · 10−8 53.1 1.23 · 10−8

98,304 71.13 5.66 · 10−8 128.28 1.23 · 10−8 125.32 1.23 · 10−8

and C as in section 5.2. Table 5 displays the timings and the relative residuals
obtained for this example, reconfirming our observations for the symmetric example
from section 5.2. Also, we have observed the HODLR and HSS ranks to behave in a
similar manner.

5.4. Heat equation. A model describing the temperature change of a thermally
actuated deformable mirror used in extreme ultraviolet litography [33, section 5.1]
leads to a symmetric Lyapunov equation AX +XA = C with coefficients

A = Iq ⊗ trid6(b, a, b) + tridq(b, 0, b)⊗ I6,
C = Iq ⊗ (−c · E6 + (c− 1) · I6) + tridq(d, 0, d)⊗ E6,

where a = −1.36, b = 0.34, c = 0.2, d = 0.1 and E6 is the 6 × 6 matrix of all
ones. Note that A and C are banded with bandwidth 6 and 11, respectively. As
analyzed in [48, Ex. 2.6], the condition number of A is bounded by 40 and hence
the sparse CG method proposed there scales linearly with n := 6q. We executed the
sparse CG setting X0 := 0 and using ‖AXk +XkA−C‖F /‖C‖F 6 10−6, for stopping
the iterations, as suggested in [48]. The results are reported in Table 6. Although
it is faster and its advantageous scaling is clearly visible, approximate sparsity is,
compared to the HODLR and HSS formats significantly less effective at compressing
the solution X; see Figure 6. The observed HODLR and HSS ranks are equal to 10
and 20, respectively, independently of n.

5.5. A large-scale Riccati equation with banded and low-rank coeffi-
cients. In this example, we demonstrate how a combination of Algorithms 3 and 4
can be used to address certain large-scale Riccati equations. Consider the CARE
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Fig. 6. Time (left) and memory (right) consumptions for solving the heat equation with different
grid sizes. The dashed lines report the expected asymptotic complexity for the divide-and-conquer
with HSS matrices.

Table 7
Performance of Algorithm 3, combined with Algorithm 4 in the HSS format for the first step,

for the CARE from section 5.5.

n ‖X̂‖2 Ttot
Tstep 1

Ttot
Tavg Res it HSS rank

1,024 3.11 · 104 0.79 0.36 0.06 2.58 · 10−7 9 14
2,048 1.24 · 105 1.63 0.35 0.12 1.29 · 10−6 10 16
4,096 4.96 · 105 3.57 0.34 0.26 6.55 · 10−6 10 19
8,192 1.98 · 106 8.34 0.31 0.58 3.10 · 10−5 11 21
16,384 7.93 · 106 21.39 0.29 1.53 1.10 · 10−4 11 24
32,768 3.17 · 107 55.53 0.21 3.97 5.32 · 10−4 12 25
65,536 1.27 · 108 170.61 0.16 13.07 2.82 · 10−3 12 29

1.31 · 105 5.08 · 108 475.11 0.11 35.07 2.36 · 10−2 13 31

AX +XA∗ −XBX − C = 0 with the coefficients

A = tridn(1,−2, 1) ∈ Rn×n, B = BUB
T
U , BU =

[
e1 en

]
∈ Rn×2, C = −In.

As the matrix A is negative definite, we can choose X0 = 0 as the stabilizing initial
guess in the Newton method. In turn, the Lyapunov equation in the first step (see
line 4 of Algorithm 3) takes the form AX +XA = C. Exploiting the structure of the
coefficients, we address this equation with Algorithm 4 in the HSS format. For all
subsequent iterations, we use the low-rank update procedure described in section 3.5,
recompressing the intermediate solution Xk in the HSS format.

In contrast to the observations made in section 3.5.1, the results displayed in
Table 7 now reveal that the first step does not dominate the cost of the overall
algorithm. Note that Tavg, the average time per Newton step, grows more than
linearly as n increases, due to the fact that the condition number of A increases and,
in turn, the extended Krylov subspace method converges more slowly. As n increases,
the norm of the final solution grows accordingly to the final residue. The HSS rank
of the approximate solution X grows slowly, apparently only logarithmically with n.
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5.6. A large-scale Riccati equation from a second-order problem. Let
us consider a linear second-order control system

Mz̈ + Lż = Kz = Du,

where M is diagonal and K, L are banded (or, more generally, HSS). Applying linear-
optimal control leads, after a suitable linearization, to a CARE (14) with the matrix
A taking the form1

(29) A =

[
0 −M−1K
Iq −M−1L

]
.

In fact, the matrix A from Example 3.2 is of this type, with K tridiagonal and M,L
(scaled) identity matrices. It turns out that A does not have low HODLR or HSS
rank. In the following, we explain a simple trick to turn A into an HSS matrix, which
then allows us to apply and the techniques from section 5.5 to Example 3.2.

We first observe that the matrix A from (29) can be decomposed as

A =

[
0 0
1 0

]
⊗ Iq −

[
0 1
0 0

]
⊗M−1K −

[
0 0
0 1

]
⊗M−1L.

Let Π denote the perfect shuffle permutation [57], which swaps the order in the Kro-
necker product of matrices of sizes 2 and q: Π(X⊗Y )Π∗ = Y ⊗X, for any X ∈ C2×2,
Y ∈ Cq×q. Hence,

(30) Ã := ΠAΠ∗ = Iq ⊗
[
0 0
1 0

]
−M−1K ⊗

[
0 1
0 0

]
−M−1L⊗

[
0 0
0 1

]
.

The following result allows us to control the HSS ranks for each of the terms.

Lemma 5.1. Let A ∈ Cq×q be an (Tp, kA)-HSS matrix, and let B ∈ Cm×m have

rank kB. Then A⊗B is a (T (mq)
p , kAkB)-HSS matrix, where T (mq)

p is the cluster tree
defined by the integer partition

mq = mq1 +mq2 + · · ·+mq2p .

Proof. The results follows immediately considering that an HSS block row X̂ in A

corresponds to the HSS block row X̂⊗B in A⊗B, with respect to T (m)
p . If the former

has rank bounded by kA, then the latter has rank bounded by kAkB . Analogously
for HSS block columns.

Lemma 5.1 implies that the matrix Ã from (30) is a (T (2)
p , k1 +k2)-HSS if M−1K

and M−1L are (Tp, k1)- and (Tp, k2)-HSS matrices, respectively. For Example 3.2
these assumptions are satisfied with k1 = 0, k2 = 1. In turn this allows us to apply
the techniques from section 5.5 to the shuffled Riccati equation from Example 3.2,
using the shuffled starting guess ΠX0Π∗. Table 8 displays the obtained results. We

1Note that, in contrast to [1], we use the second companion linearization in order to be consistent
with our choice of transposes in (14).
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Table 8
Performance of Algorithm 3, combined with Algorithm 4 in the HSS format for the first step,

for the (shuffled) CARE from section 5.6.

n ‖X̂‖2 Ttot
Tstep 1

Ttot
Tavg Res it HSS rank

512 1.55 · 104 0.88 0.52 0.05 2.90 · 10−8 9 13
1,024 6.19 · 104 1.14 0.4 0.08 1.34 · 10−7 10 13
2,048 2.48 · 105 2 0.39 0.14 6.44 · 10−7 10 16
4,096 9.91 · 105 4.5 0.36 0.29 2.41 · 10−6 11 19
8,192 3.96 · 106 10.01 0.33 0.67 1.00 · 10−5 11 20
16,384 1.59 · 107 23.82 0.29 1.54 7.33 · 10−5 12 23
32,768 6.34 · 107 60.67 0.24 4.19 3.36 · 10−4 12 24

highlight that the nonsymmetric Lyapunov equation that is solved in the first step of
the Newton method does not satisfy the hypotheses of Lemma 4.2. In fact, the field
of values of the matrix A − X0B is not contained in the open left half plane. Still,
Algorithm 4 is observed to perform very well.

6. Concluding remarks. We have proposed a Krylov subspace method for
updating the solution of linear matrix equations whose coefficients are affected by
low-rank perturbations. We have shown that our approach can significantly speed
up the Newton iteration for solving certain CAREs. Moreover, we have designed a
divide-and-conquer algorithm for linear matrix equations with hierarchically low-rank
coefficients. A theoretical analysis of the structure preservation and of the compu-
tational cost has been provided. In the numerical tests, we have verified that our
algorithm scales well with the size of the problem and often outperforms existing
techniques that rely on approximate sparsity and data sparsity.

During this work, we encountered two issues that might deserve further investi-
gation: (1) The structure of a stable Lyapunov equation is currently exploited only
partially; see section 3.4. In particular, it is an open problem to design a divide-and-
conquer method that aims directly at the Cholesky factor of the solution and thus
preserves its semidefiniteness. (2) As seen in section 5.4, it can be advantageous to
exploit (approximate) sparsity in the case of well-conditioned equations. It would be
interesting to design a variant of the divide-and-conquer method that benefits from
sparsity as well.

Acknowledgments. We thank Jianlin Xia for pointing out [60] and thank the
referees for their careful reading and helpful remarks.
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[37] O. Kameńık, Solving SDGE models: A new algorithm for the Sylvester equation, Comput.
Econom., 25 (2005), pp. 167–187, https://doi.org/10.1007/s10614-005-6280-y.

[38] D. L. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Au-
tomat. Control, AC-13 (1968), pp. 114–115, https://doi.org/10.1109/TAC.1968.1098829.

[39] L. Knizhnerman and V. Simoncini, Convergence analysis of the extended Krylov subspace
method for the Lyapunov equation, Numer. Math., 118 (2011), pp. 567–586, https://doi.
org/10.1007/s00211-011-0366-3.

[40] J. G. Korvink and B. R. Evgenii, Oberwolfach benchmark collection, in Dimension Reduction
of Large-Scale Systems, Lect. Notes Comput. Sci. Eng. 45, P. Benner, V. Mehrmann, and
D. C. Sorensen, eds., Springer, New York, 2005, pp. 311–316, https://sparse.tamu.edu/
Oberwolfach.

[41] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor product
structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688–1714, https://doi.org/10.1137/
090756843.
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