

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. © 2022 Society for Industrial and Applied Mathematics
Vol. 43, No. 2, pp. 638--660

MIXED PRECISION RECURSIVE BLOCK DIAGONALIZATION
FOR BIVARIATE FUNCTIONS OF MATRICES\ast

STEFANO MASSEI\dagger AND LEONARDO ROBOL\ddagger

Abstract. Various numerical linear algebra problems can be formulated as evaluating bivari-
ate function of matrices. The most notable examples are the Fr\'echet derivative along a direction,
the evaluation of (univariate) functions of Kronecker-sum-structured matrices, and the solution of,
Sylvester matrix equations. In this work, we propose a recursive block diagonalization algorithm for
computing bivariate functions of matrices of small to medium size, for which dense linear algebra is
appropriate. The algorithm combines a blocking strategy, as in the Schur--Parlett scheme, and an
evaluation procedure for the diagonal blocks. We discuss two implementations of the latter. The
first is a natural choice based on Taylor expansions, whereas the second is derivative-free and relies
on a multiprecision perturb-and-diagonalize approach. In particular, the appropriate use of mul-
tiprecision guarantees backward stability without affecting the efficiency in the generic case. This
makes the second approach more robust. The whole method has cubic complexity, and it is closely
related to the well-known Bartels--Stewart algorithm for Sylvester matrix equations when applied to
f(x, y) = 1

x+y
. We validate the performances of the proposed numerical method on several problems

with different conditioning properties.

Key words. bivariate matrix functions, mixed precision, block diagonalization, perturb-and-
diagonalize, multiprecision, function of matrices

AMS subject classification. 65F60

DOI. 10.1137/21M1407872

1. Introduction. Matrix functions [14], such as the matrix inverse, the matrix
exponential, the matrix square root, and many others, arise in an endless list of appli-
cations including analysis of complex networks [10], signal processing [17], solution of
ODEs [18], and control theory [3]. The practical computation of univariate functions
of matrices has been intensively analyzed from different angles such as the reduction to
triangular form [9], polynomial and rational approximants [15], contour integrals [12],
and projection on low dimensional subspaces [11].

The matrix function concept extends quite naturally to the bivariate setting.
Given two square matrices A \in \BbbC m\times m and B \in \BbbC n\times n and a complex-valued function
f(x, y), the bivariate matrix function f\{ A,B\} [22] is a linear endomorphism on \BbbC m\times n.
As in the univariate case, the definition of f\{ A,B\} can be given, equivalently, in terms
of (bivariate) Hermite interpolation, power series expansion, and contour integration.
We report the latter formulation which is the most useful for our work. Let \Lambda A and
\Lambda B be the spectra of A and B, respectively, and let f(x, y) be analytic in an open
neighborhood of \Lambda A \times \Lambda B ; f\{ A,B\} is defined asf\{ A,B\} : \BbbC m\times n - \rightarrow \BbbC m\times n, where

(1) f\{ A,B\} (C) = - 1

4\pi 2

�
\Gamma

f(x, y)(xI - A) - 1C(yI - BT) - 1 dxdy,

with \Gamma := \Gamma A \times \Gamma B and \Gamma A,\Gamma B closed contours enclosing \Lambda A and \Lambda B , respectively.

\ast Received by the editors April 1, 2021; accepted for publication (in revised form) by D. J. Higham
October 29, 2021; published electronically April 19, 2022.

https://doi.org/10.1137/21M1407872
Funding: The work of the authors was partially supported by the INdAM-GNCS project

``Metodi low-rank per problemi di algebra lineare con struttura data-sparse.""
\dagger Centre for Analysis, Scientific Computing, and Applications, TU/e, Eindhoven, North Brabant,

1015, The Netherlands (massei.stef@gmail.com).
\ddagger Department of Mathematics, University of Pisa, Pisa, 56127, Italy (leonardo.robol@unipi.it).

638

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1407872
mailto:massei.stef@gmail.com
mailto:leonardo.robol@unipi.it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 639

Although their usual formulations involve different frameworks, the following pop-
ular linear algebra problems correspond to evaluate a bivariate matrix function:

1. The solution of the Sylvester equation

AX +XB = C

is given by X = f1\{ A,B\} (C), where f1(x, y) =
1

x+y .

2. Given a univariate matrix function g(A), the Fr\'echet derivative of g at A
in the direction C, i.e., Dg\{ A\} (C) := limt\rightarrow 0

1
t (g(A + tC) - g(A)), verifies

Dg\{ A\} (C) = f2\{ A,AT \} (C), where f2(x, y) is the finite difference quotient

f2(x, y) =

\Biggl\{
g(x) - g(y)

x - y , x \not = y,

g\prime (x), x = y.

3. Given a univariate function h(x), a matrix with the Kronecker sum structure
\scrA = A\otimes I + I \otimes B, and a vector v, we have that

h(\scrA)v = vec (f3\{ A,B\} (C)) , f3(x, y) = h(x+ y),

where the matrix C verifies vec(C) = v.
We stress that effective algorithms specialized for each of these case studies, or their
subcases, already exist; see [25] for Sylvester equations, [1, 2] for the Frech\'et derivative,
and [5, 24] for functions of Kronecker sums. Quite recently, computing the application
of a generic bivariate matrix function to a low-rank matrix C has been addressed
in [23], and a multivariate version of the Crouzeix--Palencia bound [7] has been proved
in [6]. The ultimate goal of this work is to provide an algorithm for the computation
of f\{ A,B\} (C) in the most general scenario, i.e., only requiring that the matrices
A,B,C have appropriate sizes and that f is analytic on the Cartesian product of the
spectra of A and B.

1.1. Diagonalization of A and/or B. If at least one among A and B is a nor-
mal matrix or has a well-conditioned eigenvector matrix, then evaluating f\{ A,B\} (C)
simplifies considerably.

Note that if DA := diag(\lambda A
1 , . . . , \lambda

A
m) and DB := diag(\lambda B

1 , . . . , \lambda
B
n) are diagonal

matrices, then X := f\{ DA, DB\} (C) is given by (X)ij = f(\lambda A
i , \lambda

B
j) \cdot Cij . In addition,

(1) implies the following property that describes the interplay between bivariate ma-
trix functions and similarity transformations: Given invertible matrices SA \in \BbbC m\times m

and SB \in \BbbC n\times n, it holds that

(2) f\{ A,B\} (C) = SA \cdot f\{ S - 1
A ASA, S

 - 1
B BSB\} (S - 1

A CS - T
B) \cdot ST

B .

In the case A = SADAS
 - 1
A , B = SBDBS

 - 1
B for well-conditioned SA and SB (so that

\lambda A
i , \lambda

B
j are the eigenvalues of A,B), we make use of (2) to get

(3)
f\{ A,B\} (C) = SAf\{ DA, DB\} (\widetilde C)ST

B = SA(F \circ \widetilde C)ST
B ,\widetilde C := S - 1

A CS - T
B , (F)ij := f(\lambda A

i , \lambda
B
j),

where \circ indicates the componentwise Hadamard product of matrices. In particular,
only evaluations of f on scalar entries are needed; we call the procedure based on (3)
fun2 diag, and we report it in Algorithm 1.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

640 STEFANO MASSEI AND LEONARDO ROBOL

Algorithm 1

1: procedure fun2 diag(f,A,B,C)
2: [SA, DA] = eig(A)
3: [SB , DB] = eig(B)

4: \widetilde C \leftarrow S - 1
A CS - T

B

5: for i = 1 . . .m, j = 1, . . . , n do
6: F (i, j)\leftarrow f(\lambda A

i , \lambda
B
j)

7: end for
8: return SA(F \circ \widetilde C)ST

B

9: end procedure

If only B is diagonalized, then it is convenient to rely on the following formula [22,
section 5]:

f\{ A,B\} (C) = f\{ A,DB\} (\widetilde C)ST
B = [f\lambda B

1
(A)\widetilde c1| . . . | f\lambda B

n
(A)\widetilde cn],(4) \widetilde C := CS - T

B = [\widetilde c1| . . . | \widetilde cn], f\lambda B
j
(x) := f(x, \lambda B

j).

Since the previous expression only involves the evaluation of univariate matrix func-
tions, it is performed via the Schur--Parlett algorithm [9], which is implemented, for
instance, in the funm MATLAB function. An analogous rowwise formula, involving
the univariate functions f\lambda A

j
(y) := f(\lambda A

j , y), applies to the case where only A is di-

agonalized. The resulting procedures are denoted by fun2 diagA and fun2 diagB
and are reported in Algorithm 2 and Algorithm 3.

Algorithm 2

1: procedure fun2 diagA(f,A,B,C)
2: [SA, DA] = eig(A)

3: \widetilde C \leftarrow S - 1
A C

4: D \leftarrow 0m\times n

5: for j = 1, . . .m do
6: D(j, :)\leftarrow \widetilde C(j, :)f\lambda A

j
(B)

7: end for
8: return SAD
9: end procedure

Algorithm 3

1: procedure fun2 diagB(f,A,B,C)
2: [SB , DB] = eig(B)

3: \widetilde C \leftarrow CS - T
B

4: D \leftarrow 0m\times n

5: for j = 1, . . . n do
6: D(:, j)\leftarrow f\lambda B

j
(A) \widetilde C(:, j)

7: end for
8: return DST

B

9: end procedure

1.2. Contribution. From now on we will consider f\{ A,BT \} (C) (instead of
f\{ A,B\} (C)) because this simplifies the exposition. We propose a numerically reliable
method for computing f\{ A,BT \} (C) for a general function f(x, y) without requiring
that A and/or B can be diagonalized with a well-conditioned similarity transforma-
tion. In complete analogy to the univariate scenario, our procedure computes the
Schur decompositions A = QATAQ

\ast
A and B = QBTBQ

\ast
B so that the task boils down

to evaluate the bivariate function for triangular coefficients:

f\{ A,BT \} (C) = QAf\{ TA, T
T
B \} (\widetilde C)Q\ast

B , \widetilde C := Q\ast
ACQB .

A generalized block recurrence is applied to retrieve f\{ TA, T
T
B \} (\widetilde C); the recursion re-

quires us to compute f on pairs of diagonal blocks of TA and TT
B and to solve Sylvester

equations involving either diagonal blocks of TA or of TB . In view of the latter op-
eration, we need to reorder the Schur forms of A and B such that distinct diagonal
blocks have sufficiently separated eigenvalues. Finally, we evaluate f on the smallest

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 641

diagonal blocks of TA and TT
B , the so-called atomic blocks, via a truncated bivariate

Taylor expansion or, in the spirit of [16], with a randomized approximate diagonal-
ization technique combined with high precision arithmetic. As we discuss in section
3.1, the procedure can be interpreted as an implicit (recursive) block diagonalization
strategy, where the eigenvectors matrices are not formed explicitly.

The paper is organized as follows; in section 2 we describe the various steps of
the algorithm in detail. In particular, section 2.1 discusses the blocking procedure,
section 2.2 contains the two implementations of the function evaluation of the atomic
blocks, and section 2.3 provides further information about implementation aspects
and complexity analysis. The focus of section 3 is on the connection of our method
with block diagonalization and the Bartels--Stewart algorithm. Numerical results are
reported in section 4, and conclusions are drawn in section 5.

2. Recursive block diagonalization for bivariate matrix functions. The
univariate Schur--Parlett algorithm computes f(A), for a triangular A, by exploiting
that A and f(A) commute. This property leads to a set of equations that allows us
to retrieve the entries of f(A) a superdiagonal at a time, starting with the diagonal
elements.

A natural question is whether the triangular structure of A and B can be ex-
ploited in the bivariate framework. However, here the situation is a bit different
because the goal is to compute the application of f\{ A,BT \} to a matrix argument;
the correspondent univariate operation is computing f(A)v for a given vector v, for
which the Schur--Parlett scheme is not applicable. Our strategy leverages the trian-
gular structure of A and B to split the computation into smaller tasks. In order to
show how the splitting works we state the following technical result.

Lemma 1. Let A \in \BbbC m\times m be a triangular matrix block partitioned as

A =

\biggl[
A11 A12

A22

\biggr]
,

where A11 and A22 are square matrices with no eigenvalue in common. Then, \forall z \in
\BbbC \setminus \Lambda A,

(zI - A) - 1 =

\biggl[
(zI - A11)

 - 1 (zI - A11)
 - 1V - V (zI - A22)

 - 1

(zI - A22)
 - 1

\biggr]
,

where V solves the Sylvester equation A11V - V A22 = A12.

Proof. Applying the block inverse formula we get

(zI - A) - 1 =

\biggl[
(zI - A11)

 - 1 (zI - A11)
 - 1A12(zI - A22)

 - 1

(zI - A22)
 - 1

\biggr]
.

Then, by imposing (zI - A11)
 - 1V - V (zI - A22)

 - 1 = (zI - A11)
 - 1A12(zI - A22)

 - 1

we get

A12 = V (zI - A22) - (zI - A11)V \Leftarrow \Rightarrow A12 = A11V - V A22.

We are now ready to state the result that is at the core of our recursion for
evaluating bivariate matrix functions.

Theorem 2. Let A \in \BbbC m\times m and B \in \BbbC n\times n be triangular matrices block parti-
tioned as

A =

\biggl[
A11 A12

A22

\biggr]
, B =

\biggl[
B11 B12

B22

\biggr]
,

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

642 STEFANO MASSEI AND LEONARDO ROBOL

where A11 \in \BbbC (m - kA)\times (m - kA) and A22 \in \BbbC kA\times kA have no eigenvalue in common and
the same holds for B11 \in \BbbC (n - kB)\times (n - kB) and B22 \in \BbbC kB\times kB . If f(x, y) is a bivariate
function analytic on \Lambda A \times \Lambda B and C =

\bigl[
C11 C12

C21 C22

\bigr]
\in \BbbC m\times n is partitioned accordingly

to A and B, then we have

f\{ A,BT \} (C) =

\biggl[
Im - kA

0

\biggr]
f\{ A11, B

T
11\} (C11 + V C21)

\bigl[
In - kb

W
\bigr]

+

\biggl[
 - V
IkA

\biggr]
f\{ A22, B

T
11\} (C21)

\bigl[
In - kB

W
\bigr]

+

\biggl[
Im - kA

0

\biggr]
f\{ A11, B

T
22\}

\biggl(\bigl[
Im - kA

V
\bigr]
C

\biggl[
 - W
IkB

\biggr] \biggr) \bigl[
0 IkB

\bigr]
+

\biggl[
 - V
IkA

\biggr]
f\{ A22, B

T
22\} (C22 - C21W)

\bigl[
0 IkB

\bigr]
,

where V \in \BbbC (m - kA)\times kA satisfies A11V - V A22 = A12 and W \in \BbbC (n - kB)\times kB satisfies
B11W - WB22 = B12.

Proof. Let us indicate with \frakL j(x) := (xI - Ajj)
 - 1 and Rj(y) := (yI - Bjj)

 - 1,
j = 1, 2, the resolvent functions associated with the diagonal blocks. By applying
Lemma 1 we get f\{ A,BT \} (C) = F , where

F = - 1

4\pi 2

�
\Gamma

f(x, y)

\biggl[
\frakL 1(x) \frakL 1(x)V - V \frakL 2(x)

\frakL 2(x)

\biggr]
C

\biggl[
R1(y) R1(y)W - WR2(y)

R2(y)

\biggr]
dxdy

= - 1

4\pi 2

\biggl[
Im - kA

0

\biggr] �
\Gamma

f(x, y)\frakL 1(x)
\bigl[
C11 + V C21

\bigr]
R1(y)dx dy

\bigl[
In - kb

W
\bigr]

 - 1

4\pi 2

\biggl[
 - V
IkA

\biggr] �
\Gamma

f(x, y)\frakL 2(x)C21R1(y)dx dy
\bigl[
In - kB

W
\bigr]

 - 1

4\pi 2

\biggl[
Im - kA

0

\biggr] �
\Gamma

f(x, y)\frakL 1(x)
\bigl[
Im - kA

V
\bigr]
C

\biggl[
 - W
IkB

\biggr]
R2(y)dx dy

\bigl[
0 IkB

\bigr]
 - 1

4\pi 2

\biggl[
 - V
IkA

\biggr] �
\Gamma

f(x, y)\frakL 2(x) (C22 - C21W)R2(y)dx dy
\bigl[
0 IkB

\bigr]
.

In the 2\times 2 case we can leverage the previous result to state a generalization for
the formula of univariate functions of 2 \times 2 upper triangular matrices using divided
differences. In the univariate case, we have [14, Theorem 4.11]

f

\biggl(\biggl[
\lambda 1 a12

\lambda 2

\biggr] \biggr)
=

\biggl(\biggl[
f(\lambda 1) a12Dx[\lambda 1, \lambda 2]f

f(\lambda 2)

\biggr] \biggr)
,

where Dx denotes the one dimensional divided difference

Dx[\lambda 1, \lambda 2]f =

\Biggl\{
f(\lambda 2) - f(\lambda 1)

\lambda 2 - \lambda 1
, \lambda 1 \not = \lambda 1,

f \prime (a11), \lambda 1 = \lambda 2.

We use the following definition of divided differences for bivariate functions:

Dx[x1, x2]f(x, y) :=
f(x2, y) - f(x1, y)

x2 - x1
, Dy[y1, y2]f(x, y) :=

f(x, y2) - f(x, y1)

y2 - y1
.

Note that Dx[x1, x2]f(x, y) is a univariate function of y. Applying Theorem 2 yields
the following formula that expresses f\{ A,BT \} (C) in terms of f(x, y) and its divided
differences evaluated at all the possible pairs of eigenvalues of A and B.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 643

Corollary 3. Let

A =

\biggl[
\lambda 1 a12

\lambda 2

\biggr]
, B =

\biggl[
\mu 1 b12

\mu 2

\biggr]
, C =

\biggl[
c11 c12
c21 c22

\biggr]
,

and f(x, y) such that f\{ A,BT \} (C) is well defined. Then

f\{ A,BT \} (C) =

\biggl[
f(\lambda 1, \mu 1) f(\lambda 1, \mu 2)
f(\lambda 2, \mu 1) f(\lambda 2, \mu 2)

\biggr]
\circ C

+

\biggl[
c21a12Dx[\lambda 1, \lambda 2]f(x, \mu 1) \Delta

c21b12Dy[\mu 1, \mu 2]f(\lambda 2, y)

\biggr]
,

where \circ denotes the Hadamard product, and

\Delta := c22a12Dx[\lambda 1, \lambda 2]f(x, \mu 2) + c11b12Dy[\mu 1, \mu 2]f(\lambda 1, y)

+ c21a12b12Dx[\lambda 1, \lambda 2]Dy[\mu 1, \mu 2]f(x, y).

Going back to the general framework, Theorem 2 splits the computation of
f\{ A,BT \} (C) into 4 bivariate functions of triangular coefficients with smaller sizes,
the solution of 2 Sylvester equations, and some matrix multiplications and additions.
Applying this procedure recursively reduces the problem to evaluate bivariate matrix
functions on scalars or 2 \times 2 triangular matrices via the formula in Corollary 3. In
practice, it is convenient to stop the recursion at a larger block size in order to ex-
ploit BLAS 3 operations. We note that the Sylvester equations solved in the four
branches generated by a recursion are pairwise identical since they only depend on A
or B. Therefore, the most efficient implementation solves these equations before the
recursive call. For readability, this is not done in Algorithm 4, but we discussed this
step in further detail in section 2.3.

The implementation of this approach requires the availability of two additional
procedures in the spirit of the univariate Schur--Parlett algorithm [9]:

\bullet fun2 atom evaluates the function for sufficiently small matrix arguments,
\bullet blocking produces the blocking pattern that ensures a sufficient separation

between the spectra of the diagonal blocks; it returns the ordering permuta-
tion and the list of indices for each block \scrI A and \scrI B , respectively.

In particular, fun2 atom aims at computing f\{ A,BT \} (C) for input arguments
of size up to nmin\times nmin, where the choice of nmin depends on the conditioning of the
problem or on the underlying computer architecture.

The recursion is constructed by repeatedly splitting the index partitionings \scrI A =
\scrI A1 \sqcup \scrI A2 and \scrI B = \scrI B1 \sqcup \scrI B2 in two parts and applying Theorem 2 with Aii =
A(\scrI Ai , \scrI Ai) and Bjj = B(\scrI Bj , \scrI Bj). The purpose of blocking is to ensure that the
spectra of A11 and A22 (resp., B11 and B22) are sufficiently separated at all steps of
recursion; this is a necessary condition for solving accurately the Sylvester equations
encountered in the process.

The detailed descriptions of fun2m atom and blocking are postponed to the
following sections. The algorithm obtained using this paradigm is reported in Al-
gorithm 4. The pseudocode also makes use of the function Sylvester tri which
solves Sylvester matrix equations with triangular coefficients; this can be done very
efficiently, as described in [19]; in our code, we simply rely on the triangular Sylvester
solver included in the LAPACK routine *trsyl.

Remark 4. We note that in Theorem 2 it is possible to only partition A or B
instead of both matrices at once. This splits the problem into two subtasks. Formally,

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

644 STEFANO MASSEI AND LEONARDO ROBOL

this operation can be seen as a particular case of Theorem 2 where either A22 or
B22 are empty matrices, and the associated terms in the expression of f\{ A,BT \} (C)
disappear.

Algorithm 4 Evaluates f\{ A,BT \} (C)

1: procedure fun2m(f,A,B,C)
2: if A and B are normal then return fun2 diag(f,A,B,C)
3: else if A is normal then return fun2 diagA(f,A,B,C)
4: else if B is normal then return fun2 diagB(f,A,B,C)
5: else
6: [QA, TA] = schur(A)
7: [QB , TB] = schur(B)
8: [PA, \scrI A] = blocking(TA)
9: [PB , \scrI B] = blocking(TB)

10: TA \leftarrow P \ast
ATAPA, TB \leftarrow P \ast

BTBPB

11: \widetilde C \leftarrow P \ast
AQ

\ast
ACQBPB

12: F \leftarrow fun2m rec(f, TA, TB , \widetilde C, \scrI A,\scrI B)
13: return QAPAFP \ast

BQ
\ast
B

14: end if
15: end procedure

1: procedure fun2m rec(f,A,B,C, \scrI A, \scrI B)
2: \ell A \leftarrow length(\scrI A) \triangleleft \scrI A = \{ IA1 , . . . , IA\ell A\}
3: \ell B \leftarrow length(\scrI B) \triangleleft \scrI B = \{ IB1 , . . . , IB\ell B\}
4: if \ell A or \ell B is zero then return []
5: else if \ell A and \ell B are both equal to 1 then return fun2 atom(f,A,B,C)
6: else
7: Split \scrI A = \scrI A1 \sqcup \scrI A2 and \scrI B = \scrI B1 \sqcup \scrI B2 \triangleleft see section 2.3
8: Partition A,B and C according to \scrI A1 , \scrI A2 , \scrI B1 , \scrI B2 :

A =

\biggl[
A11 A12

A22

\biggr]
, B =

\biggl[
B11 B12

B22

\biggr]
, C =

\biggl[
C11 C12

C21 C22

\biggr]
9: V \leftarrow Sylvester tri(A11, A22, A12) \triangleleft V,W are precomputed; see section 2.3

10: W \leftarrow Sylvester tri(B11, B22, B12)
11: C1 \leftarrow C11 + V C21, C2 \leftarrow C21

12: C3 \leftarrow C12 - C11W - V C21W + V C22, C4 \leftarrow C22 - C21W
13: F1 \leftarrow fun2m rec(f,A11, B11, C1, \scrI A1 , \scrI B1)
14: F2 \leftarrow fun2m rec(f,A22, B11, C2, \scrI A2 , \scrI B1)
15: F3 \leftarrow fun2m rec(f,A11, B22, C3, \scrI A1 , \scrI B2)
16: F4 \leftarrow fun2m rec(f,A22, B22, C4, \scrI A2 , \scrI B2)
17: return

\bigl[
F1 - V F2 F1W - V F2W+F3 - V F4

F2 F2W+F4

\bigr]
18: end if
19: end procedure

2.1. Block partitioning of the Schur forms. Algorithm 4 requires the solu-
tions of two Sylvester equations at every recursive step. In order to avoid an excessive
error propagation, we need to ensure a sufficient spectral separation between the
coefficients A11, A22, or B11, B22. This is in complete analogy with the univariate
Schur--Parlett algorithm, where only one matrix is involved. Hence, we rely on the
same blocking procedure proposed in [9, Algorithm 4.1] that, chosen a parameter
\delta > 0, returns two index partitionings

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 645

\scrI A = \{ IA1 , . . . , IA\ell A\} , \scrI B = \{ IB1 , . . . , IB\ell B\} ,

where IAi \subseteq \{ 1, . . . ,m\} and IBj \subseteq \{ 1, . . . , n\} , that identify diagonal blocks A(IAi , IAi)

and B(IBj , IBj) with the following properties:
\bullet Any block of size at least 2\times 2 is such that for each eigenvalue \lambda there exists
another eigenvalue \mu in the same block satisfying | \lambda - \mu | \leq \delta .

\bullet Each pair of eigenvalues \lambda , \mu that belong to different blocks in the same matrix
(A or B) have distance at least | \lambda - \mu | > \delta .

The first property is useful to construct a polynomial approximant that is accurate on
the spectrum of the block; for instance, a truncated Taylor expansion. We will use this
fact in section 2.2.1, while this will not be relevant for the perturb-and-diagonalize
approach in section 2.2.2.

In practice, blocking interprets the eigenvalues as nodes in a graph, which are
connected by an edge if their distance is less than \delta ; then, the blocking corresponds
to identifying the connected components of this graph and to reordering the Schur
form accordingly.

We remark that the condition | \lambda - \mu | > \delta does not guarantee that the Sylvester
equations solved in the recursion are well conditioned since their coefficients are
nonnormal. Hence, we propose to verify this a posteriori and possibly cure the ill-
conditioning by merging the blocks. This approach is described in detail in section
2.3; however, it might not be applicable when employing Taylor expansions for evalu-
ating the function at the atomic blocks due to the potential loss of spectral clustering.
The choice of \delta may depend on the spectral properties of the matrices. In our exper-
iments we noticed that \delta = 0.1 yields good results; however, a smaller value might be
preferable if the blocking returns a partition with large blocks.

2.2. Evaluating the function at the atomic blocks. In this section we spec-
ify two implementations of fun2 atom; the first is based on the evaluation of a
truncated (bivariate) Taylor expansion and requires the availability of the partial de-
rivatives of arbitrary orders; the second relies on the recent perturb-and-diagonalize
approach developed in [16] which is derivative-free. In addition to the spectra separa-
tion for different blocks, the Taylor approach requires the blocking strategy to provide
matrices with sufficiently clustered eigenvalues. For the perturb-and-diagonalize ap-
proach this is not necessary, and we choose the block size to be of the order of nmin = 4
if this can be achieved along with the spectra separation condition.

Throughout this section, \| \cdot \| denotes the spectral norm.

2.2.1. Bivariate Taylor expansion. Let us assume that A and B are triangu-
lar matrices with eigenvalues clustered around \lambda = tr(A)/m and \mu = tr(B)/n, respec-
tively; that is, \Lambda A \subset \scrB (\lambda , rA) := \{ | z - \lambda | < rA\} and \Lambda B \subset \scrB (\mu , rB) := \{ | z - \mu | < rB\}
for rA, rB > 0.

We consider a truncated Taylor expansion of f(x, y) centered at (\lambda , \mu),

f(x, y) =
\sum

i+j\leq k

f (i,j)(\lambda , \mu)

i!j!
(x - \lambda)i(y - \mu)j +Rk(x, y),

which leads to the following approximation (see [22, section 2.2]):

(5) f\{ A,BT \} (C) \approx
\sum

i+j\leq k

f (i,j)(\lambda , \mu)

i!j!
N i

ACN j
B ,

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

646 STEFANO MASSEI AND LEONARDO ROBOL

where A = \lambda I + NA and B = \mu I + NB . The value of k is chosen to ensure a small
error in the approximation:

(6)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f\{ A,BT \} (C) -
\sum

i+j\leq k

f (i,j)(\lambda , \mu)

i!j!
N i

ACN j
B

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = \| Rk\{ A,BT \} (C)\| .

The remainder in the above formula can be estimated using a straightforward gener-
alization of [9, Theorem 2.5] to the bivariate case.

Lemma 5. The remainder of the approximation in (6) is bounded by

\| Rk\{ A,BT \} (C)\| \leq max\{ \| NA\| , \| NB\| \} k+1 \cdot \| C\| \cdot max
(\xi ,\eta)\in \frakB

\sum
i+j=k+1

| f (i,j)(\xi , \eta)|
i!j!

,

where \frakB = \scrB (\lambda , rx)\times \scrB (\mu , ry).
Proof. We write the remainder in Lagrange form as follows:

Rk(x, y) =
\sum

i+j\geq k+1

f (i,j)(\lambda , \mu)

i!j!
(x - \lambda)i(y - \mu)j

=
\sum

i+j=k+1

f (i,j)(\xi , \eta)

i!j!
(x - \lambda)i(y - \mu)j ,

where (\xi , \eta) belongs to the segment that connects (\lambda , \mu) with (x, y). Evaluating
Rk(x, y) at A and B applied to C yields

\| Rk\{ A,BT \} (C)\| \leq
\sum

i+j=k+1

f (i,j)(\xi , \eta)

i!j!
max\{ \| NA\| , \| NB\| \} k+1\| C\|

\leq max\{ \| NA\| , \| NB\| \} k+1 \cdot \| C\| \cdot max
(\xi ,\eta)\in \frakB

\sum
i+j=k+1

| f (i,j)(\xi , \eta)|
i!j!

.

In order to compute an approximation of the form (5) that yields an accuracy \epsilon ,
we propose the following scheme:

1. Compute \theta := max\{ \| NA\| , \| NB\| \} , and define \frakB m,n := \Lambda A \times \Lambda B .
2. Identify the minimal integer k such that

\theta k+1 \cdot \| C\| \cdot
\sum

i+j=k+1

| f (i,j)(\lambda , \mu)|
i!j!

\leq \epsilon .

3. Verify that the chosen k satisfies also the following inequality:

\theta k+1 \cdot \| C\| \cdot max
(\xi ,\eta)\in \frakB m,n

\sum
i+j=k+1

| f (i,j)(\xi , \eta)|
i!j!

\leq \epsilon .

If not, increase k, checking again the previous conditions, until both are
satisfied.

4. Using the computed derivatives, evaluate (5).
Note that the replacing \frakB with \frakB m,n does not guarantee the upper bound for the
remainder of the Taylor expansion, although it is in general a good heuristic. The
procedure sketched above is reported in Algorithm 5.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 647

Algorithm 5 Computes f\{ A,BT \} (C) for triangular A,B with a Taylor expansion

1: procedure fun2 atom taylor(f,A,B,C, \epsilon)
2: Retrieve \lambda and \mu from the diagonals of A and B
3: NA \leftarrow A - \lambda I, NB \leftarrow B - \mu I
4: \theta \leftarrow max\{ \| NA\| , \| NB\| \}
5: for k = 1, . . . , kmax do

6: R\leftarrow \theta k+1 \cdot \| C\| \cdot
\sum

i+j=k+1
| f(i,j)(\lambda ,\mu)|

i!j!

7: if R \leq \epsilon then

8: R2 \leftarrow \theta k+1 \cdot max
(\xi ,\eta)\in \frakB m,n

\sum
i+j=k+1

| f(i,j)(\xi ,\eta)|
i!j!

9: if R2 \leq \epsilon then
10: break
11: end if
12: end if
13: end for
14: return

\sum
i+j\leq k

f(i,j)(\lambda ,\mu)
i!j!

N i
ACN j

B

15: end procedure

To conclude, we specify how the bivariate polynomial at line 14 is evaluated.
Given any polynomial P (x, y) of total degree k we write it as follows:

P\{ A,BT \} (C) =
\sum

i+j\leq k

pijA
iCBj =

k\sum
i=0

AiC

k - i\sum
j=0

pijB
j

\underbrace{} \underbrace{}
Pi(B)

.

Then, we evaluate Pi(B) for i = 0, . . . , k using the Horner scheme, and finally we

compute
\sum k

i=0 A
iCPi(B) using again the Horner scheme with respect to the variable

A:

P\{ A,BT \} (C) = A(. . . A(ACPk(B) + CPk - 1(B)) + CPk - 2(B) + \cdot \cdot \cdot) + CP0(B).

This approach requires k(k - 1)/2 multiplications between n \times n matrices, k multi-
plications between m \times n and n \times n matrices, and finally k multiplications between
m \times m and m \times n matrices. This yields the total cost of \scrO (k2n3 + km2n + kmn2).
If n > m, it is convenient to swap the role of A and B, relying on an analogous
formula.

2.2.2. Perturb-and-diagonalize. A derivative-free approach for the evalua-
tion of f(A), when A is highly nonnormal, has been proposed in [8]. The idea is to
introduce a small random perturbation E to the matrix A so that A+E is diagonaliz-
able with probability 1. Then, f(A+E) \approx f(A) is evaluated by diagonalization. The
method has been recently improved in [16] and has been proposed for evaluating the
atomic blocks in the Schur--Parlett scheme. In particular, in [16] it is suggested to first
compute the Schur form, introduce a diagonal perturbation, and evaluate the function
of the perturbed Schur form using a higher precision determined by estimating the
condition number of its eigenvector matrix.

We propose to rely on the analogue scheme in the bivariate case. More specifically,
consider A,B upper triangular matrices and EA, EB small diagonal perturbations. Let

\widetilde A := A+ EA = VADAV
 - 1
A , \widetilde B := B + EB = VBDBV

 - 1
B

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

648 STEFANO MASSEI AND LEONARDO ROBOL

be the the eigendecompositions of the perturbed matrices. Thanks to the triangular
structure of A+EA and B +EB the eigenvalues can be read off the diagonal so that
DA and DB can be considered as not affected by rounding errors. The eigenvector
matrices VA, VB are also triangular and are determined by solving triangular shifted
linear systems with \widetilde A, \widetilde B. As noted in [16] this allows us to estimate \kappa (VA) and \kappa (VB)

from the entries of \widetilde A, \widetilde B using

(7) \kappa (VA) \lesssim m\zeta (\zeta + 1)m - 2, \zeta :=
maxi<j | \widetilde Aij |

mini \not =j | \widetilde Aii - \widetilde Ajj |
,

as well as for \kappa (VB). We remark that (7) can be pessimistic for moderate values of
m. As in [16] we apply the following heuristic:

(i) We further partition A with blocking using \delta 1 < \delta ; in our experiments we
adopt \delta 1 = 5 \cdot 10 - 3.

(ii) We estimate \kappa (VA) by the maximum of the quantities as in (7) computed for
its diagonal blocks.

In practice, the latter heuristic might fail for highly nonnormal matrices; therefore we
verify it a posteriori as we describe later in this section.

A classic result for univariate matrix functions bounds the forward error of com-
puting f(A) by diagonalization with a small constant multiplied by \kappa (V)u, where u
is the current unit roundoff and V is the eigenvector matrix of A [14, page 82]. We
generalize the latter within the following result.

Lemma 6. Let F = VAf\{ DA, DB\} (V - 1
A CVB)V

 - 1
B , with DA = diag(\lambda 1, . . . , \lambda m),

DB = diag(\mu 1, . . . , \mu n), and let \^F be the corresponding quantity computed in floating
point arithmetic. If the matrix multiplications are performed exactly and f(\lambda i, \mu j) is
computed with relative error bounded by uh, then

\| F - \^F\| \leq \kappa (VA)\kappa (VB)\| C\| max
i,j

| f(\lambda i, \mu j)| uh.

Proof. Under the assumptions, \^F is equal to

VA

\bigl[
(G+ E) \circ (V - 1

A CVB)
\bigr]
V - 1
B , Gij := f(\lambda i, \mu j),

where | Eij | \leq maxi,j | f(\lambda i, \mu j)| uh. Then,

\| F - \^F\| \leq \| VA\| \| E \circ (V - 1
A CVB)\| \| V - 1

B \|
\leq \| VA\| max

i,j
| f(\lambda i, \mu j)| \| V - 1

A CVB\| \| V - 1
B \| uh

\leq \kappa (VA)\kappa (VB)\| C\| max
i,j

| f(\lambda i, \mu j)| uh.

In view of Lemma 6 we choose uh to ensure that \| F - \^F\| \leq \| F\| u, where u is
the current machine roundoff. By assuming \| F\| \approx maxi,j | f(\lambda i, \mu j)| \| C\| , similarly to
what is done in [16], this can be achieved by setting

(8) uh \leq \| F\| u
\kappa (VA)\kappa (VB)\| C\| maxi,j | f(\lambda i, \mu j)|

\approx u

\kappa (VA)\kappa (VB)
.

In practice, the quantities \kappa (VA) and \kappa (VB) are estimated, before computing VA and
VB , using the right-hand side of (7). Then, VA and VB are computed with a relative
accuracy uh as in (8) or better, as pointed out in the following remark.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 649

Remark 7. Assuming that the matrix multiplications are performed exactly up
to the current precision simplifies the analysis and is required also in [16]. This is
not particularly restrictive since it can be guaranteed by computing matrix multipli-
cations temporarily working with the lower unit roundoff uh \cdot max\{ \kappa (VA), \kappa (VB)\} - 1.
The same argument applies when computing VA, VB by solving shifted linear systems
with A, B.

Often, relying on uh as in (8), where \kappa (VA) and \kappa (VB) are approximated via
(7), yields a pessimistic estimate for the necessary working precision. Hence, once
the triangular eigenvector matrices VA and VB are available, we propose to refine
the estimates of their condition numbers and adjust the precision in the evaluation
of the function of the atomic blocks. For efficiency reasons, we would like to avoid
computing \kappa (VA), \kappa (VB) with high precision if possible. Hence we suggest this greedy
strategy, which we describe for a generic V \in \{ VA, VB\} :

\bullet Convert V to standard floating point precision, and compute \| V \| and \| V - 1\| ;
if \| V \| \cdot \| V - 1\| \leq 1014, then return this value as a sufficiently accurate estimate
for \kappa (V).

\bullet Otherwise construct the matrix U

Uij =

\Biggl\{
| Vij | , i = j,

 - | Vij | , i \not = j

for which the inverse can be computed entrywise in standard precision and
satisfies \| U - 1\| \geq \| V - 1\| [13, section 8.2]. If \| U - 1\| \leq 104\| V - 1\| (that is, the
guaranteed estimate on the number of digits is not much more pessimistic
than the previous one), then use \| V \| \| U - 1\| as upper bound for \kappa (V).

\bullet Finally, if none of the previous points succeed, then compute \kappa (V) using a
unit roundoff uh.

To sum up, we propose to evaluate f\{ A,BT \} (C) with A,B upper triangular
following these steps:

1. Lower the unit roundoff to u2, and perturb A and B with diagonal matrices
of norm \| A\| u and \| B\| u, respectively.

2. Determine uh using (7) and (8), and if uh < u2, set the unit roundoff to uh.
3. Compute VA and VB using a unit roundoff uh

max\{ \kappa (VA),\kappa (VB)\} , where \kappa (VA) and

\kappa (VB) are estimated with (7).
4. Refine the estimates for \kappa (VA) and \kappa (VB) with the greedy strategy described

above, and recompute the unit roundoff uh. If the new estimates \kappa (VA) and
\kappa (VB) are larger than the previous ones, we adjust the precision accordingly,
and we go back to 3, using these values instead of (7).

5. Run Algorithm 1 to evaluate f\{ A,BT \} (C) using the new uh.
The whole procedure is also summarized in Algorithm 6.

We remark that recomputing uh ensures a significant performance gain when all
the blocks are of small size, as it allows us to perform the calls to fun2m diag (which
are \scrO (mn)) at a lower precision at the price of computing the condition numbers
(which is only performed \scrO (n+m) times).

2.2.3. Avoiding complex arithmetic. Whenever A,B, and C are real matri-
ces and f(x, y) has the property f(x, y) = f(x, y) (and in particular f(x, y) is real for
real arguments) the bivariate matrix function f\{ A,BT \} (C) is real as well. Indeed,
we can select an integration path symmetric with respect to the real axis in definition
(1) so that the imaginary part of the integral is guaranteed to vanish. Hence, it is

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

650 STEFANO MASSEI AND LEONARDO ROBOL

Algorithm 6 Computes f\{ A,BT \} (C) for triangular A,B with a perturb-and-
diagonalize approach

1: procedure fun2 atom diag(f,A,B,C)
2: Set unit roundoff to u2

3: Generate random diagonal matrices EA, EB of norm \| A\| u, \| B\| u
4: \widetilde A\leftarrow A+ EA, \widetilde B \leftarrow B + EB

5: Estimate \kappa (VA), \kappa (VB) as in (7)
6: uh \leftarrow u/(\kappa (VA)\kappa (VB))
7: Set the unit roundoff to min\{ u2, uh\}
8: [VA, DA]\leftarrow Eig(\widetilde A), [VB , DB]\leftarrow Eig(\widetilde B) \triangleleft Can be precomputed; see section 2.3
9: Refine the estimates of \kappa (VA), \kappa (VB), and set the unit roundoff to the new uh

10: F \leftarrow fun2m diag(DA, DB , V
 - 1
A CVB)

11: return VAFV - 1
B

12: end procedure

appealing to use an evaluation procedure that preserves the real structure. To this
end, we first reduce the matrices A and B to real Schur form so that the problem
boils down to dealing with 2 \times 2 blocks encoding complex conjugate eigenvalues. In
fact, if the real structure is preserved by fun2 atom, the recursion applied by fun2m
only requires solving Sylvester equations and matrix-matrix operations that do not
introduce any complex arithmetic.

It is easy to see that the approach based on Taylor expansions preserves the real
structure if the complex conjugate eigenvalues have small imaginary parts and thus
can be put in the same block. Otherwise, for Taylor there is no straightforward alter-
native to working with complex arithmetic. In contrast, the perturb-and-diagonalize
approach described in the previous section can be adapted to work directly with
the real Schur form without particular assumptions. The random perturbations of
the diagonal blocks are chosen as [\delta \alpha \delta \beta

 - \delta \beta \delta \alpha] in order to match the structure of the

Schur form. Then, the latter is block diagonalized, and f\{ A,BT \} (C) is evaluated,
where A and B are either 2 \times 2 or 1 \times 1. When one between A or B is a 1 \times 1
block, the problem can be recast into the evaluation of either a scalar function or
a univariate matrix function of a 2 \times 2 block representing z and z; in the latter
case, the outcome can be expressed in terms of the block representing g(z) and g(z),
where g(\cdot) is obtained by fixing the variable corresponding to the 1 \times 1 block in
f(x, y).

The following result provides an explicit formula for the case where both A and
B are 2\times 2 blocks.

Theorem 8. Let A,B, and C be 2\times 2 real matrices with A and B of the form

A =

\biggl[
\alpha \beta
 - \beta \alpha

\biggr]
, B =

\biggl[
\gamma \delta
 - \delta \gamma

\biggr]
,

If f is such that f\{ A,BT \} (C) is well defined and f(x, y) = f(x, y), then

f\{ A,BT \} (C) =
1

2

\biggl[
Q1 +Q2 Q3 +Q4

Q3 - Q4 Q1 - Q2

\biggr]
,D

ow
nl

oa
de

d
10

/2
8/

25
 to

 1
46

.4
8.

83
.2

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 651

where, denoting by z = \alpha + i\beta and w = \gamma + i\delta , we have

Q1 := (c21 - c12)\Im (f(z, w)) + (c11 + c22)\Re (f(z, w)),
Q2 := (c12 - c21)\Im (f(z, w)) + (c11 - c22)\Re (f(z, w)),
Q3 := (c22 - c11)\Im (f(z, w)) + (c12 + c21)\Re (f(z, w)),
Q4 := (c11 + c22)\Im (f(z, w)) + (c12 - c21)\Re (f(z, w)).

Proof. The matrices A and B are simultaneously diagonalized by means of the
eigenvector matrix

\bigl[
1 1
\bfi - \bfi

\bigr]
. Then, applying formula (3) and exploiting that f(z, w) =

f(z, w) and f(z, w) = f(z, w) yield the claim.

We remark that in this case one needs to adjust the blocking procedure to make
sure that conjugate pairs are kept together. In practice, we perform the blocking by
only looking at real parts of the eigenvalues and then use the perturb-and-diagonalize
algorithm for the evaluation at the atomic blocks.

2.3. Splitting strategy and computational complexity. We have not spec-
ified yet the splitting strategy for the block index sets \scrI A and \scrI B returned by the
blocking procedure. Our code implements two different possibilities (which we call
balanced and single) that we detail at the end of this section. Under minimal assump-
tions, any splitting strategy yields an algorithm with cubic cost in the sizes of A and
B. From now on, we make the following assumption.

Assumption 2.1. The partitionings \scrI A and \scrI B are split in the same way in all
branches of the recursion of Algorithm 4.

Assumption 2.1 implies that a given block in A or B is split in the same way
in all branches of recursion. This allows us to look at A and B separately and
precompute the solutions of all Sylvester equations before running the recursion in
Algorithm 4. During this process, we also check the conditioning of the equations; if
ill-conditioning is detected, we adjust the blocking, as described in the next subsection.
Similarly, the eigendecompositions of the atomic blocks are precomputed when using
fun2m atom diag for the evaluations of the atomic blocks.

Note that this strategy identifies two trees describing the recursive partitioning
of the index sets of A and B. We denote by dA and dB the depths of such trees.

2.3.1. Dealing with ill-conditioned Sylvester equations. The condition
| \lambda - \mu | > \delta obtained from the blocking strategy of section 2.1 does not necessarily
guarantee that the Sylvester equations related with the diagonal blocks of A and B
are well conditioned because their coefficients are not normal.

Nevertheless, it is in general a good heuristic, and we propose to check a posteriori
whether the condition number is larger than expected by verifying the norm of the
solution. More specifically, for a Sylvester equation A11V - V A22 = A12 we compute
the ratio r := \| V \| /\| A12\| ; if r > \gamma \delta - 1, where \gamma is a moderate constant (in our case
we set \gamma = 10), then we propose to discard the solution and consider the matrix\bigl[
A11 A12

A22

\bigr]
as an atomic block.

However, this is not always viable because it could deteriorate the spectral clus-
tering property of the blocks, making the method based on Taylor expansions not
efficient. In contrast, the approach based on randomized diagonalization applies with
no modifications, although high precision arithmetic has to be employed on a larger
block, causing an increase in the computational cost.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

652 STEFANO MASSEI AND LEONARDO ROBOL

In our implementation, the merging of the blocks is adopted only when relying
on fun2m atom diag; the potential accuracy loss of the Taylor approach without
merging is visible in the first example in section 4.

2.3.2. Complexity. We now prove that, under Assumption 2.1, the cost of
Algorithm 4 is \scrO (m3 + n3) independently on the splitting choice.

Lemma 9. Let A \in \BbbR m\times m, B \in \BbbR n\times n, C \in \BbbR m\times n, and f\{ A,B\} (C) be com-
puted by means of fun2m with a splitting strategy satisfying Assumption 2.1. If
fun2 atom applied with arguments of sizes p \times p and q \times q costs \scrO (max\{ p, q\} pq),
then fun2m requires \scrO (m3 + n3) flops.

Proof. We remark that the complexity of Algorithm 1 is dominated by the cost
of the reduction to Schur forms of A and B (that requires \scrO (m3+n3) flops), the calls
to fun2 atom, and the solution of the Sylvester equations.

Let us denote by mj = | IAj | and nj = | IBj | the sizes of the atomic blocks. Al-
gorithm 4 calls fun2 atom \ell A \cdot \ell B times, and each call costs O(max\{ mi, nj\} minj),
where \ell A and \ell B are the number of blocks in A and B, respectively. Then, the overall
cost of these calls is

\ell A\sum
i=1

\ell B\sum
j=1

max\{ mi, nj\} minj \leq
\ell A\sum
i=1

\ell B\sum
j=1

(mi + nj)minj

= n

\ell A\sum
i=1

m2
i +m

\ell B\sum
j=1

n2
j \leq m2n+mn2.

The Sylvester equations are solved in a preprocessing step separately for A and
B. We prove by induction on the depth dA of the partitioning tree associated with A
that the cost of solving all Sylvester equations is \scrO (m3). The result for B (that gives
\scrO (n3)) is analogous. When dA = 1 there is no Sylvester equation to solve. When
dA > 1, let us suppose that the first splitting yields \scrI A = \scrI A1 \sqcup \scrI A2 with1 | \scrI A1 | = m1

and | \scrI A2 | = m2. Then, we have to solve one Sylvester equation of size m1 \times m2

and the Sylvester equations arising from the subtrees of depth dA - 1 associated
with index sets of cardinality m1,m2, respectively. Solving the Sylvester equation
costs \scrO (m1m2 min\{ m1,m2\}); the induction step yields \scrO (m3

1) and \scrO (m3
2) for the

subtrees. Summing these contributions we get \scrO (m3
1 +m3

2 +m1m2 min\{ m1,m2\}) \leq
O((m1 +m2)

3) = \scrO (m3).

Although Lemma 9 ensures the same asymptotic complexity independently on
the splitting strategy, different choices might be preferable based on the underlying
computer architecture. We remark that the atomic blocks of the splitting procedure
are determined by blocking; any feasible partitioning tree has nodes given by the
(ordered) union of such atomic index sets and the latter correspond to the leaf nodes.
We describe two strategies for constructing a feasible tree:

\bullet Balanced: Each node \scrI A is split as \scrI A1 \sqcup \scrI A2 with subsets \scrI Ai of approxi-
mately the same cardinality.1

\bullet Single: If \scrI A is composed by the atomic blocks IA1 , . . . , IA\ell A , then we consider

the splitting \scrI A1 = \{ IA1 , . . . , IA\ell A - 1\} , \scrI A2 = \{ IA\ell A\} .
In the numerical experiments in section 4 we adopt the balanced approach. The

single approach is used in section 3.2 to discuss the connection with the Bartels--Stewart

1By a slight abuse of notation, we write | \scrI Ai | to denote the sum of the cardinality of the index
sets in \scrI Ai and analogously for \scrI Bj .

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 653

algorithm. We remark that both choices satisfy Assumption 2.1, and hence provide a
cubic algorithm.

2.4. Evaluating the function when one between \bfitA and \bfitB is small. We
conclude with a discussion about the evaluation of f\{ A,BT \} (C) when m \gg n so
that the outcome is a tall and thin matrix; the case n \gg m is analogous. Similar
considerations can be found also in [22]. In the case n = 1, the problem reduces to
computing a univariate function of the triangular matrix A multiplied by the vector
C. This can be done by relying on a Krylov method [11], and the cost depends on
performing matrix-vector operations with A. When n > 1, we consider the following
cases:

(i) The eigenvalues of B are clustered around y0 so that we can find a low-degree

univariate Taylor approximant of f(x, y) \approx
\sum k

j=0
\partial jf(x,y0)

\partial yj

(y - y0)
j

j! centered at
y0. Then

f\{ A,BT \} (C) \approx
k\sum

j=0

gj(A)C(B - y0I)
j , gj(x) :=

1

j!

\partial jf(x, y0)

\partial yj
,

and the problem is recast as computing univariate functions of A times (block)
vectors and multiplications by (shifted) B.

(ii) If the eigenvalues are not clustered as in (i), then we foresee two options.
The first one is to block partition B, as described in section 2.1, in order to
retrieve the property on its atomic blocks. Finally, apply the same strategy
as in Algorithm 4 blockwise. The second is to perturb and diagonalize A
and then use the formula (4) to evaluate the univariate matrix functions at
a higher precision in order to compensate for the condition number of the
eigenvector matrix of A.

Note that, thanks to the triangular structure of A, rational Krylov subspace methods
have the same asymptotic iteration cost of the standard polynomial Krylov method
for the evaluation of f(A)b. Hence, unless a specific choice of shift parameters is
known in advance (e.g., if a good rational approximant is known) the extended Krylov
method might be a good choice.

3. Relation with other approaches. Algorithm 4 is closely related with other
known approaches for evaluating functions of matrices. In this section, we point out
some of these connections and differences.

3.1. Recursive block diagonalization. The presented algorithm may be alter-
natively described avoiding Theorem 2 as a recursive block diagonalization procedure,
where the similarity transformations are kept implicit. Indeed, given block triangular
matrices A and B, V and W as in Theorem 2, we have\biggl[

I V
I

\biggr]
\underbrace{} \underbrace{} \widetilde V

f\{ A,BT \} (C)

\biggl[
I - W

I

\biggr]
\underbrace{} \underbrace{} \widetilde W - 1

= f

\biggl\{ \biggl[
A11

A22

\biggr]
,

\biggl[
BT

11

BT
22

\biggr] \biggr\}
(\widetilde V C\widetilde W - 1).

Multiplying on the left by \widetilde V - 1 and on the right by \widetilde W and working out the relations
on the blocks yield the same recursion obtained in Theorem 2.

Working with transformations of this type allows us to maintain the diagonal
blocks, relying on the blocking procedure to have well-conditioned Sylvester equations.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

654 STEFANO MASSEI AND LEONARDO ROBOL

3.2. Algorithm 4 and the Bartels--Stewart algorithm. In this section we
will see that the celebrated Bartels--Stewart algorithm [4] for solving Sylvester equa-
tions is closely related to a particular case of Algorithm 4 applied to the function
f(x, y) = 1

x+y . We start by illustrating the relation between block diagonalization
and the backsubstitution method for solving a triangular linear systems; then, we
show that Algorithm 4 and the Bartels--Stewart algorithm verify a bivariate version
of the latter relation.

Given a triangular matrix A, let us consider the linear system Ax = b partitioned
as \biggl[

A11 A12

A22

\biggr] \biggl[
x1

x2

\biggr]
=

\biggl[
b1
b2

\biggr]
.

Applying the (block) backsubstitution procedure means to first compute x2 = A - 1
22 b2

and then x1 = A - 1
11 (b1 - A12x2). On the other hand, we might compute A - 1b by first

applying the similarity transformation\biggl[
I V

I

\biggr] \biggl[
A11 A12

A22

\biggr] \biggl[
I - V

I

\biggr]
\underbrace{} \underbrace{}

=
\Bigl[
A11

A22

\Bigr]
\biggl[
x1 + V x2

x2

\biggr]
=

\biggl[
b1 + V b2

b2

\biggr]
,

where A11V - V A22 = A12. This approach would result in the following steps:
1. compute x2 = A - 1

22 b2,
2. compute \widetilde x1 = A - 1

11 (b1 + V b2),
3. compute x1 = \widetilde x1 - V x2.

In particular, both procedures solve two triangular systems whose coefficient matrices
are the diagonal blocks of A. However, the one based on block diagonalization needs
corrections that require the solution of A11V - V A22 = A12. In particular, the block
diagonalization requires a cubic cost, whereas backsubstitution is quadratic.

Let us recall the procedure by Bartels and Stewart by using the notation intro-
duced in section 2. Given the Sylvester equation AX + XB = C with A and B
upper triangular (possibly after the computation of the Schur forms) we consider the
partitioning

(9)

\biggl[
A11 A12

A22

\biggr] \biggl[
X11 X12

X21 X22

\biggr]
+

\biggl[
X11 X12

X21 X22

\biggr] \biggl[
B11 B12

B22

\biggr]
=

\biggl[
C11 C12

C21 C22

\biggr]
,

where A22 and B11 are scalars. The Bartels--Stewart algorithm retrieves the blocks
Xij as follows:

1. solve the scalar equation associated to the (2, 1) block, X21 = C21

A22+B11
,

2. solve the triangular linear system (A11 +B11I)X11 = C11 - A12X21,
3. solve the triangular linear system X22(B22 +A22I) = C22 - X21B12,
4. recursively solve the Sylvester equation

A11X12 +X12B22 = C12 - A12X22 - X12B12.

We now analyze the relation between the previous steps and the four quantities in
Theorem 2, applied with kA = 1 and kB = n - 1. Given f(x, y) = 1

x+y , we remark

that when at least one of the arguments of the bivariate matrix function f\{ A,B\} is a
scalar the associated operator is the resolvent of a scalar equation or a linear system.
In our setting we have

f\{ A22, B
T
11\} (C21) =

C21

A22 +B11
,

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 655

which is equivalent to step 1 of Bartels--Stewart and

f\{ A11, B
T
11\} (C11 + V C21) = (A11 +B11I)

 - 1(C11 + V C21),

f\{ A22, B
T
22\} (C22 - C21W) = (C22 - C21W)(B22 +A22I)

 - 1,

where the column and row vectors V and W are given by

V = (A11 - A22I)
 - 1A12,

W = B12(B11I - B22)
 - 1.

Then, X11 and X22 are computed by

X11 = f\{ A11, B
T
11\} (C11+V C21) - V X21, X22 = f\{ A22, B

T
22\} (C22 - C21W) - X21W.

Finally, the X12 is computed recursively by

X12 = f\{ A11, B
T
22\}

\biggl(\bigl[
I V

\bigr]
C

\biggl[
 - W
I

\biggr] \biggr)
+ (X11 + V X21)W - V X21W - V (X22 +X21W),

and X12 is computed by removing the three rank one corrections. In contrast with the
univariate case, in this case both approaches have the same asymptotic complexity,
even though Bartels--Stewart is more efficient since it does not need to apply the
corrective terms.

However, this further optimization is viable only because of the special features
of f(x, y) = 1

x+y . Indeed, one can verify that

f\{ A11, B
T
11\} (C11 + V C21) + V X21 = f\{ A11, B

T
11\} (C11 - A12X21)

only holds for f(x, y) = 1
x+y and similarly for the relations for X22 and X12. These

are the key properties that allow us to avoid computing the terms V and W explicitly
in the Bartels--Stewart algorithm.

4. Numerical results. In this section we test the performances of fun2m
and of the various choices that can be made in its implementation for computing
f\{ A,BT \} (C). We note that the choice of the matrix C does not affect the behavior
of fun2m. Everywhere, we set C equal to a randomly generated complex matrix ; the
latter indicates that both real and imaginary parts have N(0, 1)-distributed entries
throughout this section. For simplicity we also assume m = n in all our tests. The
value of \delta is set to 0.05. Concerning the choice of A and B we introduce the following
test cases:

\bullet rand-eig: Both A and B are of the form V DV - 1, where D is a randomly
generated diagonal matrix whose entries have a real part uniformly distrib-
uted on [1, 2] and Gaussian distributed imaginary parts; the matrix V is a
randomly generated complex matrix with both real and imaginary parts of
its entries Gaussian distributed.

\bullet randn: Both A and B are randomly generated complex matrices.
\bullet jordbloc: Both A and B are of the form QJQ\ast , where Q is a randomly

generated unitary matrix (obtained by means of the QR factorization of a
randomly generated complex matrix) and J is the direct sum of a 8 \times 8
Jordan block with eigenvalue 0.1 and a randomly generated complex matrix
of size n - 8 shifted by the identity; B is generated analogously.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

656 STEFANO MASSEI AND LEONARDO ROBOL

\bullet grcar: A and B are equal to the grcar matrix of the MATLAB gallery.
\bullet smoke: A and B are equal to the Schur form of the smoke matrix of the
MATLAB gallery.

\bullet kahan: A and B are equal to the kahan matrix of the MATLAB gallery.
\bullet lesp: The matrices - A and - B are equal to the direct sum of the Schur form
of the lesp matrix of the MATLAB gallery of dimension 32 with a randomly
generated matrix of size n - 32. The latter is obtained by generating a complex
random matrix, rescaling it to have unit spectral norm, and subtracting the
identity.

\bullet sampling: The matrices A and B are equal to the direct sum of the sampling
matrix of the MATLAB gallery of dimension 32 with a randomly generated
matrix of size n - 32. The latter is obtained by generating a complex random
matrix, rescaling it to have unit spectral norm, and adding the identity.

\bullet grcar-rand: A is equal to the grcar matrix of the MATLAB gallery, and B
is as in rand-eig.

When experimenting with fun2m we indicate in brackets the method used for
evaluating the atomic blocks, i.e., fun2 atom diag or fun2 atom taylor. The
other considered computational approaches are labeled as follows:

\bullet diag: The evaluation of f\{ A,BT \} (C) is performed diagonalizing A and B
in floating point arithmetic, regardless of the conditioning of the eigenvector
matrices.

\bullet diag hp: The evaluation of f\{ A,BT \} (C) is performed diagonalizing A and
B in high precision, estimating the required digits as in fun2 atom diag.

We expect the first method to be fast with no guarantee on its accuracy. In con-
trast, the second approach is the most accurate although it can be significantly more
expensive than both diag and fun2m. In the tables, the columns labeled as nA and
nB denote the number of atomic blocks in A and B, respectively. The label ``Digits""
refers to the maximum number of digits used in the multiprecision computation of
the functions of the atomic blocks. The column ``Max deg"" contains the maximum of
the degrees of the Taylor expansions used for the atomic blocks. Residual errors in
the spectral norm are evaluated with respect to a benchmark quantity computed as
in diag hp, where the number of digits is fixed to 128. The latter value is in all cases
much higher than the number of digits employed by fun2m and diag hp. Finally,
for each example we provide a very rough estimate \kappa f of the condition number of
evaluating f\{ A,BT \} (C). The latter is defined as

lim
h\rightarrow 0

sup
\| \Delta A\|
\| A\| ,

\| \Delta B\|
\| B\| \leq h

\| f\{ A+\Delta A,BT +\Delta BT \} (C) - f\{ A,BT \} (C)\|
h

.

We compute \kappa f by evaluating the above fraction in higher precision (128 digits) for
h = 10 - 32 and randomly generated complex matrices \Delta A and \Delta B scaled to have
norm h\| A\| and h\| B\| , respectively. This estimate is quite rough in general, but it
yields a guaranteed lower bound and usually captures the order of magnitude of the
condition number, which is sufficient to assess the accuracy of our results. In the
tables we report \kappa f \cdot u, where u is the unit roundoff in double precision, which gives
an indication of the accuracy attainable by a backward stable method.

The algorithms have been implemented in a Julia package named BivMatFun

and are available at https://github.com/numpi/BivMatFun. The implementation of
fun2m may be further optimized relying on the recursive Sylvester triangular solver
recsy [20] and the BLAS 3 reordering of the Schur form in [21]. For simplicity we have

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/numpi/BivMatFun

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 657

used what is available in LAPACK through the interfaces in Julia. The experiments
have been run using Julia 1.5.3 on a dual CPU server with two Intel(R) Xeon(R) CPU
E5-2643 version4 CPUs running at 3.40 GHz and 240 GB of RAM.

4.1. Perturbation and diagonalization versus Taylor expansion. In the
first numerical test we compare the two proposed implementation for the functions of
the atomic blocks, i.e., fun2 atom taylor and fun2 atom diag. We have tested
two cases: rand-eig and grcar-rand. In the first, both eigenvector matrices are
sufficiently well conditioned, and the accuracy achieved by the methods is similar.
Moreover the blocking procedure allows us to form atomic blocks of small sizes so
that the cost of employing high precision arithmetic does not impact it at all. In-
deed, the timings are in favor of fun2 atom diag. In the second test case, the
eigenvector matrix of A is severely ill-conditioned, and this is reflected in the mag-
nitude of the solutions of the Sylvester equations computed in Algorithm 4. When
using fun2 atom diag this issue is circumvented by merging the blocks of A into
a single one at the price of an increased computational cost caused by the use of
higher precision arithmetic on larger matrices. This procedure cannot be applied by
fun2 atom taylor because this would cause a lack of the convergence for the Taylor
expansion of 1\surd

x+y
. Hence, the timings of the Taylor-based approach are similar, but

the outcome is not reliable. These remarks are confirmed by the results reported in
Figure 1.

Finally, we mention that when estimating the eigenvector condition number for
grcar and n = 160, the heuristic estimate based on (7) fails, and our procedure detects
this with the a posteriori check and repeats the computation of the eigenvector with
the appropriate accuracy.

4.2. Highly nonnormal \bfitA and \bfitB . Here, we consider seven test cases of fixed
size n = 64 that involve both A and B with ill-conditioned eigenvector matrices. We
compare the performances of fun2m with diag and diag hp on four different bi-

variate functions:
\surd
x+ y, 1\surd

x+y
, exp(x+y)

x+y , exp(
\surd
x+ y). In view of the considerations

made in the previous experiment we only rely on fun2 atom diag for evaluating

Test = randn-shift, f(x, y) = 1\surd
x+y

fun2m (fun2 atom diag) fun2m (fun2 atom taylor)
Size Err Time nA nB Digits Err Time nA nB Max deg \kappa f \cdot u
32 4.1 \cdot 10 - 15 0.01 8 8 18 9.2 \cdot 10 - 15 0.01 30 32 7 9.2 \cdot 10 - 16

64 9.2 \cdot 10 - 15 0.02 18 17 18 9.7 \cdot 10 - 15 0.08 57 62 9 1.2 \cdot 10 - 14

96 4.0 \cdot 10 - 13 0.07 32 32 19 4.0 \cdot 10 - 13 0.22 88 85 10 1.2 \cdot 10 - 12

128 5.7 \cdot 10 - 13 0.13 37 36 19 5.7 \cdot 10 - 13 0.43 106 112 11 2.6 \cdot 10 - 13

160 9.9 \cdot 10 - 15 0.2 59 60 18 1.9 \cdot 10 - 14 0.61 129 140 11 4.5 \cdot 10 - 15

Test = grcar-rand, f(x, y) = 1\surd
x+y

fun2m (fun2 atom diag) fun2m (fun2 atom taylor)
Size Err Time nA nB Digits Err Time nA nB Max deg \kappa f \cdot u
32 3.0 \cdot 10 - 15 0.09 1 8 22 9.3 \cdot 10 - 12 0.01 32 32 0 3.9 \cdot 10 - 16

64 4.4 \cdot 10 - 15 0.57 1 17 28 3.6 \cdot 10 - 4 0.08 56 62 9 1.0 \cdot 10 - 15

96 7.0 \cdot 10 - 15 1.67 1 32 35 3.2 \cdot 105 0.22 68 85 13 2.5 \cdot 10 - 15

128 9.7 \cdot 10 - 15 3.83 1 36 36 5.7 \cdot 109 0.41 74 112 16 4.8 \cdot 10 - 15

160 8.1 \cdot 10 - 15 6.93 1 60 38 1.7 \cdot 1028 0.65 61 140 22 1.6 \cdot 10 - 15

Fig. 1. Performances of the diagonalize-and-perturb and of the bivariate Taylor approximation
on well-conditioned and ill-conditioned test cases.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

658 STEFANO MASSEI AND LEONARDO ROBOL

f(x, y) =
\surd
x+ y, Size = 64

fun2m (fun2 atom diag) diag diag hp
Test Err Time nA nB Digits Err Time Time Err Digits \kappa f \cdot u

jordbloc 7.9 \cdot 10 - 10 0.02 15 15 48 2.0 \cdot 100 0.008 1.64 7.9 \cdot 10 - 10 50 1.1 \cdot 10 - 10

grcar 1.1 \cdot 10 - 13 1.5 1 1 40 4.5 \cdot 10 - 7 0.007 1.49 1.1 \cdot 10 - 13 40 3.4 \cdot 10 - 10

smoke 8.2 \cdot 10 - 14 1.53 1 1 35 1.3 \cdot 10 - 8 0.001 1.42 6.5 \cdot 10 - 14 35 2.3 \cdot 10 - 5

kahan 2.5 \cdot 10 - 16 1.35 1 1 43 4.0 \cdot 10 - 4 0.001 1.38 6.6 \cdot 10 - 16 43 2.4 \cdot 10 - 8

lesp 2.6 \cdot 10 - 15 0.23 9 9 35 1.4 \cdot 100 0.003 1.29 2.3 \cdot 10 - 15 36 2.6 \cdot 10 - 16

sampling 4.5 \cdot 10 - 8 1.45 1 9 49 3.5 \cdot 10 - 1 0.005 2.17 4.5 \cdot 10 - 8 49 9.7 \cdot 10 - 9

grcar-rand 1.6 \cdot 10 - 12 0.4 1 16 29 1.2 \cdot 10 - 7 0.008 1.48 1.6 \cdot 10 - 12 31 5.4 \cdot 10 - 7

f(x, y) = 1\surd
x+y

, Size = 64

fun2m (fun2 atom diag) diag diag hp
Test Err Time nA nB Digits Err Time Time Err Digits \kappa f \cdot u

jordbloc 2.0 \cdot 10 - 9 0.02 15 15 48 3.9 \cdot 10 - 1 0.008 1.65 2.0 \cdot 10 - 9 51 3.2 \cdot 10 - 10

grcar 1.5 \cdot 10 - 13 1.53 1 1 40 7.7 \cdot 10 - 8 0.008 1.54 1.5 \cdot 10 - 13 40 1.0 \cdot 10 - 9

smoke 3.5 \cdot 10 - 9 1.46 1 1 35 1.1 \cdot 10 - 8 0.002 1.45 1.8 \cdot 10 - 9 35 5.0 \cdot 10 - 1

kahan 3.4 \cdot 10 - 16 1.37 1 1 43 6.8 \cdot 10 - 7 0.002 1.36 4.5 \cdot 10 - 16 43 1.4 \cdot 10 - 7

lesp 4.4 \cdot 10 - 15 0.23 9 9 35 1.6 \cdot 10 - 1 0.003 1.32 3.5 \cdot 10 - 15 36 1.9 \cdot 10 - 15

sampling 1.0 \cdot 10 - 7 0.41 10 9 49 2.2 \cdot 10 - 2 0.006 2.04 1.0 \cdot 10 - 7 49 8.2 \cdot 10 - 8

grcar-rand 5.2 \cdot 10 - 12 0.39 1 16 29 7.8 \cdot 10 - 8 0.009 1.45 5.2 \cdot 10 - 12 31 3.7 \cdot 10 - 6

f(x, y) = exp(x+y)
x+y , Size = 64

fun2m (fun2 atom diag) diag diag hp
Test Err Time nA nB Digits Err Time Time Err Digits \kappa f \cdot u

jordbloc 1.2 \cdot 10 - 14 0.02 17 15 48 2.5 \cdot 109 0.008 1.67 8.9 \cdot 10 - 15 50 2.3 \cdot 10 - 16

grcar 7.9 \cdot 10 - 15 1.53 1 1 40 6.9 \cdot 102 0.008 1.53 7.9 \cdot 10 - 15 40 3.9 \cdot 10 - 16

smoke 4.9 \cdot 10 - 17 1.49 1 1 35 8.4 \cdot 10 - 1 0.002 1.48 4.9 \cdot 10 - 17 35 2.3 \cdot 10 - 16

kahan 4.7 \cdot 10 - 17 1.34 1 1 43 2.2 \cdot 107 0.001 1.35 4.7 \cdot 10 - 17 43 1.7 \cdot 10 - 16

lesp 4.5 \cdot 10 - 17 0.23 9 10 35 2.4 \cdot 10 - 13 0.003 1.33 4.5 \cdot 10 - 17 36 2.3 \cdot 10 - 13

sampling 1.6 \cdot 10 - 8 1.4 1 9 49 4.9 \cdot 10 - 2 0.006 2.09 1.6 \cdot 10 - 8 49 1.3 \cdot 10 - 9

grcar-rand 1.8 \cdot 10 - 14 0.36 1 16 29 4.8 \cdot 10 - 7 0.009 1.5 1.8 \cdot 10 - 14 31 7.0 \cdot 10 - 16

f(x, y) = exp(
\surd
x+ y), Size = 64

fun2m (fun2 atom diag) diag diag hp
Test Err Time nA nB Digits Err Time Time Err Digits \kappa f \cdot u

jordbloc 2.0 \cdot 10 - 10 0.02 15 15 48 7.6 \cdot 100 0.009 1.77 2.0 \cdot 10 - 10 51 3.9 \cdot 10 - 10

grcar 1.1 \cdot 10 - 13 1.61 1 1 40 1.5 \cdot 10 - 6 0.008 1.6 1.1 \cdot 10 - 13 40 6.9 \cdot 10 - 10

smoke 1.7 \cdot 10 - 13 1.56 1 1 35 2.1 \cdot 10 - 8 0.002 1.54 1.1 \cdot 10 - 13 35 4.0 \cdot 10 - 5

kahan 1.4 \cdot 10 - 14 1.43 1 1 43 1.0 \cdot 10 - 2 0.001 1.36 1.3 \cdot 10 - 14 43 5.5 \cdot 10 - 7

lesp 2.5 \cdot 10 - 16 0.23 9 9 35 4.1 \cdot 10 - 1 0.003 1.4 2.4 \cdot 10 - 16 36 2.3 \cdot 10 - 16

sampling 5.0 \cdot 10 - 8 2.19 1 1 49 3.8 \cdot 102 0.006 2.17 5.0 \cdot 10 - 8 49 1.0 \cdot 10 - 8

grcar-rand 6.3 \cdot 10 - 13 0.4 1 16 29 8.5 \cdot 10 - 8 0.009 1.57 6.3 \cdot 10 - 13 31 1.6 \cdot 10 - 5

Fig. 2. Numerical results on highly nonnormal matrices of sizes n = m = 64.

the atomic blocks in fun2m. The results reported in Figure 2 confirm that diag is
the fastest and least reliable method. On the other hand, fun2m and diag hp are
equally accurate with fun2m outperforming diag hp apart from the cases where the
partitioning is trivial---nA = nB = 1---where the two algorithms coincide. We note
that in many cases the residual obtained by fun2m and diag hp is significantly be-
low the estimate given by \kappa f \cdot u. This is motivated by the fact that the matrices are
(partially) upper triangular and the condition number with respect to perturbations
sharing the same sparsity pattern is smaller.

4.3. Asymptotic cost. In this final example we test the computational cost of
fun2m on well-conditioned test cases where the number of atomic blocks in A and B
grows linearly with the size n. More specifically, we consider the test case randn with
exponentially increasing sizes 2j for j = 6, . . . , 12, and we measure the computational

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BLOCK DIAGONALIZATION FOR BIVARIATE FUNCTIONS 659

Test = randn, f(x, y) = 1\surd
x+y(x - y)

, Size= 64

fun2m (fun2 atom diag) diag
Size Time nA nB Time

64 0.01 16 16 0.01
128 0.08 32 32 0.06
256 0.27 64 64 0.2
512 1.42 128 128 1.07
1,024 5.47 256 256 4.09
2,048 29.12 512 512 22.01
4,096 243.41 1,024 1,024 132.48

102 103

10 - 2

100

102

104

Size (n)

T
im

e
(s
)

fun2m
diag

\scrO (n3)

Fig. 3. Timings of fun2m and diag for well-conditioned A and B.

time. The performances are compared with the ones of diag in Figure 3. The methods
have comparable costs with diag being faster. Both approaches scale quadratically
up to dimension 2048, and we start to see the expected cubic growth only on the last
test. We mention that the measured accuracies are comparable, and since this is a
well-conditioned case we refrain from reporting them.

5. Conclusions. We have proposed a novel block diagonalization approach for
the evaluation of bivariate matrix functions. By relying on the synergy of multipreci-
sion and a blocking strategy analogous to the one used in the Schur--Parlett scheme
for univariate functions, the method guarantees backward stable results. We have
validated the stability properties by testing the algorithm on a wide range of ill-
conditioned cases. The asymptotic complexity is \scrO (m3 + n3), where m and n corre-
spond to the size of the two square matrix arguments, independently on the blocking
strategy applied. In the ideal situation of well-conditioned eigenvector matrices the
performances are comparable to evaluating the function by diagonalization. The al-
gorithm extends naturally to the multivariate case although the number of atomic
blocks grows exponentially with the number of variables.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, Computing the Fr\'echet derivative of the matrix exponen-
tial, with an application to condition number estimation, SIAM J. Matrix Anal. Appl., 30
(2009), pp. 1639--1657.

[2] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, Computing the Fr\'echet derivative of the
matrix logarithm and estimating the condition number, SIAM J. Sci. Comput., 35 (2013),
pp. C394--C410.

[3] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005.
[4] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C[F4],

Commun. ACM, 15 (1972), pp. 820--826.
[5] M. Benzi and V. Simoncini, Approximation of functions of large matrices with Kronecker

structure, Numer. Math., 135 (2017), pp. 1--26.
[6] M. Crouzeix and D. Kressner, A Bivariate Extension of the Crouzeix-Palencia Result with

an Application to Fr\'echet Derivatives of Matrix Functions, preprint, arXiv:2007.09784,
2020.

[7] M. Crouzeix and C. Palencia, The numerical range is a (1 +
\surd
2)-spectral set, SIAM J.

Matrix Anal. Appl., 38 (2017), pp. 649--655.
[8] E. B. Davies, Approximate diagonalization, SIAM J. Matrix Anal. Appl., 29 (2008), pp.

1051--1064.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

660 STEFANO MASSEI AND LEONARDO ROBOL

[9] P. I. Davies and N. J. Higham, A Schur-Parlett algorithm for computing matrix functions,
SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464--485.

[10] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM
Rev., 52 (2010), pp. 696--714.

[11] S. G\"uttel, Rational Krylov Methods for Operator Functions, Ph.D. thesis, Technische Uni-
versit\"at Bergakademie Freiberg, 2010.

[12] N. Hale, N. J. Higham, and L. N. Trefethen, Computing A\alpha , log(A), and related matrix
functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505--2523.

[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002.
[14] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[15] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM

Rev., 51 (2009), pp. 747--764.
[16] N. J. Higham and X. Liu, A multiprecision derivative-free Schur--Parlett algorithm for com-

puting matrix functions, SIAM J. Matrix Anal. Appl., to appear.
[17] A. Hj{\e}rungnes, Complex-Valued Matrix Derivatives: With Applications in Signal Processing

and Communications, Cambridge University Press, Cambridge, UK, 2011.
[18] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp.

209--286.
[19] I. Jonsson and B. K\r agstr\"om, Recursive blocked algorithms for solving triangular systems--

Part I: One-sided and coupled Sylvester-type matrix equations, ACM Trans. Math. Soft-
ware, 28 (2002), pp. 392--415.

[20] I. Jonsson and B. K\r agstr\"om, RECSY--a high performance library for sylvester-type matrix
equations, in Eur-Par 2003 Parallel Processing, Springer, Berlin, 2003, pp. 810--819.

[21] D. Kressner, Block algorithms for reordering standard and generalized Schur forms, ACM
Trans. Math. Software, 32 (2006), pp. 521--532.

[22] D. Kressner, Bivariate matrix functions, Oper. Matrices, 8 (2014), pp. 449--466.
[23] D. Kressner, A Krylov subspace method for the approximation of bivariate matrix functions,

in Structured Matrices in Numerical Linear Algebra, Springer, Cham, 2019, pp. 197--214.
[24] S. Massei and L. Robol, Rational Krylov for Stieltjes matrix functions: Convergence and

pole selection, BIT, (2020), pp. 1--37.
[25] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016),

pp. 377--441.

D
ow

nl
oa

de
d

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Diagonalization of A and/or B
	Contribution

	Recursive block diagonalization for bivariate matrix functions
	Block partitioning of the Schur forms
	Evaluating the function at the atomic blocks
	Bivariate Taylor expansion
	Perturb-and-diagonalize
	Avoiding complex arithmetic

	Splitting strategy and computational complexity
	Dealing with ill-conditioned Sylvester equations
	Complexity

	Evaluating the function when one between A and B is small

	Relation with other approaches
	Recursive block diagonalization
	Algorithm 4 and the Bartels–Stewart algorithm

	Numerical results
	Perturbation and diagonalization versus Taylor expansion
	Highly nonnormal A and B
	Asymptotic cost

	Conclusions
	References

