
UNIVERSITÀ DEGLI STUDI DI PISA

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Matematica

Tesi di Laurea

A ROOTFINDING ALGORITHM
FOR POLYNOMIALS AND

SECULAR EQUATIONS

Relatore: Candidato:
Prof. DARIO A. BINI LEONARDO ROBOL

Controrelatore:
Prof. LUCA GEMIGNANI

ANNO ACCADEMICO 2011 – 2012

Ai miei genitori, e ad Alessandra

C O N T E N T S

Introduction ix

Notation xv

1 secular equations 1

1.1 Introduction to secular equations . 1

1.2 Secular equations and polynomials . 1

1.3 Floating point evaluation and root neighborhood 3

1.3.1 Stop condition . 6

1.3.2 Root neighborhoods . 6

1.4 Computing a new representation . 10

1.4.1 Transforming a polynomial equation into a secular equation . . 10

1.4.2 Changing the nodes of a secular equation 11

1.4.3 Partial regeneration . 11

1.5 Conditioning of the roots . 13

1.5.1 Conditioning number in the general case 13

1.5.2 Computing the condition number using linear algebra 16

1.6 Computation of the Newton correction 19

1.6.1 Formal computation . 20

1.6.2 Error analysis . 20

1.6.3 Computing Newton correction at the poles 21

1.7 Secular roots inclusions . 23

1.7.1 Gerschgorin based results . 23

1.7.2 Gerschgorin bounds and root neighborhood 24

2 simultaneous approximation 27

2.1 Polynomial evaluation . 27

2.2 The Horner scheme . 27

2.2.1 Basic Horner scheme . 27

2.2.2 Computing the derivatives of P(x) 28

2.3 The Durand-Kerner method . 28

2.3.1 The iteration . 28

2.3.2 Quadratic convergence . 29

2.4 The Erlich-Aberth method . 29

2.4.1 Implicit deflation . 29

v

vi contents

2.4.2 Convergence . 30

2.5 The Bairstow method . 30

2.5.1 Classic Bairstow method . 31

2.5.2 The parallel implementation . 32

2.5.3 Cost of the Bairstow iteration . 32

3 polynomial’s roots inclusions 33

3.1 Newton inclusions . 33

3.1.1 Preliminary results . 33

3.1.2 Higher order inclusion . 34

3.2 Gerschgorin inclusions . 35

3.2.1 From polynomials to linear algebra 35

3.2.2 Guaranteed radius computation 35

3.3 Inclusion results for selecting starting points 36

3.3.1 Choice of starting points based on the Rouché theorem 36

3.3.2 The Newton polygon . 38

3.3.3 Maximizing starting points distances 39

3.3.4 Solving the starting minimax problem 40

3.3.5 Finding starting points for secular equations 41

3.4 Inclusion results based on tropical algebra 42

3.4.1 General notions of tropical algebra 42

3.4.2 Computing tropical roots . 43

3.4.3 Using tropical roots to find classical roots 43

3.5 Roots isolation and convergence rates . 45

3.5.1 The Newton method . 45

3.5.2 Aberth’s method . 46

3.6 Cluster detection and shifting techniques 46

3.6.1 Cluster detection . 47

3.6.2 Shrinking clusters to overcome linear convergence 47

4 the algorithms 51

4.1 The MPSolve algorithm . 51

4.1.1 The MPSolve philosophy . 51

4.1.2 Description of the algorithm . 52

4.1.3 Starting points selection . 53

4.1.4 Aberth iterations . 54

4.1.5 Cluster analysis . 54

4.1.6 Placing refined approximations . 55

contents vii

4.1.7 Identifying multiple roots . 56

4.1.8 Refinement step . 57

4.2 Outline of secsolve . 57

4.2.1 The first implementation . 57

4.2.2 Modified algorithm with regeneration 58

4.3 Managing precision . 59

5 computational issues 63

5.1 Implementation . 63

5.1.1 Extensions to the original algorithm 63

5.1.2 Implementation of the new algorithm 64

5.1.3 Parallelization . 64

5.1.4 Input format . 65

5.1.5 Input examples . 66

5.2 Numerical experiments . 67

a error analysis in floating point 73

a.1 Basic operations on the complex field . 73

bibliography 77

I N T R O D U C T I O N

This thesis deals with algorithmic issues related to the numerical solution of secular
equations. A secular equation is an equation of the kind

S(x) = 0, S(x) =

n∑
i=1

ai
x− bi

− 1

where ai,bi are complex numbers and where, for simplicity, we assume that ai 6= 0
and bi 6= bj for i 6= j.

Secular equations are encountered in different guises in many problems of numerical
analysis and scientific computing.

constrained eigenvalues problems Consider the problem of computing the
biggest eigenvalue of a symmetric matrix A subject to a linear condition cTx = 0
where c is given and x is the eigenvector relative to λ. In [GGvM89] Golub shows
how it’s possible to transform this problem in a secular equation.

rank one perturbations Secular equations arise in the problem of finding the
eigenvalues of symmetric matrix with a rank one perturbation. If we suppose
known the eigendecomposition of the starting matrix, the problem of finding
the eigenvalues of the perturbed matrix can be solved by finding the roots an
appropriate secular equation as shown in [BNS78].

minimization problems There is an interesting set of least square problems that
can be formulated in terms of secular equations. Some important examples are
the total least square problems (analyzed in [GVL80]), the least square problems
with quadratic constraint, studied in [Gan80] and the regularized truncated total
least square problem studied in [FGHO97].

divide and conquer Eidelman has just presented in [EH12] a divide and conquer
algorithm for the computation of the eigendecomposition of quasi-separable
matrices that requires, at each step, the solution of a complex secular equation.

Generally, secular equations are formulated in the real domain and the most impor-
tant applications are the ones where they have real solutions. However, the interest for

ix

x introduction

the general case is alive and is also motivated by the fact that any polynomial equation
can be reduced to a secular equation. This way, any effective algorithm for solving
secular equations provides algorithmic advances for the polynomial root-finding prob-
lem. In fact, computing roots of polynomial is one of the most ancient and challenging
problems in mathematics and has many relevant applications in the solution of certain
industrial problems of robot design.

From one hand, the goal of this thesis is to collect theoretical and computational tools
which are useful to design secular root-finders with specific features. In particular, we
are interested in root-finders which can provide approximations to the secular roots up
to any guaranteed accuracy.

On the other hand we aim to arrive at the implementation of a software package for
the guaranteed multiprecision solution of secular equations which relies on specific
algorithmic strategies and that can exploit the parallel processing features provided by
the currently available hardware.

The framework on which we attack the problem is that of numerical computations.
In other words, all our algorithms are performed in floating point arithmetic. We use, as
long as possible, the standard 53-bit IEEE floating point arithmetic which is the fastest
currently available arithmetic. When it is needed, we switch to the multiprecision
floating point arithmetic where the number of digits, and consequently the working
precision, is tuned according to the need of the current computation. In fact, we rely on
the GMP package for multiprecision arithmetic implemented by the GNU project. In
our approach we avoid to use symbolic computations. The motivation of this fact is
that symbolic computations often lead to the growth of the number of digits which is
generally not under control. Whereas floating point arithmetic provides an arithmetic
framework with uniform cost. This advantage is paid by the presence of round-off
errors which, in our case, can be kept under control with a rigorous rounding error
analysis. However, we do not exclude that in certain cases, a symbolic preprocessing
can improve the efficiency of our algorithm. We leave this issue to our future analysis.

Due to the kind of approach that we have adopted, we need to apply all the numerical
tools related to rounding error analysis, like forward and backward analysis, numerical
conditioning, perturbation theorems, evaluation of error bounds, a priori and a posteriori
error bounds.

For this reason, we rely both on the polynomial formulation of our problem — in fact
S(x)

∏n
i=1(x− bi) is a polynomial — and on the matrix formulation where the secular

roots can be viewed as the eigenvalues of a diagonal plus a rank-one matrix.

introduction xi

Concerning the former formulation, we rely on some key theorems like Rouché,
Marden-Walsh, and Pellet theorems, together with the Newton polygon construction
and the recent results related to tropical polynomials. Also some classical inclusion
theorems related to the Newton correction are applied.

Concerning the latter, we rely on Gerschgorin theorem and the perturbation re-
sults of matrix eigenvalues, in particular the Bauer-Fike theorem. The theory of
root-neighborhood valid for polynomial roots is extended to secular equation in a
straightforward way.

As main engine for improving some available approximations of the roots of polyno-
mials, we use an iteration discovered independently by Ehrlich, Aberth and Börsch-
Soupan. This kind of iteration, already experimented successfully in the package
MPSolve, enables one to refine “simultaneously” a set of approximations and gener-
ates a sequence of n-tuples which locally converges to the n-tuple of the roots of the
polynomial. Local convergence speed is very high: for simple roots is of the third
order. Concerning global convergence, no theoretical results are known so far. However,
also no counterexample of non-convergence is known and from the practice of com-
putation, convergence always occurs in a few steps when the starting approximations
are chosen with suitable criteria. Here, we adjust this iteration to solving the secular
equation. We report also about other techniques which can be used for the simultaneous
approximation like the Durand-Kerner or Weierstrass method.

In our approach, we adopted two different algorithmic strategies: the MPSolve

“philosophy” and the eigensolve technique. The latter has been suitably modified in
order to speed up the computation. In fact, our package has a switch which enables
the user to choose between the two different strategies.

The MPSolve strategy relies on the following ideas:

relative error analysis In MPSolve the error is always estimated by using rel-
ative error analysis, instead of absolute error. This seems to be more effective
when performing floating point computations.

adaptivity Instead of using the working precision needed for the worst possible
input, MPSolve follows an adaptive pattern. The computation starts in standard
IEEE floating point and increases the working precision only when necessary and
only for the roots that need it. This allows to obtain a fine tuned algorithm that does
not waste computational effort when not necessary.

implicit deflation Another general rule that MPSolve follows is to use the original
uncorrupted information at all the stages of the algorithm.

xii introduction

The eigensolve strategy works in the following way.
Assume that our goal is to approximate all the roots with d correct bits. A working

precision of w = d+ guard bits is chosen.

1. Apply any algorithm (say, MPSolve or the QR iteration) to compute approxima-
tions x1, . . . , xn of the roots of the secular equation which are in the 2−w root
neighborhood, i.e., that are roots of a secular equation with slightly perturbed
coefficients.

2. Represent the secular equation using the approximations delivered at the previous
step as nodes, i.e., set bi = xi and compute the new ai. Call S(x) again the
equivalent secular function obtained this way. Here, if needed, a higher working
precision is used.

3. A stop condition is applied. If the approximations are accurate enough stop the
iteration. Otherwise continue from step 1 replacing S(x) with the new secular
function obtained at the previous step.

The difference between the two approaches is that the former aims to use the high
precision only when it is really needed. This way, well conditioned roots are computed
with low precision while ill conditioned roots, say clustered roots, are computed with
high precision, often much larger than the output precision but still not exceeding the
bounds provided by the perturbation theorems. The precision is gradually increased
only for those roots which cannot be otherwise approximated. This philosophy is like
zooming in into a cluster with a more powerful microscope (a higher working precision)
and use the more powerful microscope only when it is needed in order to separate very
close roots.

In the eigensolve approach, the precision of computation is essentially the one re-
quested in the output. In fact all the iterations are performed essentially with the
output precision. Higher precision is used only for updating the representation of the
secular equation according to nodes which are better approximations to the roots. In
this way, the sequence of secular functions generated by this method is such that their
roots are better and better conditioned as long as convergence occurs. Even though for
the initial secular equation there might be very ill conditioned roots which would have
required a higher precision, the secular functions generated in the intermediate steps
have the same roots as the original function but their conditioning gets closer to 1 as the
process is iterated. At the end of the process, all the digits of the roots, corresponding
to the working precision, are correct.

introduction xiii

The two approaches use high precision (which is most expensive in terms of CPU
time) in two different ways. Observe that the longer the computation in high precision
the slower the algorithm. As we will see from the numerical experiments there are
cases where one approach is extremely superior to the other one. We are also able to
describe the class of polynomials/secular equations where this occurs.

In our implementation, in order to reduce the CPU time, we have slightly modified
the strategy of eigensolve in the following way. Instead of applying steps 1–3 using the
output precision as working precision, we start with the standard IEEE 53-bit floating
point arithmetic and apply steps 1–3 until no improvement can be obtained in the cur-
rent precision. If the approximation delivered in this way fulfill the required precision,
the algorithm stops. Otherwise the working precision is increased by doubling the
number of digits and the algorithm is applied again.

With this approach we can keep great part of the computation at a lower working
precision.

Another important issue that enables us to save CPU time is the representation stage.
In fact, in the case some approximations remain unchanged, we may take advantage of
this fact by developing suitable low cost formulas for regenerating the equation.

A relevant fact which makes our approach much more effective than the original
implementation by S. Fortune in [For02] is that our approximation engine, i.e., the
Erlich-Aberth method, requires only O(n) storage instead of O(n2). This makes our
method applicable even to polynomials with large degrees.

Finally a software improvement has been obtained by using the techniques of thread-
ing which enabled us to exploit efficiently the existence of multi-core processors. The
implementation of this technique is not trivial at all and has led to modification in the
implementation of the Ehrlich-Aberth iteration. In fact, in order to exploit parallelism,
we have been compelled to modify the customary “Gauss-Seidel”–style implementation
of the algorithm by partially applying the “Jacobi”–style implementation.

We have applied our algorithm to a wide set of test polynomials taken from the
original test polynomials of MPSolve and some high degree polynomials that arose in
applications.

The results that we obtain are, in some cases, a strong acceleration with respect to
the previous MPSolve approach and eigensolve. This is particularly true, for example,
in the case of Mandelbrot polynomials (whose roots lie in the Mandelbrot set) and the
partition polynomials.

In particular it is worth to point out that the package MPSolve was used in [BG07] by
Boyer and Goh to solve a conjecture on partition polynomials. To arrive at this result

xiv introduction

the authors had to solve a polynomial of degree 70.000 having coefficients represented
by several megabytes. The time needed for this computation with MPSolve was about
one month of CPU time. With the software provided in our thesis we reach the same
goal in about four hours.

There is still a lot of space for improvements in this work and interesting extensions
to the theory presented here. It would be interesting to study how is possible to apply
the results of this thesis to polynomials represented in different basis, and to apply
some extension of this algorithms to matrix polynomials, that often arise in applications.
As an example, see the paper from Mackey D.S., Mackey N., Mehl and Mehrmann
[MMMM06] where several applications of matrix polynomials are discussed.

N O TAT I O N

The notation and the acronyms used in the thesis are listed in the following table:

a
.
= b a is equal to b if considering the Taylor expansion truncated to the

first order.
a
·
6 b a is less or equal to b considering the Taylor expansion truncated to

the first order.
fl (f(x)) The result of the floating point evaluation of the function f at x.
a← b The value b is assigned to the variable a.
AT The transpose of the matrix (or the vector) A.
u The machine precision. In the case of the standard floating point

defined in IEEE754 we have that u = 2−53 ≈ 10−16.
df(x)e The smallest integer bigger than f(x).
K(A) The conditioning of A, i.e., ‖A‖

∥∥A−1
∥∥ where ‖·‖ is the appropriate

norm for the context.
RNε(S) The root-neighborhood of S relative to the perturbation ε. See Sec-

tion 1.3.2 for the definition.
O(nk) The big O notation, i.e., f(n) ∈ O(nk) if and only if f(n)

nk
and nk

f(n) are
both limited for n→∞.

xv

1
S E C U L A R E Q UAT I O N S

1.1 introduction to secular equations

Definition 1.1: A secular equation of degree n is an equation of the form

S(x) =

n∑
i=0

ai
x− bi

− 1 = 0 (1)

where ai,bi ∈ C, ai 6= 0, i = 1, . . . ,n, and bi 6= bj for i 6= j; the coefficients bi are often
called the nodes of the secular equation. The rational function S(x) is sometimes called
secular function.

Observe that the assumptions ai 6= 0 and bi 6= bj for i 6= j are no loss of generality. In
fact, if one of these two conditions is not satisfied, the secular equation can be rewritten
with n replaced by a smaller value and with coefficients satisfying both assumptions.

We refer to the solutions of the secular equation S(x) = 0, i.e., the zeros of the secular
function S(x), as to the roots of the secular function S(x) or also the roots of the secular
equation.

In this chapter we analyze basic operations with secular equations when working in
floating point arithmetic. We rely on the classical theory of rounding error analysis,
and we refer the reader to the book [Hig96]. For the sake of completeness, in the
Appendix A we report an overview of the classical error bounds for complex floating
point arithmetic together with the main theoretical results.

1.2 secular equations and polynomials

One of the main reasons of our interest in secular equations is the strict interplay that
they have with polynomials.

1

2 secular equations

Let S(x) be a secular function defined by the coefficients ai and bi as above. Then
the monic polynomial

P(x) = −S(x)

n∏
i=1

(x− bi) (2)

has the same roots of S. This way, we may associate with the secular equation (1),
the polynomial equation P(x) = 0, where P(x) is the monic polynomial defined in (2).

Conversely, given a set b1, . . . ,bn of pairwise different nodes, we may associate with
a given polynomial P(x) =

∑n
i=0 pix

i of degree n a secular equation of the form (1),
provided that the set of nodes does not intersects the set {ξ1, . . . , ξn} of the roots of
P(x).

In order to show this, let us introduce the following notation

Γbi = −(

n∏
j=1
j6=i

bi − bj)
−1 · p−1n , i = 1, . . . ,n, (3)

and define
ai = P(bi)Γbi , i = 1, . . . ,n. (4)

It is easy to see that the secular equation S(x) = 0, where S(x) is the secular function
defined by these ai and bi, has exactly the same roots of the original polynomial. In
fact, consider the polynomial

P̃(x) = −pnS(x)

n∏
i=1

(x− bi) = −pn

n∑
i=0

ai

n∏
j=1, j6=i

(x− bj)

and observe that the difference Q(x) = P(x) − P̃(x) is a polynomial of degree at most
n− 1, since the largest degree terms in P(x) and P̃(x) cancel out. Moreover, in view of
(3) and (4), one has Q(bi) = 0 for i = 1, . . . ,n, so that Q(x) ≡ 0, therefore P(x) = P̃(x).
In this way, given a set of pairwise different nodes b1, . . . ,bn such that P(bi) 6= 0, we
may represent a polynomial equation P(x) = 0 in terms of a secular equation S(x) = 0,
just by evaluating the values of a1, . . . ,an by means of (4) and (3).

We refer to the rational function S(x) as to the (secular) representation with respect to
the nodes b1, . . . ,bn of the polynomial P(x). Another interesting relation between poly-
nomials and secular equations can be formulated in terms of generalized companion
matrices. See for example [Car91], [Gol73], [MV95], [For02], [For] and [BGP04].

1.3 floating point evaluation and root neighborhood 3

Definition 1.2: Given a monic polynomial P(x) of degree n and n pairwise different
nodes bi we will call generalized companion matrix the following matrix:

C(P,b) =


b1

. . .

bn

−


a1 · · · an
...

...
a1 · · · an

 = diag(b1, . . . ,bn) − eaT (5)

where ai = P(bi)Γbi and e = (1, . . . , 1)T .

We have the following

Theorem 1.3: The characteristic polynomial det(xI−C(P,b)) of the matrix C(P,b) is exactly
the polynomial P(x), while the ai and bi are the coefficients of the secular equation associated
with P on the nodes bi.

Proof. Let D = diag(b1, . . . ,bn), then det(xI−D+ eaT) = det(xI−D)det(I− (xI−

D)−1eaT) =
∏n
i=1(x− bi)(1−

∑n
i=1

ai
x−bi

), where we have used the property det(I−
uvT) = 1− vTu, valid for any pair of vectors u, v.

As we will see in Section 1.5.2, this connection allows us to study the conditioning of
the roots of the secular equation S(x) = 0 by using elementary tools of numerical linear
algebra.

1.3 floating point evaluation and root neighborhood

In this section we highlight two important facts about secular equations which are
related to each other. The first is that the evaluation of a secular equation can be
performed by means of a backward stable algorithm. The second concerns the analysis
of the root neighborhood of a secular function S(x), that is, roughly speaking, the set of
all the roots of all the secular functions obtained by slightly perturbing the coefficients
of S(x).

This analysis is fundamental for our algorithmic purposes and shows how the
backward stability is an important and desirable property. Consider the following
algorithm for evaluating the secular function S at the point x. This algorithm performs
the computation in 2n additions and n divisions. Observe that in this algorithm the
summation of the terms ai/(x− bi) is performed sequentially.

4 secular equations

Algorithm 1 Algorithm for the evaluation of S(x)

1: procedure EvaluateSecular(x)
2: s← 0

3: for i = 1 : n do
4: t← ai/(x− bi)
5: s← s+ t
6: end for
7: s← s− 1
8: return s
9: end procedure

That is, Algorithm 6 reported in the Appendix A is implicitly applied. However,
the same summation can be performed by means of Algorithm 7 which relies on a
recursive technique. We will refer to these two different algorithmic strategies as the
sequential and the recursive approach, respectively.

According to Theorem A.1, the actual value fl (t) computed in place of t at each step
of this algorithm, when using floating point arithmetic with machine precision u, is
given by

fl (t)
.
=

ai
x− bi

(1+ εi)

with |εi| 6 (ε± + ε÷), where ε± = u and ε÷ =
√
2 7u
1−7u

.
= 7
√
2u are the bounds to the

local errors of addition/subtraction and division, respectively. See the Appendix A for
more details. Summing all the terms and using the fact that

fl

(
n∑
i=1

ti

)
.
= t1(1+ δ1) + · · ·+ tn(1+ δn),

where |δi| 6 min{n− 1,n− i+ 1}u, if the sequential summation algorithm is used,
and |δi| 6 dlog2 neu if the recursive algorithm is used (compare with (29) in the Ap-
pendix A), yields the following expression for the value fl (S(x)) obtained by applying
Algorithm 1 in the Appendix A to the secular function S(x) in floating point arithmetic:

fl (S(x))
.
= (

n∑
i=1

ai(1+ δi + εi)

x− bi
− 1)(1+ δ) (6)

where δ is the local error generated in computing the last subtraction, such that
|δ| 6 u.

Summing up, we conclude with the following result concerning the backward stability
of Algorithm 1.

1.3 floating point evaluation and root neighborhood 5

Proposition 1.4: Algorithm 1 for the evaluation of the secular function

S(x) =

n∑
i=1

ai
x− bi

− c

is backward stable. More precisely, denoting fl (S(x)) the value delivered by Algorithm 1 in
floating point arithmetic, it holds that

fl (S(x))
.
=

(
n∑
i=1

ai
x− bi

(1+ δi) − c

)
(1+ δ)

.
= (1+ δ)S(x) +

n∑
i=1

ai
x− bi

δi

where |δ| 6 u, |δi| 6 κnu and

κn =

 n+ 7
√
2 S(x) computed by the sequential algorithm

dlog2 ne+ 7
√
2+ 1 S(x) computed by the recursive algorithm

Proof. It follows from (6) in view of the bounds ε±, ε÷, reported in the Appendix
A.

The above result has some useful consequences which are reported in the following

Corollary 1.5: For the values S(x) and fl (S((x)) the following inequalities hold

|S(x)|
·
6 (1+ u) |fl (S(x))|+ uκnσ(x),

|fl (S(x))|
·
6 (1+ u) |S(x)|+ uκnσ(x),

where σ(x) =
∑n
i=1

∣∣∣ aix−bi

∣∣∣. Moreover

fl (S(x)) − S(x)

S(x)

.
= δ+

1

S(x)

n∑
i=1

ai
x− bi

δi,∣∣∣∣fl (S(x)) − S(x)

S(x)

∣∣∣∣ ·6 (
1+

κnσ(x)

|S(x)|

)
u.

Remark 1.6: The inequalities provided in the above corollary, valid up to the first order
terms in δ, are strict in the sense that they turn to equalities for specific choices of the
values δ and δi satisfying the conditions |δ| = u, |δi| = κnu.

6 secular equations

1.3.1 Stop condition

A natural question encountered in the implementation of numerical root finders based
on iterative processes is when to halt the iteration. In general, if the computed value
fl (S(x)) contains useful information, it is worth continuing the iteration. This happens
if the relative error

∣∣∣S(x)−fl(S(x))
fl(S(x))

∣∣∣ of the computation is less than 1. In fact, in this case
at least one bit of information is contained in the computed value fl (S(x)).

Corollary 1.5 provides a mean to implement a stop condition based on the relative
error estimate in the computation of fl (S(x)). Observe that, if

|S(x)| 6 σ(x)kn
u

1− u

.
= κnσ(x)u (7)

then the upper bound to the modulus of the relative error provided in Corollary 1.5
is greater than or equal to one. In this case, there is no guarantee that the computed
value fl (S(x)) contains useful information. This way, equation (7) can be used as a
stop condition for halting the iterations in any secular rootfinder which relies on the
information contained in the value S(x) taken at x by the secular function.

Equation (7) involves the value of S(x) which in a floating point computation is not
available. In fact, the floating point arithmetic provides us the value of fl (S(x)). In
view of Proposition 1.4, it holds that fl (S(x))

.
= (1+ δ)S(x) +

∑n
i=1

ai
x−bi

δi is formed
by two terms. The first term, (1+ δ)S(x) is close to zero in a neighborhood of a root
of the secular equation. The second one can take a value that is bounded from above
in modulus by σ(x)κnu, moreover, this bound can be reached by specific values of δi.
Therefore we deduce the following implementable halting condition

|fl (S(x))| 6 κnσ(x)u. (8)

1.3.2 Root neighborhoods

Now we introduce the concept of ε–root-neighborhood of S(x) which is closely related
to the properties of backward stability introduced in Proposition 1.4.

Definition 1.7: Let ε be a fixed positive real number. We call ε–root-neighborhood of
S(x) the set

RNε(S) =
{
x ∈ C | ∃âi such that |ai − âi| < ε |ai| and Ŝ(x) = 0

}

1.3 floating point evaluation and root neighborhood 7

where Ŝ is the secular function that has âi and bi as its coefficients.

Moreover, we call ε–secular-neighborhood the set

SNε(x) =

{
Ŝ(x) =

n∑
i=1

âi
x− bi

− 1, âi = ai(1+ εi), |εi| = ε

}

- 2 0 2 4 6 8

- 3

- 2

-1

0

1

2

3

4

Figure 1: Root neighborhoods of the secular equation 5
2(x−2) −

2
x−1−i +

2
x+i − 1 = 0

Recall that the roots of a polynomial are continuous functions of its coefficients.
Therefore, since P(x) =

∏
i=1 n(bi−bj)S(x) has the same roots as S(x), we deduce that

the roots of S(x) are continuous functions of the coefficients ai.

This fact, together with the above definition, allows us to prove the following result

8 secular equations

Proposition 1.8: For any Ŝ(x) ∈ SNε(S) the roots of Ŝ(x) belong to the set RNε(S), moreover,
the number of zeros of Ŝ(x) in any connected component of RNδ(S) is constant for any δ 6 ε.
In particular, if the set RNε(S) has n connected components then any function S̃(x) ∈ SNε(S)
has one root in each connected component.

Proof. The first part follows from the definition. The second part follows from the
continuity of the roots of Sε(x).

The following result relates Gerschgorin discs and the root-neighborhood.

Proposition 1.9: If x ∈ RNε(S) then there exists k such that |x− bk| 6 n |ak| (1+ ε). In
particular, the union of the Gerschgorin discs B(bi,Ri), Ri = n |ai| (1+ ε) contains RNε(S).

Proof. If x ∈ RNε(S) then
∑n
i=1

ai
x−bi

(1+εi) = 0 with |εi| 6 ε. Let k be such that |ak| =

maxi
∣∣∣ aix−bi

∣∣∣ and deduce that 1 6 n
∣∣∣ akx−bk

∣∣∣ (1 + ε), whence |x− bk| 6 n
∣∣∣ akx−bk

∣∣∣ (1 +
ε).

For the sake of notational simplicity, in the following we write RNε in place of
RNε(S). This definition aims to clarify the concept of a root in the floating point setting.
When trying to approximate a root of the secular equation S(x) = 0 we are satisfied if
we can find a value x such that x ∈ RNε and ε is small enough. In principle, checking
the condition x ∈ RNε is not an easy task. However, the following definition provides
a way to overcome this difficulty.

Definition 1.10: Let ε be a fixed positive real number. We define the set

R̂Nε = {x ∈ C | |S(x)| 6 εσ(x)}

Observe that, while checking if x ∈ RNε is computationally unfeasible, verifying that
x ∈ R̂Nε can be performed computationally. We can prove the following useful result
which relates RNε and R̂Nε.

Proposition 1.11: It holds that
RNε = R̂Nε

Proof. If x ∈ RNε then there exist εi such that
∑n
i=1

ai
x−bi

(1+ εi) − 1 = 0 and |εi| 6 ε.
This implies that S(x) = −

∑n
i=1

ai
x−bi

δi, whence |S(x)| 6 σ(x)ε, that is x ∈ R̂Nε.

1.3 floating point evaluation and root neighborhood 9

If x ∈ R̂Nε, then S(x) = η and |η| 6 εσ(x). Set

δi = −
x− bi
ai

∣∣∣∣ ai
x− bi

∣∣∣∣ ησ
and find that |δi| 6

∣∣∣ η
σ(x)

∣∣∣ 6 ε, moreover,

n∑
i=1

ai
x− bi

δi = −
η

σ(x)

n∑
i=1

∣∣∣∣ ai
x− bi

∣∣∣∣ = −σ(x).

This way, it follows that S̃(x) = 0 with S̃(x) =
∑n
i=1

ai
x−bi

(1 + δi) − 1. That is x ∈
RNε.

In the actual computations in floating point arithmetic, due to the roundoff errors,
we cannot check if x ∈ R̂Nε. What we can do is to test the condition x ∈ R̃Nε,u where

R̃Nε,u = {x ∈ C : |fl (S(x))| 6 εσ(x)}.

In view of the above results we find that for a given ε and a given machine precision u
the following property holds

Proposition 1.12: Let ε > 0 then

RNε ⊆ R̃Nε+κnu,u ⊆ RNε+2κnu

moreover
R̃Nε,u ⊆ RNε+κnu ⊆ R̃Nε+2κnu,u,

Proof. If x ∈ RNε, then in view of Proposition 1.11 |S(x)| 6 εσ(x). Therefore, from
Corollary 1.5 one has |fl (S(x))|

·
6 εσ(x) + uκnσ(x) = (ε + knu)σ(x). Whence we

deduce that x ∈ R̃Nε+κnu. If x ∈ R̃Nε,u then |fl (S(x))| 6 εσ(x). Therefore, in view of
Corollary 1.5, we deduce that |S(x)| ·6 (ε+ κnu)σ(x). This completes the proof.

It is interesting to point out that if x satisfies the implementable stop condition (8)
then x ∈ R̃Nε with ε = κnu so that, in view of Proposition 1.12 one finds that

RN 1
2κnu

⊆ R̃Nκnu,u ⊆ RN 3
2κnu

This property extends to the case of secular equations a similar property valid for
polynomials and proved in [BF00].

10 secular equations

The advantage of secular equations is in the fact that kn has a logarithmic growth with
respect to n if the recursive summation algorithm is applied, whereas for polynomials
kn grows linearly with n. We may conclude with the following important fact

Fact 1.13: Applying any algorithm that relies on the halt condition (8) and runs with a floating
point arithmetic with machine precision u, provides approximation to the roots of S(x) which
are the exact roots of secular equations with the coefficients perturbed by a relative error at most
3
2κnu. The set of approximations that we can detect is optimal in the sense that it is in between
the two sets RN 1

2κnu
and RN 3

2κnu
.

1.4 computing a new representation

As previously noted in Section 1.2, when a secular equation S(x) = 0 is given it is
possible to obtain a polynomial P(x) with the same roots as S(x) by formally multiplying
S(x) by

∏n
i=1(x− bi).

Extending this remark we can produce a set of different secular representations of
P(x) simply by changing the nodes bi. In this section, we will analyze the stability and
accuracy of this operation. Both the cases where P(x) is assigned as input polynomial
through its coefficients, and when S(x) is assigned in terms of its coefficients ai and bi,
will be considered.

1.4.1 Transforming a polynomial equation into a secular equation

Consider the case where P(x) is given explicitly in terms of its coefficients, or the case
where P(x) is implicitly known by means of a “black box” which, given x as input
value, provides the value of P(x) by means of a numerically stable algorithm; more
specifically suppose that the relative error on the computed value fl (P(x)) is bounded
from above by κxu, where κx is a known quantity. Let bk be the nodes for representing
the polynomial equation in terms of a secular equation; then, for every k = 1, . . . ,n:

ak = −
P(bk)

pn
∏n
i=1
i 6=k

(bk − bi)

where pn is the leading coefficient of P(x). Performing a rounding error analysis we
find that

fl (bk − bi) = (bk − bi)(1+ εi), |εi| 6 ε±,

1.4 computing a new representation 11

and multiplying all the terms we finally obtain

fl

 n∏
i=1
i 6=k

(bk − bi)

 =

 n∏
i=1
i 6=k

(bk − bi)

 (1+

n∑
i=1
i 6=k

(εi + γi)), |γi| 6 ε∗.

Since ε± = u and ε∗
.
= 2
√
2u, the relative error on the product is bounded by nu(1+

2
√
2).

If we suppose to have a reasonable bound on the error of the polynomial evaluation
(and this is true for the Horner scheme used when the coefficients are known) then the
whole procedure to compute the new representation is numerically stable. The cost of
the operation is bounded by O(nk+n2) arithmetic operations where k is the cost of a
polynomial evaluation. If k = O(n) we have O(n2) as total cost.

1.4.2 Changing the nodes of a secular equation

The whole procedure described in the above section holds valid even when S(x) is
known, in place of P(x), if we use the equation

P(x) = −pnS(x)

n∏
i=1

(x− bi)

for the polynomial evaluation. Since we have already seen that the evaluation of S(x)
is backward stable we conclude that even in this case the regeneration of the secular
equation on the new nodes is backward stable as well. If we call âk, b̂k the new
coefficients and ak,bk the old ones we obtain the following regeneration formula:

âk = S(b̂k)

∏n
i=1(b̂k − bi)∏n
j=1
j6=k

(b̂k − b̂j)
.

As in the previous case the total cost of regeneration is O(n2).

1.4.3 Partial regeneration

There are cases where it is interesting to regenerate a given secular function S(x) =∑n
i=1

ai
x−bi

− 1 with respect to a new set of nodes b̂i, i = 1, . . . ,n, where only a few
nodes b̂i differ from the original nodes bi. In this circumstances, we may perform the

12 secular equations

computation at a lower computational cost. In fact, we present a procedure that allows
us to perform this regeneration in O(nr) time, where r is the number of indices i such
that bi 6= b̂i. Let R be the set of indices where bi 6= b̂i. Suppose that k /∈ R; the formula
to compute âk is:

âk =
P(b̂k)∏n

i=1
i 6=k

(b̂k − bi)
=

P(bk)∏n
i=1
i 6=k

(bk − bi)
·
∏
j∈R

bk − bj

b̂k − bj
= ak

∏
j∈R

bk − bj

b̂k − bj
.

This shows that, for every k /∈ R, âk is ak scaled by a coefficient that can be computed
in O(|R|) = O(r) time. For the indices in R we can use the usual formula and so the
total cost for the regeneration is O(r ·n+ r · (n− r)) = O(nr). The description of this
partial regeneration is reported in Algorithm 2. We may perform a rounding error
analysis of this algorithm as usual.

Clearly, for every k ∈ R, the same error analysis already performed in the full
regeneration algorithm is still valid. When k /∈ R, instead, we have that the relative
error is bounded from the relative error on the previous coefficient ak plus the error on
the computation of the product

∏
j/∈R

bk−bj
bk−b̂j

. With the usual error analysis we find that

Algorithm 2 Partial regeneration

1: procedure PartialRegeneration(b̂k)
2: R← {j = 1, . . . ,n | bj 6= b̂j}
3: for k = 1, . . . ,n do
4: if k /∈ R then
5: âk ← P(b̂k)∏

j6=k(b̂k−bk)
. Using the standard algorithm

6: else
7: âk ← ak
8: for j ∈ R do
9: âk ←

bk−bj
b̂k−b̂j

10: end for
11: end if
12: end for
13: end procedure

fl
(
bk − bj

bk − b̂j

)
=
bk − bj

bk − b̂j
(1+ εi)

1.5 conditioning of the roots 13

with εi 6 (2ε± + ε÷) =: ε. Summing all the terms we obtain that at step i the
accumulated relative error is (i− 1)ε, and so we get a bound on the total relative error
of

εtot 6 |R| · ε.

This is a good result since if a few nodes bi have changed we are able to compute a
new representation with a low computational cost and even with a low roundoff error.

Remark 1.14: In this analysis we have overlooked the fact that the error on âk contains
also the previous error on ak, and this is accumulated at every regeneration step. This
may have some implications that cannot be ignored. A straightforward note is that in
a multiprecision framework, when the precision of the computation is increased so
that we are working with a much smaller machine precision u, the error on ak will
probably become too big with respect to u. In that case the partial regeneration scheme
will not be applied, and all the coefficients will have to be regenerated from scratch
starting from the uncorrupted original coefficients.

1.5 conditioning of the roots

In this section we are interested in studying how the conditioning of the roots changes
when we change the secular representation of a polynomial P(x). For this purpose we
present some general results on the conditioning of secular equations.

1.5.1 Conditioning number in the general case

We start by showing a simple analysis of the conditioning of the roots of a secular
equation induced by variations on the coefficients ai. This is interesting since we have
shown in Theorem 1.4 that the evaluation of a secular equation can be performed by a
backward stable algorithm. This way, the result computed in floating point arithmetic
is the exact value of a secular function with slightly modified coefficients.

For the sake of simplicity we perform our analysis in terms of absolute error. It is
almost straightforward to extend this analysis to the case of relative error. Suppose to
have âi = ai + εi where |εi| 6 ε, and that x is a solution of

n∑
i=1

ai
x− bi

− 1 = 0.

14 secular equations

We are interested in giving an upper bound (or at least to show that it exists) to the
distance |x− x̂| where x̂ is the nearest solution of the “perturbed” secular equations

n∑
i=1

âi
x̂− bi

− 1 = 0.

To simplify the analysis suppose that only one of the ai has been modified, and let us
call it ak. We show two different ways of giving this error bound. In both cases we
obtain a first-order evaluation of the error. The first approach is based on explicit error
analysis, the second relies on a differential analysis.

Consider the system 
∑n
i=1

ai
x−bi

− 1 = 0,∑n
i=1

âi
x̂−bi

− 1 = 0.

Setting δx := (x̂− x) and δak := ak − âk we obtain, by difference and simplification(
n∑
i=1

ai
(x− bi)(x̂− bi)

)
δx+

δak
x̂− bk

= 0.

From this relation we can easily obtain the explicit expression for the fraction δx
δak

that
represents exactly the variation of the root x when the coefficient ak is perturbed. More
precisely

δx

δak
=

1

(x̂− bk)
(∑n

i=1
ai

(x−bi)(x̂−bi)

) . (9)

A similar result can be found in a clean way by following the variation of x when
we change ak. More precisely, denote Sa(x) the secular function with the coefficient a
in place of ak so that S(x) = Sak(x). Assume that xak is a simple solution of S(x) and
recall that there exists a neighborhood U of ak and an analytic function xa : U → C

such that Sa(xa) = 0 for a ∈ U.

This fact follows from the analog statement on polynomials. Consider a polynomial
P(x) =

∑n
i=0 pnx

n, and let x be a simple root of it.

It can be seen that exists a neighborhood of (p0, . . . ,pn) in Cn+1 where is defined
an analytic function p̂ to C such that P ◦ p̂ ≡ 0. Using the connection between secular
equations and polynomials we have that for every Sa there exists a polynomial P
with the same roots. Moreover, the coefficients of the polynomial are obtained as the
image of a continuous function of the coefficients ai. Considering the preimage of the

1.5 conditioning of the roots 15

polynomial neighborhood through this function we obtain a suitable neighborhood of
the coefficients ai that satisfies our requirements.

This implies that
d

da
Sa(xa) ≡ 0

and in particular

d

da
Sa(xa)

∣∣∣∣
a=ak

=

(
∂Sa

∂ak
+
∂Sa

∂x

dx

da

)∣∣∣∣
a=ak

= 0.

From the latter equality we can obtain dx
da , that is, the value we are looking for, since it

is precisely the first order approximation of the variation in x induced by a variation in
ak. Let us denote ∂x

∂a = Kak . Computing the derivatives we obtain that

Kak =
1

(x− bk)S ′(x)
.

Consider again (9), and observe that under the assumption of simple root, if âk → ak

then xk → x. Therefore, taking the limit in (9) yields

δx

δak
=

1

(x− bk)S ′(x)

in accordance to the differential analysis. We will see in the next paragraph that a more
explicit estimate of the global conditioning can be given knowing the values of the
coefficients bi.

In the case where all the coefficients ai are perturbed, by following the same argument
as above, we may prove that

|δx|
.
=

∣∣∣∣ ∑n
i=1 aiδi/(x̃− bi)∑n

i=1 ai/((x− bi)(x̃− bi))

∣∣∣∣ ·6 maxi |δi|σ(x̃)
|
∑n
i=1 ai/((x− bi)(x̃− bi))|

·
6

κnσ(x̃)u

|
∑n
i=1 ai/((x− bi)(x̃− bi))|

.

Moreover, with a differential analysis we get

|δx|
·
6

∣∣∣∣∑ni=1 aiδi/(x̃− bi)S ′(x)

∣∣∣∣ ·6 maxi |δi|σ(x̃)
|S ′(x)|

·
6
κnσ(x)u

|S ′(x)|
. (10)

16 secular equations

In the case where we have an approximation x to a root that satisfies the stop con-
dition (8), we have x ∈ RNε with ε = knu. This way, since x ∈ RNε implies that∑n
i=1

ai(1+δi)
x−bi

− 1 = 0 for |δi| 6 ε, we find that

|δx|
·
6

∣∣∣∣σ(x)knuS ′(x)

∣∣∣∣ . (11)

1.5.2 Computing the condition number using linear algebra

It is interesting to exploit the connection between polynomials and secular equations. In
fact, we are interested in showing that if some good approximations of the polynomial
roots are known then we may exploit this information to obtain a new equation
with better conditioned roots. To accomplish this it is sufficient to compute a new
representation of the secular equation by using the available approximations as nodes
of the representation.

This suggests that a good approximation of the roots of a polynomial could be found
by computing a sequence of secular representation of the polynomial itself, where the
condition numbers of the roots of this sequence of equations is decreasing.

We can consider the matrix representation of the secular equation that we have
already seen in (5). Since the roots of the secular equation are the eigenvalue of this
matrix, we can obtain an upper bound to the condition number of our problem by
computing the one of the eigenvalue problem 1.

Let M = D − eaT be the matrix associated with our representation, where D =

diag(b1, . . . ,bn) is a diagonal matrix with pairwise diagonal entries b1, . . . ,bn, and
a is the vector with nonzero components ai. In this way, P(x) = det(xI −M) =

−
∏n
i=1(x− bi)S(x) and the eigenvalues of M coincide with the roots of P(x). If the

roots of the polynomial P(x) are known then a matrix V that diagonalizes M, i.e., such
that V−1MV is diagonal, can be obtained directly. In fact, let λ be eigenvalue of M,
with λ 6= bi of any i, and x the corresponding eigenvector such that Mx = λx, then

(D− eaT)x = λx ⇐⇒ (D− λI)x = e(aTx)

1 The variations to the coefficients ai and bi induce variations to the associated matrix that are less general
that all the possible variations δA ∈ Cn×n. These perturbation are called structured perturbation and
the related condition number is called structured condition number. The structured condition number is
generally lower than the general condition number.

1.5 conditioning of the roots 17

whence xi = aTx/(bi − λ). It follows that aTx 6= 0, otherwise x would be the null
vector. Moreover, normalizing x such that aTx = 1 one has

xi =
1

bi − λ
.

Finally, assuming that bi is not eigenvalue of M for any i, we can build a matrix V with
the eigenvectors of V as columns by simply setting λ = ξj in the above relation. We
obtain:

V =
(
vij
)

where vij =
1

bi − ξj
. (12)

By using a similar argument, we find that MTy = λy implies that (D− λI)y = a(eTy).
Since eTy 6= 0, otherwise y would be the null vector, we may normalize y in such
a way that eTy = 1. In this way may construct a matrix W whose columns are the
eigenvectors of MT simply by setting λ = ξj in the above relation. We obtain:

W =
(
wij
)

where wij =
ai

bi − ξj
. (13)

From the fact that V and W are the matrices of right and left eigenvectors, it follows
that WTV = diag(d) is diagonal with

di =

n∑
j=1

ai
(bi − ξj)2

= S ′(bi) (14)

so that
V−1 = diag(d)−1WT (15)

We are now interested in studying how the matrix V changes when bi → ξi. If we split
P(bi) =

∏n
j=1(bi − ξj) and suppose that bi → ξi we have that for i 6= j

wij =

n∏
k=1

(bi − ξk) ·

(bi − ξj) ·
n∏
s=1
s6=i

(bi − bs)


−1

=

 n∏
k=1
k6=j,i

bi − ξk
bi − bk

 bi − ξi
bi − bj

→ 0

while in the case where i = j:

wii =

n∏
k=1

(bi − ξk) ·

(bi − ξi) ·
n∏
s=1
s6=i

(bi − bs)


−1

=

n∏
j=1
j6=i

bi − ξk
bi − bk

→ 1.

18 secular equations

We can conclude that if bi are sufficiently near to ξi then the matrix that diagonalizes
M is close to the identity, and so is well-conditioned. We now recall a basic theorem of
numerical analysis regarding a perturbation result for eigenvalues that can be found in
[Dem].

Theorem 1.15 (Bauer-Fike): Let A, δA be matrix in Cn×n with A diagonalizable, λ an
eigenvalue of A and V the matrix that diagonalizes A, i.e., V−1AV is diagonal. Then there
exists an eigenvalue µ of A+ δA such that

|λ− µ| 6 K(V) · ‖δA‖ , K(V) = ‖V‖
∥∥V−1

∥∥ .

where ‖ · ‖ is any absolute norm.

Theorem 1.15 states that the perturbation of the eigenvalues can be bounded by the
condition number of V and the norm of the perturbation of A.

Concluding, we obtain that K(V) is an upper bound to the conditioning of the roots
of a secular equations, too. In view of equations (12), (13), (14), (15), we find that in the
infinity norm

K(V) = max
i

∑
j

1∣∣bi − ξj∣∣ max
i

σ(ξi)

|S ′(bi)|

A different estimate of the condition number which is specific of a given eigenvalue ξ
can be derived from the following classical result.

Theorem 1.16: Let A and F be n× n matrices. If ξ is a simple eigenvalue of A such that
Ax = ξx, yTA = ξyT , then there exists a neighborhood U of ξ and an analytic function
ξ(ε) : U→ C such that

ξ(ε)
.
= ξ+ ε

yTFx

yTx
.

and ξ(ε) is an eigenvalue of A+ εF.

Applying the above theorem to A = M = D− aeT , with F = eâT , where â = (âi),
âi = aiδi/δ, with δ = maxi |δi|, since xi = 1/(ξ− bi), yi = ai/(ξ− bi), one finds that

yTFx

yTx
=

(∑n
i=1

ai
ξ−bi

)(∑n
i=1

aiδi/δ
ξ−bi

)
S ′(ξ)

=

∑n
i=1

aiδi/δ
ξ−bi

S ′(ξ)
,

1.6 computation of the newton correction 19

where the latter inequality holds since S(ξ) = 0 so that
∑n
i=1

ai
ξ−bi

= 1. This way, for
the variation ξ(δ) induced by the relative perturbation δi on the coefficient ai, one has

|ξ− ξ(δ)|
·
6

δ

|S ′(ξ)|
.

This bound can be applied to the case where ξ is such that fl (S(ξ)) = η and |η| 6 ε̂

with |ε| < 1. Recall that fl (S(ξ)) = (
∑n
i=1

ai(1+δi)
ξ−bi

− 1)(1 + δ) where |δi| 6 κnu

and |δ| 6 u. In fact, in this case, ξ is root of the secular equation S̃(x) = 0 with
S̃(x) =

∑n
i=1

ai(1+δi+η)
x−bi

− 1. The original function S(x) can be viewed as a perturbation
of S̃(x) where δi = −δi − η. This way, we find that that there exists a root ξ(ε) of S(x)
such that

|ξ− ξ(δ)|
·
6

δ

|S ′(ξ)|
, δ = max

i
|δi + η|

Moreover, if ξ satisfies the stop condition (8) then |η| 6 κnσ(ξ)u so that

|ξ− ξ(δ)|
·
6

1

|S ′(ξ)|
(1+ σ(ξ))κnu.

1.6 computation of the newton correction

The main tool on which our algorithm to compute the secular roots relies is the Erlich-
Aberth iteration. This method, which will be introduced next, is based on the Newton
iteration. We show in this section how the computation of the Newton correction of the
polynomial associated with S(x) may be performed implicitly, without computing the
coefficients of P(x).

We recall that the polynomial associated with S(x) can be written as

P(x) =

n∏
i=1

(x− bi)S(x) (16)

and that the Newton correction at the point x is defined by

N(x) =
P(x)

P ′(x)
.

In the following we will systematically use the notation N(x) for the Newton correc-
tion, S(x) for the secular equation and P(x) for the associated monic polynomial.

20 secular equations

1.6.1 Formal computation

Computing the derivative of P(x) written in the form of equation (16) we obtain

N(x) =
S(x)

S ′(x) + S(x)
∑n
i=1

1
x−bi

=

S(x)
S ′(x)

1+
S(x)
S ′(x)

∑n
i=1

1
x−bi

. (17)

A quite straightforward algorithm to compute the value of the Newton correction at
x is the one reported in Algorithm 3.

Algorithm 3 Evaluation of the Newton correction using the secular representation.

1: procedure EvaluateNewtonCorrectionSecular(ai,bi, x)
2: s← 0

3: s ′ ← 0

4: b← 0

5: for i = 1 : n do
6: t← 1

x−bi
7: b← b+ t
8: u← ai · t
9: t← u · t

10: s← s+ u
11: s ′ ← s ′ + t
12: end for
13: s← s− 1
14: d← s

s·b+s ′
15: return d
16: end procedure

A similar algorithm can be given by replacing the sequential summation by the
recursive summation presented in Appendix A.

1.6.2 Error analysis

Carrying out the error analysis yields three different bounds on the algorithmic error
generated by the evaluation of S(x), S ′(x) and

∑n
i=1

1
x−bi

, respectively.

More precisely, if u is the machine precision the error bounds are:

• |fl (S(x)) − S(x)|
·
6 fl (S(x))u+ κnσ(x)u, σ(x) =

n∑
i=1

∣∣∣∣ ai
x− bi

∣∣∣∣

1.6 computation of the newton correction 21

•
∣∣fl (S ′(x))− S ′(x)∣∣ ·6 (κn + 1)σ ′(x), σ ′(x) =

n∑
i=1

∣∣∣∣ ai
(x− bi)2

∣∣∣∣

•

∣∣∣∣∣fl
(
n∑
i=1

1

x− bi

)
−

n∑
i=1

1

x− bi

∣∣∣∣∣ ·6
n∑
i=1

κnσ
′′(x)u, σ ′′(x) =

n∑
i=1

∣∣∣∣ 1

x− bi

∣∣∣∣

Keeping track of these errors can be done while performing Algorithm 3 without
much additional computational effort: nearly all the quantities involved in the bounds
(except for the modulus computations) are already computed to evaluate N(x).

This allow to give a guaranteed computation of N(x), that will be useful in giving
guaranteed root inclusions.

1.6.3 Computing Newton correction at the poles

The secular function S(x) cannot be evaluated at bi because of the singularity present
there. On the other hand, the polynomial P(x) is well defined at x = bi as well as
its derivative. If P ′(x) 6= 0 then also the Newton correction is well defined at x = bi.
However, Algorithm 3 is not applicable for this purpose since it requires an evaluation
of S(x) and S ′(x) at x = bi.

We present here an alternative algorithm for the case which enables us to compute
N(bi) given the values of bi and the coefficients ai for i = 1, . . . ,n of the secular
function.

Rewrite P(x) in the following form

P(x) = −

n∑
k=1

ak

n∏
j=1, j6=k

(x− bj) +

n∏
j=1

(x− bj).

Set x = bi and get

P(bi) = −

n∑
k=1

ak n∏
j=1
j6=k

(bi − bj)

+

n∏
j=1

(bi − bj) = −ai

n∏
j=1
j6=i

(bi − bj). (18)

22 secular equations

Similarly, for P ′(bi) one obtains

P ′(bi) = −
d

dx

 n∑
k=1

ak

n∏
j=1
j6=k

(x− bj)


∣∣∣∣∣∣∣∣
x=bi

+
d

dx

 n∏
j=1

(x− bj)

∣∣∣∣∣∣
x=bi

(19)

= −

n∑
k=1

ak

 n∑
l=1
l 6=k

n∏
j=1
j6=l,k

(bi − bj)

+

n∏
j=1, j6=i

(bi − bj) =

n∏
j=1
j6=i

(bi − bj)

1−∑
k6=i

ak + ai
bi − bk

 .

(20)

Writing the Newton correction using these two expressions we obtain

N(x) =
ai∑

k6=i
ak+ai
bi−bk

− 1
.

From this last expression we can define another algorithm to evaluate the Newton
correction at x = bi for every i = 1, . . . ,n. This procedure is reported as Algorithm 4.

Algorithm 4 Evaluation of the Newton correction when x = bi
1: procedure EvaluateNewtonCorrectionSecular(ai,bi, i)
2: /* i is the index such that x = bi */
3: s← 0

4: b← 0

5: for k = 1 : n do
6: if k 6= i then
7: t← ak + ai
8: b← bi − bk
9: s← s+ t/b

10: end if
11: end for
12: s← s− 1
13: s← ai/s

14: return s
15: end procedure

As usual, we perform the error analysis of this procedure. At each step we have that

fl (t) =
ak + ai
bi − bk

(1+ 2ε+ + ε÷).

1.7 secular roots inclusions 23

If we perform a sequential or a recursive sum of all these terms we obtain, at the end
of the algorithm,

fl (s)
.
= s(1+ (kn + 1)u)

1.7 secular roots inclusions

In this section we present some results regarding secular roots inclusions. Our goal is
to compute a set of centers xi and radii ρi such that the union of the discs B(xi, ri) of
center xi and radii ri, i = 1, . . . ,n contains all the roots.

Moreover, we are able to give some results on the number of roots contained in each
disc.

1.7.1 Gerschgorin based results

Some basic results can be obtained by using Gerschgorin theorems.

Theorem 1.17 (Gerschgorin): Let A ∈ Cn×n a complex matrix, and consider the set

Γ =

n⋃
i=1

B(aii, ri) ⊆ C, ri =
∑
j6=i

∣∣aj∣∣ .
Then Γ contains all the eigenvalues of A and, in particular, each connected component of it
contains exactly a number of eigenvalues equal to the number of circles contained in it. Moreover,
if λ is an eigenvalue of A corresponding to the eigenvector x, i.e., Ax = λx, then λ ∈ B(ak, rk)
where k is such that |xk| = maxi |xi|.

We will often refer, in the following, to the sets B(aii, ρi) as Gerschgorin’s discs.

Recalling that the roots of the secular equation are the eigenvalues of the matrix
D− eaT we can use Theorem 1.17 and obtain a bound on the secular roots with circles
centered in the nodes bi.

24 secular equations

Considering that

D− eaT =



b1 − a1 −a2 · · · −an

−a1 b2 − a2 · · · −an
...

. . .
...

...
. . .

...
−a1 −a2 · · · bn − an


we obtain the following bounds for the eigenvalues ξi:

ξi ∈
n⋃
j=1

B(bj − aj,
n∑
k=1
k6=j

|ak|) ⊆
n⋃
j=1

B(bj,
n∑
k=1

|ak|) (21)

or, considering the transposed matrix,

ξi ∈
n⋃
j=1

B(bj − aj, (n− 1)
∣∣aj∣∣) ⊆ n⋃

j=1

B(bj,n
∣∣aj∣∣). (22)

Remark 1.18: The result obtained by Gerschgorin’s theorem is even more general. If
one of the unions in (21) or in (22) is not connected than we get a partitioning of the
roots in the various connected components of the inclusion set.

This will be very useful in the following to detect clusterization properties.

Now recall that an eigenvector x of A = D− eaT corresponding to the eigenvalue
λ is such that xi = 1/(x− bi), while if yTA = λy then yi = ai/(λ− bi). Therefore,
according to the Gerschgorin theorem, we find the bounds

|λ− bk| 6

{
(n− 1) |ai| if

∣∣∣ akλ−bk

∣∣∣ = maxi
∣∣∣ aiλ−bi

∣∣∣∑n
i=1, i 6=k |ai| if |λ− bk| = maxi |λ− bi|

1.7.2 Gerschgorin bounds and root neighborhood

The result shown in Section 1.7.1 can be used to give a posteriori bounds on the
approximation errors of the computed roots. Since we desire to give guaranteed bounds
we need to be certain that the bound computed in floating point is greater than or equal
to the actual one.

1.7 secular roots inclusions 25

As usual, this involves performing a first order error analysis of the algorithms for
computing the bounds.

Let us start by considering the bound based on the discs of radius n · |ai|. The error
on the radius evaluation is bounded by n · εi where εi is the error in the computation
of the coefficient ai .

Referring to Section 1.4.1 we obtain that fl (ai) = ai(1+ εi) where εi 6 (κn + 1)u,
and so

|ai| 6 |fl (ai)| (1+ εi).

This last consideration means that the valid floating point inclusion is

ξi ∈
n⋃
j=1

B(bj,n
∣∣fl (aj · (1+ ε))∣∣),

that can be seen as the Gerschgorin inclusion of all the roots of the secular equations
contained in RNε(S), i.e. the union of the inclusion discs for all secular equation whose
coefficients ai are modified with a relative perturbation smaller than ε.

2
S I M U LTA N E O U S A P P R O X I M AT I O N

2.1 polynomial evaluation

In order to approximate the roots of the polynomials and to obtain precise roots bounds
we must be able to evaluate a polynomial (and its derivatives) at a point with high
precision and efficiency.

The main tool used to achieve this in the case where the polynomial is given in terms
of its monomial coefficients, is the Horner scheme.

2.2 the horner scheme

2.2.1 Basic Horner scheme

The Horner scheme is an algorithm used to evaluate a polynomial P(x) =
∑n
i=0 pix

i at
a given point x̄.

The basic Horner algorithm can be described by the following expression:

P(x̄) = (((pnx̄+ pn−1) x̄+ pn−2) x̄+ . . .+ p1) x̄+ p0.

The pseudocode is described in Algorithm 5.

Algorithm 5 Horner algorithm

1: procedure Horner(P, x̄)
2: v← an · x̄
3: for i = n− 1, . . . , 0 do
4: v← v · x̄+ pi
5: end for
6: return v
7: end procedure

The big advantages of the Horner scheme on other naive implementations of the
polynomial evaluation are the low computational cost (that is n multiplication and n− 1

27

28 simultaneous approximation

additions) and the property of backward stability. Moreover, it can be adjusted to
compute the derivatives of the polynomial as well.

2.2.2 Computing the derivatives of P(x)

A slight modification of the Horner algorithm can be used to compute the derivatives,
and consequently the Taylor expansion, of the polynomial P at the point x̄.

Let vk be the value of v in Algorithm 5 when i = n− k, so that v0 = anx̄, v1 =

v0x̄+ pn−1 and so on. Clearly we have that vn = P(x̄).

If we put bi,−1 = pi we can perform this Horner-like iteration with two indices, valid
for −1 6 j 6 i 6 n: v0,1 = v0,0

vi,j = vi,j−1 + x̄vi−1,j

. (23)

As shown in [Hen88] this sequence has the property that vn−i,i = P(i)(x̄), and this
allow us to write the Taylor expansion of the polynomial P. Note that this is particularly
helpful when our goal is to compute a small number of the coefficients of the shifted
polynomial P(x− x̄).

Observe that the iteration (23), applied with j = 0, 1, provides the Newton correction
P(x̄)
P ′(x̄) .

2.3 the durand-kerner method

The Durand-Kerner method, also known as Weierstrass method, is one of the first
techniques introduced for the simultaneous approximation of polynomial roots.

2.3.1 The iteration

The method is described by the following iteration

x
(k+1)
i = x

(k)
i −

P(x
(k)
i)∏

j6=i(x
(k)
i − x

(k)
j)

(24)

where x(k)i and x(k+1)i , for i = 1, . . . ,n, are the approximations to the roots of P(x) at
two subsequent steps of the iteration.

2.4 the erlich-aberth method 29

An interesting derivation of this formula has been given by Aberth in [Abe73].
One may try to request that x(k+1)i = ξi where ξ1, . . . , ξn are the roots of P. Let
∆i = x

(k+1)
i − x

(k)
i , so that if ξi = x

(k+1)
i the following relation holds:

P(x) =

n∏
i=1

(x− ξi) =

n∏
i=1

(x− x
(k)
i +∆i).

If we keep only the linear terms in ∆i in the above expression we have

P(x)
.
=

n∏
i=1

(x− x
(k)
i) −

n∑
i=1

∆i
∏
j6=i

(x− x
(k)
i).

Setting z = z(k)i and solving by ∆i we find iteration (24).

2.3.2 Quadratic convergence

As shown for example in [McN07] this method has local quadratic convergence. More-
over, even if convergence turns to linear in the case of multiple roots, Fraigniaud has
shown in [Fra91] that quadratic convergence is still maintained by the mean of the
approximations convergent to a multiple root.

2.4 the erlich-aberth method

The Erlich-Aberth method (introduced independently by Aberth [Abe73], Börsch-
Soupan [BS63] and Ehrlich [Ehr67]) is a numerical engine that aims to approximate all
the roots of a polynomial simultaneously. It is based on the Newton method and the
idea of implicit deflation.

2.4.1 Implicit deflation

We can derive the iteration of the Erlich-Aberth method trying to apply the Newton
method to a (hopefully) good approximation of the deflated polynomial.

More precisely if we want to approximate the k-th root of the polynomial assuming
that the other roots are known to be

ζ0, . . . , ζk−1, ζk+1, . . . , ζn,

30 simultaneous approximation

we can apply the Newton method to the linear function

fk(x) =
P(x)∏

i 6=k(x− ζi)

and obtain convergence in one step. Modifying this simple observation to suit the
case of simultaneous approximation, we can apply the Newton method to the rational
function

gk(x) =
P(x)∏

i 6=k(x− ξi)

where ξi are the approximation obtained at the previous step. Obviously gk is not a
linear function as in the case analyzed before, but if the approximation are near enough
to the roots of P then gk will become a good approximation of fk, at least in a proper
neighborhood of ξk.

2.4.2 Convergence

Erlich-Aberth method has local cubic convergence in every simple root (as shown in
[Abe73]). In the case of multiple roots of multiplicity m, the convergence rate is only
linear with an error reduction of O(1− 1

m).

This fact can be seen by simply expanding the iteration with its Taylor series centered
at the zero, and observing that derivatives are zero until the third order.

Remark 2.1: Observe that in order to apply Aberth’s iteration it is sufficient to have
a “black box” which provides the ratio P(x)

P ′(x) for a given input value x. This allows to
apply the method to polynomials represented in different basis, not necessarily the
monomial one.

2.5 the bairstow method

In this section we recall the Bairstow method for computing real quadratic factors of a
real polynomial, together with a more recent version which implements a simultaneous
iteration technique.

2.5 the bairstow method 31

2.5.1 Classic Bairstow method

The classic Bairstow method, first introduced by Bairstow in [Bai20], has the purpose
of approximating a pair of complex conjugated roots of a real polynomial.

The main advantages of this method are the following:

1. Only real arithmetic is needed during computation; this can give a good in-
crease in the performance and much easier handling of overflow and underflow
conditions;

2. The structure of the problem is used and maintained, so the roots computed by
the algorithm are guaranteed to be real or complex conjugated pairs;

The method approximates the coefficients of a quadratic factor of the polynomial
associated with a pair of complex conjugated roots.

More precisely, suppose that we want to approximate the pair of roots {ζk, ζk} of
the polynomial P(x), or equivalently the quadratic factor x2 + rx+ q = (x− ζk)(x− ζk)

that divides P(x).

Let r0,q0 be an initial guess for the coefficients of the quadratic factor. We can
compute the euclidean division of P(x) by the polynomial x2 + r0x+ q0 that yields:

P(x) = (x2 + r0x+ q0)Q(x) + cx+ d.

Clearly, the quadratic factor divides P(x) if and only if the vector c = d = 0.

The coefficients of the remainder can be seen as function of r, q and we may apply
2-dimensional Newton iterations to approximate the coefficients r,q.

It can be easily seen that if we divide Q(x) by x2 + rx+ q, obtaining the remainder
x2 + c1x + d1 we can write the Jacobian as a function of r,q, c1,d1 and obtain the
following Newton iteration:[

rk+1

qk+1

]
=

[
rk

qk

]
−

[
c1rk + d1 c1

c1qk d1

]−1 [
c

d

]
.

The values c, d, c1 and d1 can be evaluated at every step with a Horner-type scheme.

32 simultaneous approximation

2.5.2 The parallel implementation

To implement the Bairstow idea following an “Aberth-like philosophy” we need a way
of implicitly deflating the polynomial by the approximated factor x2 + pkx+ qk.

A possible way to achieve this is exposed by Luk in [Luk96] referring to an older
procedure developed by Handscomb in [Han62].

The classical Bairstow method proceeds computing R(x) = P(x) mod x2 + rx+ q
at every step and trying to find r, q such that R(x) ≡ 0. The simultaneous version of
the algorithm, instead, performs an implicit deflation using the approximation of the
other quadratic factors. So, to approximate the k-th pair of roots the Newton method is
applied to:

Rk(x) =

(
P(x)∏

j6=k(x
2 + rjx+ qj)

)
mod (x2 + rkx+ qk).

Remark 2.2: The Bairstow method here exposed can be seen as a generalization of the
Aberth method. If we replace the approximation of the quadratic factors with linear
factors over C[x] we obtain exactly that

P(x)∏
j6=k(x− ξj)

mod (x− ξj) =
P(ξj)∏

j6=k(x− ξk)
.

2.5.3 Cost of the Bairstow iteration

The Bairstow iteration exposed here is more expensive in terms of arithmetic operation
than the classic Aberth iteration. Nevertheless, the fact that only real arithmetic is
necessary can give a gain in performance which compensates that, so the method can
still be quite useful in practice.

Moreover, the approximated roots will be guaranteed to occur in complex conjugate
pairs.

3
P O LY N O M I A L’ S R O O T S I N C L U S I O N S

The problem of approximating polynomial roots is connected to the one of giving
precise and guaranteed bounds to the error affecting these approximations.

We will present some theorems and results that allow to state different type of
inclusion for polynomial roots, typically in discs with centers in the approximations
computed at the general step.

A detailed analysis of these and many other inclusion results can be found in [Hen88].

3.1 newton inclusions

3.1.1 Preliminary results

We are interested in a set of inclusions related to the Newton correction of the poly-
nomial computed at a point z̄. These results are particularly useful since both Aberth
method and Newton method must compute the value of P(z̄)P ′(z̄) and so inclusions based
on this ratio are often “free” in terms of computational cost.

We have already seen in Section 2.1 how to compute the coefficients of the Taylor
expansion of P at a point x̄.

Theorem 3.1: Let wi be the i-th coefficient of the Taylor expansion of the polynomial P(x) in
x̄, i.e. the i-th coefficient of the shifted polynomial P(x− x̄). If we define

β(x) = min
16m6n

[(
n

m

) ∣∣∣∣ w0wm
∣∣∣∣]1/m

then B(x̄,β(x̄)) contains at least one root of P(x).

This theorem induces a family of corollaries simply by changing the value of m. For
instance, for m = n and m = 1 we obtain the following corollaries.

Corollary 3.2: Let P(x) be a polynomial of degree n. There is always at least a root of it
contained in the set B(x̄,P(x̄)

1
n).

33

34 polynomial’s roots inclusions

Corollary 3.3: In the same hypothesis of Corollary 3.2 we have that the set B(x̄,n P(x̄)P ′(x̄))

always contains a root of the polynomial.

Those two corollaries are obtained by putting respectively m = n and m = 1 in
Theorem 3.1.

3.1.2 Higher order inclusion

In some cases it may be interesting to find inclusions results for k roots, instead of only
one. This is particularly helpful, for example, if we are trying to separate a cluster of
roots from the others.

Observe that if the coefficients of the Taylor expansion at x̄ are such that

w0 = w1 = . . . = wm = 0

then P has a zero of multiplicity (at least) m in x̄.

This suggests that, by continuity of the roots with respect to the coefficients, if those
coefficients are small enough then at least m roots of P are close to x̄.

We would like to give a formal statement of this vague intuition, reporting a result
due to Montel.

Theorem 3.4: Consider the following polynomial in the variable ρ:

ρn −

(
n− 1

m− 1

)
|w0|−

(
n− 2

m− 2

)
|w1| ρ− . . .−

(
n−m

0

)
|wm| ρm−1.

This polynomial has always a unique non negative root ρm and the disc B(x̄, ρm) contains at
least m roots of the polynomial P.

In many situations we have not only that w0, . . . ,wm are small, but also that wm+1

is much bigger than wm. That will be the typical case in which we identify a cluster of
m roots at x̄.

It may be advantageous, in these cases, to use the following result due to Van Vleck.

Theorem 3.5: Let wm 6= 0. Consider the following polynomial in the variable ρ:

|wm| ρn −

(
n− 1

m− 1

)
|w0|−

(
n− 2

m− 2

)
|w1| ρ− . . .−

(
n−m

0

)
|wm| ρm−1.

3.2 gerschgorin inclusions 35

This polynomial has always a unique non negative root ρ∗m and the disc B(x̄, ρ∗m) contains at
least m roots of the polynomial P.

3.2 gerschgorin inclusions

3.2.1 From polynomials to linear algebra

In this section we analyze Gerschgorin-type inclusion, i.e. inclusions based on Ger-
schgorin’s theorems. These results allow to obtain some discs that are not guaranteed
to contain a root, but such that every connected component of their union contains
exactly m roots where m is the number of discs which form the component.

We use Theorem 1.17 and perform an analysis almost identical to the one in Sec-
tion 1.7.

Suppose that we are given a polynomial P(x) and a set of approximations xi. We
may construct a companion-like matrix C(P, x) as in Definition1.2:

C(P, x) =


x1

. . .

xn

−


a1 · · · an
...

...
a1 · · · an

 where ai =
P(xi)

pn
∏n
j=1
j6=i

(xi − xj)
.

We have already seen that the eigenvalues of this matrix are exactly the roots of P and
so, by simply applying Gerschgorin theorem, we obtain a set of bounds.

According to Gerschgorin theorem the roots ξ1, . . . , ξn are contained in the union of
the discs of center xi and radius n |ai|. Moreover, if this union is made up of several
connected components, every one of these contains a number of roots equal to the
number of discs that form the component.

3.2.2 Guaranteed radius computation

An immediate problem that affects all these results on root inclusions is that we work
in floating point arithmetic and not really on the complex field. Nevertheless, we would
like to have guaranteed inclusions, i.e., we would like to bound the error that affects the
computation and give certainly true statements about root’s positions.

36 polynomial’s roots inclusions

3.3 inclusion results for selecting starting points

We present a method, used in MPSolve, that relies on the knowledge of the polynomial
coefficients in the monomial basis to determine some inclusion discs. This method has
proved to be particularly effective to distinguish “small” and “large” roots.

The results that we present here give inclusion results independent of the approxi-
mation obtained at a given step of the iteration. For this reason these are particularly
effective to find good starting points for the approximation algorithms.

In the case of secular equations, instead, a simpler method will be used based on the
observations made in Section 1.7.

We see how it is possible to combine those two strategies to obtain a composite
polynomial approximation algorithm that exploits the advantages of both strategies.

3.3.1 Choice of starting points based on the Rouché theorem

The first algorithm for choosing the starting points that we inspect here is the one
presented in [Bin96], based on the Rouché theorem.

Theorem 3.6 (Rouché): Let f, g be two holomorphic functions defined on a simply connected
domain D with boundary Γ , and suppose that the following relation holds

|f(x)| > |g(x)| for every x ∈ Γ .

Then the number of zeros of f in D is equal the the number of zeros of f+ g in D.

Suppose that we are given the polynomial

P(x) =

n∑
i=0

pix
i.

Choose k such that pk 6= 0. We may then consider f(x) = pkx
k and g(x) = P(x) −

pkx
k. If we find a positive real number r such that∣∣pkxk∣∣ > ∣∣P(x) − pkxk∣∣ for every x, |x| = r,

3.3 inclusion results for selecting starting points 37

then we may apply Theorem 3.6 and obtain that P has exactly k roots in B(0, r). Instead
of trying to find this r directly we may observe that

∣∣P(x) − pkxk∣∣ 6 n∑
i=0
i 6=k

|pi| |x|
i ,

where equality is reached for some values of the coefficients with the same modulus of
|Pi|. So if we find a positive real θ that solves

|pk| θ
k −

n∑
i=0
i 6=k

|pi| θ
i = 0 (25)

then
∣∣pkxk∣∣ > ∣∣P(x) − pkxk∣∣ for |x| = θ.

It’s possible to show that, for every 0 < k < n, this equation can have two or zero
positive solutions, while in the case of k = 0,n there exists exactly one solution.

We call these solutions tk < sk whenever they exist, and we call s0 the positive
solution for k = 0 and tn the one for k = n.

Theorem 3.7: Let θ be a positive solution of equation (25) for a given k. Then the closed disc
B(0, θ) contains k roots of P.

Proof. It follows directly from the previous statements.

Consider now a solution θ such that

|pk|θ
k >

n∑
i=0
i 6=k

|pi| θ
i.

We have that, in particular, |pk|θk > |pi| θ
i for every i 6= k. So we can write, for every

i < k < j ∣∣∣∣ pipk
∣∣∣∣ 1
k−i

< θ <

∣∣∣∣ pjpk
∣∣∣∣ 1k−j .

The inequality will be still true if we take the maximum of the left member for i < k
and the minimum of the right one for j > k. We refer to these two values respectively
as uk and vk.

Clearly, if a solution θ do exists, we have that uk < vk.

38 polynomial’s roots inclusions

Theorem 3.8: Let 0 = k1 < k2 < . . . < kq−1 < kq = n the values of k such that
equation (25) has at least one positive solution. Let t0 = 0 and sn = +∞. Then, the polynomial
P has ki+1 − ki solutions in every annulus

Ai =
{
z ∈ C | ski 6 |z| 6 tki+1

}
.

and the annuli {tki 6 |z| 6 ski} do not contain roots of P.

These theorems, with some auxiliary propositions, are all proved in [Bin96], where
we refer for a deeper analysis.

These observations suggest a method for choosing the starting points. We may
choose ki+1 − ki starting points equally distributed on a circle of radius

ski+tki+1
2 . The

problems in this approach are determining the values of k such that equation (25) has
positive solutions, and then computing the values of ski and tki explicitly.

A possible method to overcome this issues is to determine the values of k such
that uk 6 vk. This is a necessary condition in order that the equation |pk| x

k =∑n
i=0i 6=k |pi| x

i ha real positive solution. Suppose that k1, . . . ,kn are those indices; we
will the use ki+1 − ki equally distributed points on the circle of radius uki+1 as starting
points. As clarified by the next paragraph, these points will be included in the annulus
{tki 6 |x| 6 ski+1}.

3.3.2 The Newton polygon

Here we present a technique used to compute the ui, based on the Newton polygon.
Consider the set of points of coordinates (i, log(|pi|)) for i from 0 to n, pi 6= 0. In the
case where where pi = 0 we may consider the point (i,−∞) or simply ignore these
coefficients.

We are interested in computing the upper part of the convex hull of these points. This
will be identifiable with a subset {ki | i = 1, . . . ,q} of the indices 1, . . . ,n. The convexity
condition implies that the slopes of the linear function connecting (ki, log(|pki |)) and
(ki+1, log(

∣∣pki+1∣∣)) will be decreasing.

These slopes are given by

αi =
log(

∣∣pki+1∣∣) − log(|pki |)
ki+1 − ki

.

3.3 inclusion results for selecting starting points 39

Setting log(ri) = αi we have that ri =
∣∣∣ai+1ai ∣∣∣ 1

ki+1−ki , that are the exponential of the
slopes.

In [Bin96] is shown that ri = ui+1 = vi and so using ri as radii for the initial
collocation of the approximations yields a choice of starting points contained in the
annuli given by Theorem 3.8.

The convex hull of a set of points in the plane can be computed in O(n), using the
Graham scan exposed in [Gra72].

3.3.3 Maximizing starting points distances

It has been empirically observed that when placing the initial approximations it is
preferable not to choose starting points close to each other. In fact, Aberth’s method
may encounter convergence problems if started with initial approximations that are too
near.

This is the reason that suggested to choose the starting approximations equally
spaced on circles of the radii obtained by the Newton polygon.

Even using this technique, there may be cases where two radii are relatively close
and this could cause two starting points to be quite near even on different circles.

There are two possible approaches to solve this issues, and both will be simultane-
ously applied in the final algorithm.

The first idea is to collapse circles that are too near.
Let r1 and r2 be the two radii determined by the Newton polygon. Suppose that the

approximations chosen are

{
r1e

2iπ
m1 ∈ C , i = 1, . . . ,m1

}
∪
{
r2e

2jπ
m2

+σ , j = 1, . . . ,m2

}
.

We would like to decide if the strategy of using a single circle of radius r̃ = m2r1+m1r2
m1+m2

,
i.e. of choosing the initial approximations{

r̃e
2iπ

m1+m2 , i = 1, . . . ,m1 +m2
}

is convenient or not.
For this purpose, we compute the minimum of the distance between the starting

approximation in both cases, and select the strategy that maximize this minimum.
In the second case we are looking for a shift of the angle of the placement on the

circles, selecting a sequence of angles σi for i = 1, . . . , t− 1 such that the distance from

40 polynomial’s roots inclusions

the points is maximum when rotating the placement on the (i+ 1)-th circle by σi (and
not rotating the first). We need to solve the minimax problem associated with this issue.

3.3.4 Solving the starting minimax problem

Suppose to have a set of initial radii ri, such that r1 < . . . < rt, with mi roots to place
on every circle. We want to determine σ1, . . . ,σn−1 that maximize the minimum of the
distances of the starting approximations, i.e. such that

min
(i,k) 6=(j,l)

∥∥∥∥rie 2kπmi − rje
2lπ
mj

∥∥∥∥
2

is maximized for every 1 6 i, j 6 t, 1 6 k 6 mi and 1 6 l 6 mj.
Consider, for now, only two circles of radius r1 < r2, and suppose that the bigger

circle is rotated of an angle σ.
The distance between two points can be written as an increasing monotone function

of the angle α for 0 6 α 6 π, and so we may minimize the difference of the angle
between the directions of these points.

The difference αij is

αij = 2π

(
i

m1
−

j

m2

)
− σ.

Our objective is choosing σ∗ in a way that maximizes mini,j αij.

Theorem 3.9: One of the values of σ that realizes the maximum of minij αij is

σ∗ =
π

lcm(m1,m2)

where lcm(m1,m2) is the least common multiple of m1 and m2.

Proof. We may suppose without loss of generality that i and j are in Z, since the
minimum of the distances does not change. We may then write

min
i,j

(
i

m1
−

j

m2

)
=

1

m1m2
min
i,j

(m2i+m1j) =
lcd(m1,m2)
m1m2

=
1

lcm(m1,m2)
.

Using Bezout’s identity we have that the application

φm1,m2
(i, j) : {1, . . . ,m1}× {1, . . . ,m2} → R

(i, j) 7−→ 2π
(
i
m1

− j
m2

)

3.3 inclusion results for selecting starting points 41

has the set {
2π

k

lcm(m1,m2)
| k = 0, . . . , lcd(m1,m2)

}
as image. This implies that any value of α of the form 2π(k+0.5)

lcm(m1,m2)
maximizes the

distance of σ from the image. Setting k = 0 we obtain

σ∗ =
π

lcm(m1,m2)
.

This result suggests a method for finding a possibly good approximation of the
solution of the placement problem. We may start from placing the points on the first
circle with σ = 0, and then proceed on the others in increasing order determining the
shift σ so that we reach the maximum distance between every circle and the previous
one.

Remark 3.10: Note that this solution is not automatically the solution of the global
minimax problem involving all the circles. But if we combine this strategy with the
one of collapsing the circles with close radii we have good chances that the circles are
enough separated in a way that the minimum of the distance is realized on the same
circle or on two subsequent ones. If that is the case, our solution is the real solution of
the minimax.

3.3.5 Finding starting points for secular equations

We’ll now analyze the problem of determinate suitable starting points for the approxi-
mation of the roots of a secular equation

S(x) =

n∑
i=0

ai
x− bi

− 1.

We have seen in Section 1.7 that bi and ai may be used to give Gerschgorin-like
inclusions for the roots. This means that at the starting of the algorithm, with basically
no computation at all, we already have a set of results on the position of the roots.

More precisely, we know that they are contained in the union of the circles B(bi,n |ai|),
and so it seems natural to choose precisely the bi as starting approximations. One may
observe that since the bi are poles of the secular function it’s not possible to evaluate
S(x) if this choice of starting points is made. This is not a problem since we have

42 polynomial’s roots inclusions

already described in Algorithm 4 how it is possible to compute the Newton correction
of the associated polynomial even at the points bi.

The use of the Newton polygon to detect the starting approximations may seem a
fallback choice used mainly because is cheap and we are not able to find sk and tk
easily. Actually section 3.4 will highlight how this strategy is very appropriate to find
sharp bounds, and will even refine some of the results that are reported here.

3.4 inclusion results based on tropical algebra

In this section we show some other results regarding polynomial roots inclusions. More
precisely, we will show a connection between a polynomial in K[x] where K is R or C

and the polynomials in a tropical semiring.
We then show that the knowledge of the tropical roots of this polynomial give us some

inclusion results on the root of the original polynomial.
Here, we highlight some of the results obtained by Sharify in [Sha11] and by Sharify

and Gaubert in [GS09].

3.4.1 General notions of tropical algebra

Definition 3.11: The following operations defined on R+

a⊕ b := min(a,b)

a⊗ b := a+ b

are such that (R+,⊕,⊗) has a semiring structure, and is called the tropical semiring.

Definition 3.12: A tropical polynomial of degree n is a polynomial on the tropical
semiring, i.e. a formal expression of the form:

tP(X) =

n⊕
k=0

PkX
k

From the definition that we have given of the operations on the tropical semiring,
it can be easily seen that a tropical polynomial is identifiable with a piecewise linear
function on R+; precisely, expanding the definition of ⊕ and ⊗ we get a function f(x)
of the form:

f(x) = max(Pk + k · x).

3.4 inclusion results based on tropical algebra 43

Figure 2: Piecewise linear function associated to tP(x) = x3 ⊕ 0.5x2 ⊕ 7x⊕ 8

tP(x)

x1 2 3 4

1
2
3
4
5
6
7
8
9
10
11

It has been shown in [CGM80] that there exists a unique n-tuple of positive coefficients
c1, . . . , cn such that

f(x) = Pn +

n∑
i=1

max(x, ck)

and these ck will be called the tropical roots of the polynomial tP(X).

3.4.2 Computing tropical roots

Consider, as an example, the tropical polynomial tP(x) = x3 ⊕ 2x2 ⊕ 7x⊕ 8. If we
plot the graph of the associated piecewise linear function we obtain the one shown in
Figure 2.

This polynomial has two tropical roots with multiplicity 1 and 2.

These roots can be easily computed in O(n logn) time using the Graham scan (see
[Gra72]) applied to the computation of the Newton polygon associated to tP, i.e. the
upper convex hull of the points (i, logai).

The opposite of the slopes of the linear piece of the Newton polygon are exactly the
tropical roots, as is shown in Figure 3 for the polynomial considered in our example.

3.4.3 Using tropical roots to find classical roots

Recall that, in the previous section, we have used these roots as a starting radius for
the approximations. This paragraphs justifies this choice. In [Sha11] one can find two

44 polynomial’s roots inclusions

Figure 3: Newton polygon associated to tP(x) = x3 ⊕ 2x2 ⊕ 7x⊕ 8. The vertexes corresponding
to the tropical roots are highlighted in red.

results (reported here) that give us inclusions of the classical roots of P in specific
annuli, that are more strict the more the tropical roots are separated.

Given the polynomial
∑
k akx

k we can consider the associated tropical polynomial
given by tP(X) =

∑
k |ak|x

k and we have that, if the tropical roots are well separated, it
is possible to determine some annuli where the classical roots are contained.

Theorem 3.13: Suppose that, for some i = 1, . . . ,n− 1 the following conditions holds:

αi > 9αi−1 and αi <
1

9
αi+1.

Then the annulus {
1

3
α 6 |ζ| 6 3αi

}
contains exactly mi roots of P(x), where mi is the multiplicity of the tropical root αi.

Theorem 3.14: If the following relation holds for some i

αi > (2mi+1 + 2)αi−1 and αi <
1

2mi+1 + 2
αi+1.

where mi is the multiplicity of the tropical root αi, then the annulus{
1

2
α 6 |ζ| 6 2αi

}
contains exactly mi roots of P(x)..

Remark 3.15: This result clarifies the connection between the Rouché based inclusions
presented in Section 3.3 and the use of the Newton polygon to approximate the values

3.5 roots isolation and convergence rates 45

ski and tki . Moreover, with this technique we are able to give precise bounds for the
inclusions whenever there is a strict separation of the tropical roots. This justifies the
strategy that we have proposed in Section 3.3.3 of collapsing the radii that are too close.

3.5 roots isolation and convergence rates

3.5.1 The Newton method

In this section, we are interested to analyze the behaviour of a polynomial root’s
approximation when the Newton method is applied to it.

By the basic theory of the Newton method, we know that, if the root is simple, there
exists a neighborhood U such that the sequence {xk} obtained by starting from any
point x0 ∈ U is quadratically convergent. In general it can be quite difficult to give
results on this neighborhood, a part the fact that it exists.

Some interesting results on this topic are covered in [Til98]. We report here the
theorems that will be useful in the development of our algorithm.

Theorem 3.16: Let P(x) be a monic polynomial of degree n and ξ1, . . . , ξn its complex roots.
Suppose that n > 4 and the roots are pairwise distinct. If α is a real number such that

|α− ξ1| 6
1

3(n− 1)
|α− xi| for i = 2, . . . ,n

then the sequence generated by the Newton method applied to P with α as starting point is
quadratically convergent, and more precisely if we denote with α(m) the m-th element of this
sequence we have that ∣∣∣α(m) − ξ1

∣∣∣ 6 1

22
m−1

|α− ξ1|

Remark 3.17: In the light of the previous theorem we may note that for the purpose
of approximating the roots of a polynomial the real difficult step is finding some
approximations that satisfy the hypothesis of the previous theorem. Once this is done,
it’s not difficult to obtain arbitrary precision approximations simply by applying the
pure Newton method and controlling the error with the bound just obtained.

In the following, we will often refer to the first step as isolation and to the second step
as refinement of the roots.

46 polynomial’s roots inclusions

3.5.2 Aberth’s method

Similar results to the ones of the previous section can be achieved when studying
Aberth’s method. Aberth’s method has a local cubic convergence and so we’ll give
neighborhoods of the roots such that the convergence is “cubic from the start”.

Theorem 3.18: Let P(x) be a monic polynomial of degree n > 9 with pairwise distinct roots.
Let αi be a set of approximations of the roots ξ1, . . . , ξn. Suppose that for every i = 1, . . . ,n
the following relation holds

|αi − ξi| 6
1

3
√
n− 1

∣∣αi −αj∣∣ for i 6= j.

If we consider the sequence of vectors α(m) whose components are the points obtained as
approximations for the roots after m steps of the Aberth method then∥∥∥α(m) − ξ

∥∥∥∞ 6
d

23m

where ξ is the vector of the roots and

d =
1√
n− 1

max
j6=i

∣∣αj −αi∣∣

3.6 cluster detection and shifting techniques

In this section will see some techniques used to detect and overcome intrinsic difficulties
of roots clusters.

It is hard to be formal about the cluster concept. We usually call a cluster of roots a
multiple root or a set of roots whose relative is distance is smaller than the machine
precision.

Actually, from the point of view of the floating points computations, these concept
do not differ a much.

We have already seen in Chapter 2 that most methods have only linear convergence
in the case of multiple roots and, moreover, the convergence is even slower if the
multiplicity of the root is high.

3.6 cluster detection and shifting techniques 47

3.6.1 Cluster detection

The first problem that arises is deciding if a certain subset of roots is a cluster or not.
Clearly this is even more difficult since we have not given a precise definition of cluster.

We give the following definition to make clear what we mean when speaking of
clustered approximations.

Definition 3.19 (Clustered approximations): Let x1, . . . , xn a set of approximations for
the roots ξ1, . . . , ξn of the polynomial P(x). Let B(xi, ri), i = 1, . . . ,n be the Gerschgorin
discs. The set xi1 , . . . , xim , m > 1 is called set of clustered approximations if ∪mj=1B(xij , rij)
forms a single connected component of the union ∪ni=1B(xi, ri) of the Gerschgorin
discs.

Definition 3.20 (Isolated cluster): Under the assumptions of Definition 3.19, a set
of clustered approximations xi1 , . . . , xim is called an isolated cluster if the set of discs
B(xij , 3nrij) is disjoint from the remaining Gerschgorin discs.

We will see that the condition of isolation will be desirable to perform additional
checks on the cluster structure.

In certain circumstances we use the same term cluster and isolated cluster when
referring to the union of the Gerschgorin discs ∪mj=1B(xij , ,)rij .

3.6.2 Shrinking clusters to overcome linear convergence

As already pointed out, the worst problem that clusters introduce is a degrade in the
convergence speed of the iterative methods used to approximate roots

There is little that can be done until clusters are not detected, but once we know that
some approximations are likely to be m approximations of the same multiple roots,
or at least approximations of close roots, we can take advantage of this knowledge to
improve convergence.

Suppose that we have a set of approximations xi1 , . . . , xim that are likely to be a
cluster (in the above sense). We may consider the point 1

m

∑m
j=1 xij , the mean of all

these points, as the center of the cluster.

We have already seen in the analysis of the Durand-Kerner method that the mean of
the approximations of a multiple root still has good convergence properties, and this
justifies our choice of taking it as a representative of the cluster.

48 polynomial’s roots inclusions

There is a direct way to try to identify a multiple root of order m, if it exists. Suppose
that x̄ is a root of multiplicity m of P(x), i.e., there exists a polynomial Q(x) such that
Q(x̄) 6= 0, and P(x) = Q(x)(x− x̄)m. It is easy to see that x̄ is a simple root of P(m−1)(x).

Based on this observation, we propose the following algorithm to approximate a
multiple root x̄ of a polynomial given a cluster of approximations xi1 , . . . , xim .

• Consider the point x0 = 1
m

∑m
j=1 xij as a first approximation of x̄;

• Apply some iterations of Newton’s method to the polynomial P(m−1)(x) using
x0 as starting point; if the iterations converges to a point in the union of the
Gerschgorin discs forming the cluster, use this value as new approximation;

• otherwise leave approximations unchanged.

In the case of a tight cluster of roots, this procedure, if working, provides an approxi-
mation of a root of P(m−1)(x) inside the union of discs associated with the cluster. We
call this root of Pm)(x) the gravity center of the cluster.

In principle, this procedure does not guarantee the convergence to a root of P(m−1)(x)

inside the cluster. However, if the discs forming the cluster are sufficiently well
separated from the remaining disc then it is possible to prove convergence. In fact the
following theorem holds [MS49]

Theorem 3.21 (Marden-Walsh): Assume that the polynomial P(x) has m zeros in B(c, r)
and n−m zeros outside the disc B(c,R). Then, if (r+ R)/r > 2n/m then the first derivative
P ′(x) has a zero in B(c, r).

It is easy to prove that a repeated application of the Marden-Walsh theorem provides
the following

Corollary 3.22: Assume that the polynomial P(x) hasm zeros in the discs B(c, r) and n−m

zeros outside the disc B(c,R). If

r+ R

r
> 2

n!
(n− k)!

(m− k)!
m!

for a given k, 1 6 k 6 m− 1, then the k-th derivative P(k)(x) has m− k roots in the disc
B(c, r). In particular, for k = m− 1, it follows that the (m− 1)st derivative of P(x) has one
zero in B(c, r) provided that

r+ R

r
> 2

(
n

m− 1

)
.

3.6 cluster detection and shifting techniques 49

Indeed the above corollary provides a condition under which the derivative P(m−1)(x)

has a simple root in the cluster formed by the Gerschgorin discs. However, the con-
dition required by the corollary on the strong isolation of this cluster might be too
restrictive in practice. In the implementation of our algorithm, that we will give next,
we prefer to adopt an adaptive approach where we do not care about checking the
strong isolation of clusters, and we apply a few Newton’s iterations. If convergence
occurs inside the cluster then our procedure is successful. If not, we skip the procedure
leaving approximation unchanged. In this way we may accelerate convergence in many
cases which would not be detected by the strategy based on Corollary 3.22 since the
condition of strong cluster isolation is not fulfilled.

4
T H E A L G O R I T H M S

In this chapter we present our algorithm to solve secular equations and polynomials.
It is based on the ideas behind MPSolve by Bini and Fiorentino (see [BF00]), the ones
provided in eigensolve (see [For02] and [For]) and the progressive algorithm based on
companion matrix that has been exposed in [MV95]. Below, we give an outline of the
contents of this chapter.

1. A general overview of MPSolve is provided, with particular attention to the
MPSolve “philosophy” that has been borrowed in secsolve.

2. The secsolve algorithm is presented in its two versions to solve secular equations.

3. It is shown that with slight modifications and with the advantage of acquiring
some of the MPSolve infrastructure, secsolve can be used to solve polynomials,
and that in most cases this approach can be more effective than both the original
MPSolve and eigensolve.

4.1 the mpsolve algorithm

The MPSolve algorithm, developed by Bini and Fiorentino, is completely analyzed in
their paper [BF00].

Here, we review some of the main aspects of the software since it has many common
elements with the implementation of secsolve, that we have provided.

Most of shifting and cluster detection methods have been borrowed or adapted to our
implementation, and the software developed is an extensions of the original MPSolve

implementation that can operate both in MPSolve mode and in secsolve mode.

4.1.1 The MPSolve philosophy

MPSolve was designed with some clear principles in mind, that helped to clarify
its purpose. These principles have been followed also developing secsolve, so it is
worthwhile to list them here. We will often refer to these ideas naming them the
MPSolve philosophy. Here the main concepts at the base of this “philosophy” are listed.

51

52 the algorithms

relative error analysis In MPSolve the error is always estimated by using rel-
ative error analysis, instead of absolute error. This seems to be more effective
when performing floating point computations. According to this guideline our
purpose will not be to find the exact roots but, given a precision of w bits, to find
the roots of a polynomial whose coefficients differ from the original ones by a
relative perturbation of the order of 2−w.

adaptivity Instead of using the working precision needed for the worst possible
input, MPSolve follows an adaptive pattern. The computation starts in standard
IEEE floating point and increases the working precision only when necessary and
only for the roots that need it. This allows to obtain a fine tuned algorithm that does
not waste computational effort when not necessary.

implicit deflation Another general rule that MPSolve follows is to use the original
uncorrupted information at all the stages of the algorithm. Some algorithms may
perform explicit deflation, that is when a root α is approximated to the desired
precision the polynomial is deflated by dividing it by (x− α). The algorithm
is applied recursively by using as information the coefficients of the computed
quotient. Since α is not the exact root of P, an error is automatically induced on the
coefficients of the quotient which propagates to the other approximations. To solve
this issue MPSolve uses always the original coefficients, possibly approximated
to the current precision but without losing the original information given in the
input.

4.1.2 Description of the algorithm

The main tools used by MPSolve have already been exposed in the previous chapters, so
we will now explain how is possible to assemble them to obtain the complete algorithm.

We refer to [BF00] for a complete explanation of the procedure.

The general flow of the algorithm is composed by the following steps:

1. Compute a set of suitable starting points, either by using the Newton polygon
if the coefficients are available, or by choosing them on some circles around the
origin.

2. Perform Aberth iteration on the current approximations and compute Newton
inclusion radii in the meantime.

4.1 the mpsolve algorithm 53

3. Check if Newton radii already prove root’s isolation, as seen in Section 3.5. If that’s
the case, jump to step 6. Otherwise, compute Gerschgorin radii as documented in
Section 3.2 and update the cluster structure of the roots.

4. For each isolated cluster, compute a root x̄ of P(m−1) by applying Newton’s
iteration starting from the arithmetic mean of the cluster approximations. Here
m is the multiplicity of the cluster. If x̄ fall outside the cluster or if Newton’s
iteration does not converge, leave the approximations unchanged and skip to
the next cluster. Otherwise compute the first m+ 1 coefficients of P(x− x̄) and
apply the Newton polygon technique to this polynomial of degree m to place new
approximations. If some approximations fall out the union of the discs forming
the cluster, then leave the approximations unchanged and skip to the next cluster.
If not replace the old m approximations with the new ones.

5. If the roots are not isolated or approximated to the desired precision, jump to
step 2. If the roots are in the root-neighborhood for the current precision or the
Newton correction is negligible with respect to the root’s modulus, double the
number of bits used.

6. Apply Newton iteration to the isolated roots until they are approximated with
the desired number of digits.

We’ll now analyze each of the steps in detail.

4.1.3 Starting points selection

In the original article, Aberth suggested to place the starting point on a circle of appro-
priate radius. In our case this method will be followed when the explicit coefficients of
the polynomial are not available.

If, instead, the coefficients are known, we apply the method based on the Newton
polygon exposed in Section 3.3.

Observe that both the initial approximations and the coefficients could not be repre-
sentable in IEEE754 floating point. In this case we’ll use another floating point type
called DPE, i.e., Double Plus Exponent, created exactly to handle these cases. It is
represented, as the name suggests, as a double number with a long integer as exponent.

54 the algorithms

4.1.4 Aberth iterations

Once we have the starting approximations we proceed with a packet of Aberth iterations.
We apply Aberth to every approximation until one of the two following conditions is
encountered:

• The approximations enters the root neighborhood of P for a suitable small ε.
In this case every approximation is a root of a slightly perturbed polynomial,
and for ε sufficiently small even for a polynomial with the same floating point
representation.

• The root is isolated from all the other roots with a separation factor of 3n. This
means that the approximation is sufficiently good to make the Newton method
quadratically convergent.

• The root is approximated with the required number of digits.

When an approximation satisfies one of the previous condition is marked as approxi-
mated and no more Aberth iterations are performed on it during this packet.

The iterations are normally performed with a Gauss-Seidel style iteration, so that
when computing the Aberth correction the newer values of the approximations are
always used. This often true with the exception of the cases where the algorithm is run
in a parallel mode. In that case the Aberth corrections are computed in parallel, and the
new approximations values are available only for the computations already terminated.
In the extreme case where the number of cores is greater than the number of roots this
may even degenerate in a Jacobi-like iteration, in which no new information is used.

4.1.5 Cluster analysis

At the end of every packet of Aberth iterations we have a set of approximations each
one with an associated Newton radius. Cluster analysis, that is run at this stage,
pursues two purposes:

1. Check if the Newton radii computed until now give complete isolation of the
roots, in the sense that they are separated even considering the radii 3n times
larger. As seen in Section 3.5 this proves that Newton iterations on the roots are
quadratically convergent from the start.

2. If the previous condition is not verified, perform Gerschgorin cluster analysis,
that allows to find the clusterization status of the roots.

4.1 the mpsolve algorithm 55

If the first step is successful then no more iterations are needed. Since each approxi-
mation is guaranteed to generate a quadratic convergent Newton method to “its” root,
we may proceed to the refinement step directly.

If that’s not the case, we may try to see if the approximations give a separation of the
root in clusters. If new clusters are found (with respect to the previous cluster analysis)
and are enough separated from the others then we may perform a restart step that tries
to re-dispose the approximations inside the cluster and may lead to further separation
of the roots.

Once this step is completed without succeeding in Newton isolation, we have to
perform other Aberth iterations.

4.1.6 Placing refined approximations

The analysis of the previous section has been designed to deal with multiple roots. In
the case of clustered roots it may fail. Consider the polynomial with a multiple root x̄
and a simple root x̄+ ε, where ε is a suitably small complex number.

Intuitively, the set of m+ 1 approximations for x̄ and x̄+ ε, delivered by a numerical
method, are likely to be identified as a single cluster. Moreover, the process outlined in
the previous section may not work since the Newton iteration performed on P(m−1)(x)

may converge to something which is closer to x̄+ ε than to x̄.

Our proposed workaround to this case is to apply the starting criterion already
presented in section 3.3 to place starting points along circles centered at the root of
P(m−1)(x) inside the cluster. We have already discussed that this method is particularly
effective in recognizing small and big roots. Since the mean of the approximations will
be near to x̄ the roots x̄ and x̄+ ε have quite different moduli if shifted in the center of
the cluster (x̄ will be small with respect to x̄+ ε).

Moreover it is possible to re-apply cluster analysis on the repositioned roots and
actually detect the inner cluster. Consider the following algorithm:

• Compute the root x̄ of P(m−1)(x) as shown in Section 3.6.2;

• if x̄ is in the cluster compute the first m+ 1 coefficients of the polynomial P(x− x̄),
otherwise leave the approximation unchanged and exit;

• Apply the Newton polygon strategy to this polynomial of degree m, and displace
new approximations in the related circles.

56 the algorithms

• If the new approximations are inside the union of the Gerschgorin discs forming
the cluster then output them; otherwise leave the approximations unchanged and
exit.

Remark 4.1: A possible strategy to continue the approximation procedure is to reposi-
tion the roots on circles with the radii obtained by the application of the criterion seen
in section 3.3.

4.1.7 Identifying multiple roots

Consider the case where we have a cluster with a multiple root and a simple root
near to it. It would be nice to have some method to detect when a cluster contains
additional roots that are simple and relatively far from the real problematic situation
but the Gerschgorin discs are not small enough to separate them.

Observe that, if one suspect that a root is of this kind, a possible strategy to detect this
situation is temporary removing it from the cluster, and then performing cluster analysis
as seen before. This procedure may give some radii inclusions obtained through the
Newton polygon that confirm our hypothesis that the separated root is not really part
of that cluster.

We will see in the numerical experiments that this strategy is quite effective in
practice, but the immediate problem that arises is to decide which criterion shall be
used to detect these roots.

A possible criterion is based on the observation that the real purpose of cluster
analysis is overcoming the convergence slowdown in approximating multiple roots or
numerically multiple roots.

Consider, as an example, the Kirinnis polynomial of degree 44. This is the polynomial
with integer coefficients that has 1, −1, i and −i as multiple roots of order 10 and then
4 simple roots that are near these ones, precisely 1+ ε, −1− ε, (1+ ε)i and (−1− ε)i

where ε ≈ 1
1024 .

This is a difficult polynomial to solve since the simple roots near the multiple ones
degrade the effectiveness of our cluster analysis techniques. We expect a multiple root’s
approximation to have approximately u

m correct digits where u are the digits available
in the current precision and m is the order of the multiple roots. If we find a root
in a cluster that has at least u2 correct digits (according to the inclusion radii seen in
Corollary 3.3) then we flag it as quasi-approximated, and we try to detach it from the
cluster as seen above.

4.2 outline of secsolve 57

If the detachment process does not yield separation of the root from the rest of the
cluster we choose to add it back.

4.1.8 Refinement step

Once the roots are Newton isolated, we have two choices. If the user has asked only
for isolated approximations (that is the default goal of MPSolve) we terminate the
algorithm. Otherwise we have to apply the Newton method to every approximation,
until the required number of correct digits are found. This is quite easy to control since
we know by the results of Section 3.5 that the convergence is quadratic. It may be paid
some attention, though, to the working precision of the roots since we have to make
sure that floating point errors are negligible with respect to the current error on the
approximations.

4.2 outline of secsolve

This section will cover the description and implementation of the secsolve algorithm.
This is the algorithm that is used to approximate the roots of secular equation, and that
can be generalized to approximate polynomial roots.

All the tools needed to describe and understand this algorithm have been developed
and studied in the previous chapters.

We start by exposing the idea behind secsolve. Suppose that we want to approximate
the roots of the secular equation

S(x) =

n∑
i=1

ai
x− bi

− 1 = 0.

We’ve already seen in Section 1.2 that these roots coincide with the ones of the
monic polynomial P(x) = −

∏n
i=1(x− bi)S(x) of degree n. So our idea for achieving

the approximation of the roots is applying the Aberth method to P(x) given ai,bi,
i = 1, . . . ,n.

4.2.1 The first implementation

We have studied two ways of pursuing this approach, and the first one is quite
straightforward. It consists of computing the Newton correctionN(x) =

P(x)
P ′(x) associated

58 the algorithms

with P without computing the coefficients of P explicitly, but using the procedure
already discussed in Section 1.6.

Once that we have the procedure to compute N(x), applying Aberth method is quite
easy and can be achieved following what has been exposed in Section 2.4, and in
particular in Remark 2.1.

So one could build an algorithm following substantially the MPSolve algorithm, but
using the implicit Aberth computation.

The only open problem, at this point, is finding a good criterion to choose the initial
starting points.

We know that the secular roots are contained in Gerschgorin discs that have bi as
centers as seen in Section 1.7. Based on this observation, one may wonder if the bi are
a good choice for starting approximations.

It turns out they are, and that this choice works well. It does even more in the second
version of the secsolve algorithm, where this is a really good reason to choose the bi as
starting points.

To be more precise, we may note that choosing exactly bi as starting points may
seem little unfortunate since they correspond to poles of the secular function S(x).
Actually that’s not a problem since we have developed an alternative algorithm for the
computation of the Newton correction at bi (see Section 1.6.3 for the details). In fact,
even if S(x) is singular at bi there’s no reason why this should be true even for the
polynomial associated with it.

4.2.2 Modified algorithm with regeneration

We explain now the second version of secsolve that can be seen as an extension of the
first one.

The idea on which this algorithm is built is that, as we have previously seen in
section 1.5.2, a secular equation is better conditioned if the nodes bi are better approxi-
mations of the roots.

Clearly it is not easy to have good approximations from the start, but we may obtain
them during the algorithm execution. So these can be used to compute another secular
equation with the same roots as seen in Section 1.4.

So the basic idea is to follow this procedure:

1. Compute a set of initial approximations.

4.3 managing precision 59

2. Start Aberth iterations applied to P(x) = −
∏n
i=1(x−bi)S(x) until we find that the

approximations are in the root neighborhood, or the Newton correction become
sufficiently small compared to the current precision. The necessary check used to
determine if an approximation belongs to the root neighborhood of S(x) has been
exposed in Section 1.3. The iterations are performed only on the components that
are not yet approximated or Newton isolated.

3. Use the computed approximations as new nodes for another secular equation,
and restart from point 2 until convergence, or isolation. The algorithms for the
regeneration of an equivalent secular equation starting from the polynomial or
another secular equation have been documented in Section 1.4.

4. Perform cluster analysis. We use the same cluster analysis routines already used
for MPSolve, with some small changes to reflect the new structure of the problem.
If some clusters are well isolated by the others (see Section 3.6.1) we perform
the shift of the polynomial in the center if the coefficients of the polynomial are
available.

Remark 4.2: Recall that, in the classic MPSolve algorithm we have to perform Ger-
schgorin cluster analysis at the end of each iteration packet, and so we must compute
the Gerschgorin inclusions radius as seen in Section 3.2. Note that if we compute the
âi for the new representation on the nodes xi, where xi are the approximations at the
end of the iteration packet, then the Gerschgorin inclusion radii are n |âi|. There seems
to be no overhead in computing the new representation. That is not completely true
because in this case the ai must be computed in high precision while the evaluation in
MPSolve can be carried out in standard floating point (with a proper error analysis).

There are some issues that should be discussed before going on and implementing
this algorithm. The first is that we need some kind of precise analysis of the error on
the polynomial evaluation in order to be able to guarantee that the coefficients of the
new secular equation are correct to the current precision.

Actually, managing precision is one of the more subtle things of this algorithm and
must be kept under control. These types of issues are the topic of the next section.

4.3 managing precision

All the implementation and the design of MPSolve and secsolve is done in a multipreci-
sion framework.

60 the algorithms

We have already seen rigorous error bounds on the inclusion theorem stated in the
previous chapters, that will help to analyze this problem.

The approaches followed by MPSolve and secsolve, regarding precision management,
are quite different.

The first works at increasing levels of precisions, paying attention to increase the
precision only on the roots that need it. This means that clustered or bad conditioned
roots will use a higher precision while the good conditioned ones will not.

More precisely, Aberth iterations are applied until roots have converged, fall in the
root neighborhood or lead to a Newton correction whose modulus is relatively smaller
than the machine precision. Once this goal is reached and all other steps listed in the
previous section have been applied the bits of precision used to represent the root are
doubled. Aberth iterations are then applied to the roots that haven’t still reached the
convergent state.

The secsolve algorithm, instead, follows a different approach. It uses two different
states that are continuously alternated:

regeneration stage High precision is used to generate a secular equation on some
given nodes bi with the same roots of the original polynomial or secular equation.
The precision in this step is dynamically determined on every root to make sure
that the values of ai are computed with a relative error smaller than the floating
point precision.

The error on the computation of the ai is estimated with the error bounds
presented in Section 1.4.

aberth stage After the regeneration step Aberth iterations are applied implicitly
until the approximations fall in the root neighborhood. Once this happen a new
representation is computed with the previous approach. If in the Aberth stage
the stop condition guarantees a good approximation of the roots in the current
precision the number of bits used in the representation are doubled. This happens
if one of the following two criterion is verified:

• The approximation falls in the root neighborhood and the conditioning is
smaller than 1. This implies that the small error on the coefficients is greater
than the actual error on the approximation.

• The modulus of the Newton correction is smaller than the product of the
machine precision and the modulus of the approximation and computed
accurately. As seen in Section 3.1 this implies that the approximations are
accurate.

4.3 managing precision 61

The approach of secsolve has the advantage that even in case of bad conditioned
or multiple roots it may be possible to perform the Aberth iteration in floating point,
“wasting” computational effort only in a single step at the start of the iteration.

Estimating the necessary precision for regeneration

When regenerating the secular equation, i.e., computing the new values of ai, we would
like to estimate the necessary precision that must be used to perform the computation.

Recall that, as seen in Section 1.4, we have a total error on the regenerated coefficients
given by

fl (ai) = ai(1+ δi +

n∑
k=1
k6=i

(εi + γi))

where δi is the error on the evaluation of P(bi) (that may be obtained by Horner or by
an implicit evaluation of P), |εi| 6 ε± and |γi| 6 ε∗.

Let u be the relative machine precision in floating point with the number of bits used
for then Aberth iteration.

We would like to have |δi| 6 u and
∑n
k=1
k6=i

|εi + γi| 6 u. For the first term we

rely on the algorithm used to evaluate the polynomial and determine the minimum
number of bits necessary for the computation. For the second term, since |εi|

·
6 u ′

and |γi|
·
6 2
√
2u ′ where u ′ is the machine precision used in the regeneration step, we

may simply choose u ′ so that the relation

n∑
k=1
k6=i

|εi + γi|
·
6 n(1+ 2

√
2)u ′ 6 u

holds. The number of bits is chosen then as the maximum of the two number of bits
obtained by the two estimates.

5
C O M P U TAT I O N A L I S S U E S

5.1 implementation

The algorithm described in this thesis has been implemented by extending the ca-
pabilities of the pre-existing software MPSolve, written by Bini and Fiorentino and
documented in [BF].

MPSolve has been modified in several ways through the process

• Some of the ideas exposed here that were not present in the original version have
been added to the algorithm. They are documented in Section 5.1.1.

• The old algorithm has been adapted to solve secular equations, creating a new
mode in which MPSolve can be run.

• A new algorithm has been introduced that exploits regeneration techniques
exposed in Chapter 4. This can be used to solve both polynomials and secular
equations.

The final version of the MPSolve package will appear soon at http://www.dm.unipi.

it/cluster-pages/mpsolve/.

5.1.1 Extensions to the original algorithm

Some of the new ideas presented in this thesis have been introduced to complete the
existing algorithm.

starting point placement The routine for the placement of the starting points
has been modified to compute the right shifts to the circles that maximizes the
distance between the starting points, and to collapse the circles that are too near,
as documented in Section 3.3.3.

cluster analysis The cluster analysis has been modified to use Gerschgorin circles
instead of Newton ones, and the new strategy for the empirical removal of quasi-

63

http://www.dm.unipi.it/cluster-pages/mpsolve/
http://www.dm.unipi.it/cluster-pages/mpsolve/

64 computational issues

approximated roots in the cluster has been added. It has seen to be effective on
polynomials such as the one of Kirinnins.

5.1.2 Implementation of the new algorithm

As a final step the new algorithm with the regeneration step described in Chapter 4

has been implemented and is able to solve both secular equations and polynomials.

It is possible to select the algorithm to use for the resolution with the -a switch at
command line.

5.1.3 Parallelization

An additional modification that has been done to the original code is the parallelization
of some parts of the algorithm.

Precisely, both the Aberth iterations and the regeneration step have been parallelized.
Parallelizing the regeneration is not too difficult since all the computations to obtain
the new values of ai are independent. They can be carried out in parallel with the only
knowledge of the initial data, i.e., the values of the new bi and the old ai and bi.

Parallelizing the Aberth iterations is a slightly more delicate task. We have already
discussed that we would like to use a Gauss-Seidel style iterations, i.e., we would like
to use always the more updated values of the approximations xi to compute the Aberth
correction.

This is not possible, in general, if the computation for the Aberth corrections are
carried out in parallel. We have made the choice of computing these values in a semi
Gauss-Seidel style. Precisely, we use the more updated values that are available, i.e., all
the ones that have already been computed.

In a general i-th step the knowledge of the previous updated approximations is
not guaranteed, but if k processes are used it is likely to know the value of i − k
approximations (if i > k). If the degree of the polynomial is much bigger than the
number of processor available this is similar to a real Gauss-Seidel iteration. In the
extreme case where the number of processors is greater than the degree, instead, this is
exactly a Jacobi iteration.

This change of strategy does not seem to impact much the performance, and is quite
convenient given the acceleration offered by the parallel environment.

5.1 implementation 65

5.1.4 Input format

The compatibility with the old format used by MPSolve has been maintained, but
since an extension was needed to cope with secular equations a new format has been
introduced.

An input file for MPSolve has the following structure

! Comments are pre f ixed with the symbol !
[Preamble]

[C o e f f i c i e n t s]

Where [Preamble] is a list of commands or assignment that specify the characteristic
of the polynomials, and [Coefficients] is the list of the coefficients according to the
format specified above. All the commands must be terminated by a semicolon.

The available commands are listed here

complex The polynomial coefficients are complex. This is the default and implies
that the coefficients will be given as a pair of number representing the real and
imaginary part.

real The polynomial coefficients are real. This implies that only the real part is
needed in the coefficients list.

integer The coefficients are integer.

rational The coefficients are rational and will be specified in the form a/b or a.

floatingpoint The polynomials are floating point numbers, and so will be listed in
the standard notation 1.234e5. Integer input is also accepted.

degree This is a keyword that needs a value and sets the degree of the polynomial.
For example, Degree=5;

monomial The input is given in the monomial basis, and so n+ 1 coefficients will
be inserted (2n+ 2 if the polynomial is complex) where n is the degree of the
polynomial. The terms must be listed starting in increasing degree order.

secular The input is given as a secular equation. The coefficients ai and bi need
to be specified and need to be listed in pairs a(i) b(i). See the following for a
simple example.

66 computational issues

precision Set the bits of precision of the input coefficients.

dense The input polynomial has dense coefficients.

sparse The input polynomial has sparse coefficients and so the coefficients must be
inserted with their degree.

5.1.5 Input examples

We report here some examples of input files in order to clarify the explanation of the
previous section.

Consider the polynomial x3 − 1. We have the following input file

! The polynomial x ˆ3 − 1

Monomial ;
Integer ;
Real ;
Degree =3 ;

1 0 0 −1

The same polynomial may be written in its sparse representation where only the non
zero coefficients are reported, together with their degree. This has advantages both in
compactness of the code and in performance, since the sparse evaluation algorithms
are used.

! x ˆ3 − 1 in i t s sparse r e p r e s e n t a t i o n
Monomial ;
Integer ;
Real ;
Sparse ;
Degree =3 ;

3 1

0 −1

5.2 numerical experiments 67

Every row is in the form Degree Value. The representation for secular equation is
exactly the same with the exception that we have the double number of coefficients for
the same degree. These are expressed in the form a(i) b(i). So the secular equation

1

x− 2
−

4

x− 5
− 1 = 0

is described with the following input file:

Secular ;
Integer ;
Real ;
Degree =2 ;

1 −2

−4 −5

Consider now an example of polynomial with complex coefficients: x3 − 2ix+ 1. The
input file for this polynomial is

Monomial ;
Integer ;
Complex ;
Degree =2 ;

1 0

0 −2

1 0

5.2 numerical experiments

In this section some numerical experiments with our algorithm are reported.

To better understand where secsolve excels or is not so good we have performed a
side to side comparison with the old MPSolve version and with eigensolve, a polynomial
rootfinder developed by Fortune and presented in [For02].

We analyze the following class of polynomials:

68 computational issues

roots of unity These are the polynomials xn− 1 for various values of n. Since these
polynomials are sparse we expect that methods that can exploit this structure will
be faster.

mandelbrot These polynomials have integer coefficients. They can be obtained by
by a recurrent relation on the degree. Let Pd the polynomial of degree d. We haveP0(z) = 1Pd+1(z) = zP

2
d + 1

.

The roots of the polynomial of degree 1023 are shown in Figure 4.

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5

Figure 4: Roots of the Mandelbrot polynomial of degree 1023

orthogonal polynomials Some families of orthogonal polynomials are analyzed.
Precisely, Chebyshev, Legendre, Hermite and Laguerre’s polynomials will be
tested.

chromatic Some kinds of chromatic polynomials are tested. Their input files start
with chrmc. The roots of one of these polynomials can be seen in Figure 5.

large and small roots This class of polynomial have both small and big (in
modulus) roots, and have been designed precisely for testing how rootfinding

5.2 numerical experiments 69

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Figure 5: The roots of a chromatic polynomial of degree 342

algorithms deal with these extreme cases. Their input files are named lar n.pol in
the case of large roots and lsr .pol in the case of both large and small roots.

partition These polynomials have as k-th coefficient the number of different ways
in which k can be obtained as a sum of positive integers. The roots of these
polynomials converge to a path when n→∞ as is recognizable in Figure 6.

wilkinson This family of polynomials have been traditionally considered a difficult
one for their bad conditioning properties. They were introduced by Wilkinson in
[Wil59] and have the integers from 1 to n as roots, where n is the degree of the
polynomial.

kirinnis These polynomials have 1, −1, i and −i as multiple roots and 4 simple roots
near to these. This family of polynomials is very useful to benchmark cluster
analysis capabilities of an algorithm, since the case of a multiple root with a
simple root near to it is usually quite hard to detect.

mignotte Mignotte polynomials have integer coefficients and the characteristic of
having two roots whose distance is close to Mahler’s bound.

spiral Spiral polynomials are a class of polynomials defined by the formula

P(x) = (x+ 1)(x+ 1+ ε)(x+ 1+ ε+ ε2) . . . (x+ 1+ ε+ . . .+ εn)

70 computational issues

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 6: The roots of the partition polynomial of degree 1600

for every n. They are useful to benchmark the capabilities of an algorithm to
extract approximations of the roots at various precisions.

truncated exponential The series of the exponential truncated to the n-th ele-
ment, with various values of n, are considered as test polynomials.

To correctly evaluate the performance of the various algorithms we chose the same
goal for the computation. The default goal for MPSolve is to give Newton isolated
approximations or, if not possible withing the maximum specified floating point digits,
to give approximated roots. The default for eigensolve, instead, is to give approximated
roots so we chose this last target also for MPSolve.

The results of the multithread runs are also reported but are not directly comparable
to the other ones because of some automatic overclocking that happens when only a
processor is used. The tests have been run on a system with two 6-core processors and
Hyperthreading ™.

The result of the tests have been reported in Table 1. The fastest single threaded
solver in every row is marked with bold font.

We can observe that secsolve is faster in a good amount of test polynomials. It is
notable slower in the case of the roots of unity with respect to MPSolve 2.2, since the
latter can take fully advantage of the sparse representation of xn − 1, while secsolve

5.2 numerical experiments 71

MPSolve 2.2 eigensolve secsolve MPSolve 3.0 (mt) secsolve (mt)
nroots800 0.11 8.37 1.18 0.11 0.38

nroots1600 0.34 57.44 4.41 0.27 1.27

chebyshev80 0.09 0.08 0.12 0.11 0.03

chebyshev160 0.97 0.69 0.37 0.69 0.08

chebyshev320 9.36 7.00 2.32 5.66 0.30

hermite80 0.05 0.06 0.11 0.07 0.03

hermite160 0.55 0.54 0.35 0.50 0.07

hermite320 5.33 5.51 1.70 3.57 0.21

chrma342 19.56 4.43 3.89 9.79 0.47

chrmad340 29.71 4.46 4.82 13.00 0.63

exp100 0.29 0.14 0.12 0.14 0.04

exp200 1.05 1.19 0.59 0.93 0.08

exp400 10.28 10.67 8.82 1.45 0.95

mand127 0.30 0.21 0.18 0.34 0.05

mand255 2.82 2.24 1.08 2.34 0.17

mand511 31.18 20.08 7.04 14.68 0.83

mand1023 456.91 229.60 52.11 93.60 6.17

mand2047 11158.72 3860.10 517.32 1054.67 46.21

spiral20 (50 digits) 0.70 0.07 0.34 0.54 0.21

spiral20 (1000 digits) 0.76 0.13 0.60 0.55 0.25

mig1 200 (50 digits) 0.04 0.85 0.32 0.11 0.19

mig1 200 (1000 digits) 0.15 3.18 2.18 0.18 0.19

kir1 10 (100 digits) 0.23 0.06 0.37 0.56 0.20

kir1 10 (1000 digits) 7.23 1.50 5.33 9.35 2.24

kir1 10 (4000 digits) 55.30 77.38 43.23 70.89 17.01

partition400 0.67 4.81 1.02 0.74 0.17

partition800 5.49 36.90 4.92 4.33 0.63

partition1600 38.45 390.62 25.38 21.86 3.41

partition3200 213.34 7038.98 111.04 109.12 13.26

partition6400 1303.83 45953.33 408.78 470.37 52.02

partition12800 7845.62 - 2786.65 2369.62 291.60

Table 1: Timings of the test runs of MPSolve 2.2, eigensolve and secsolve. The columns marked
with (mt) refer to the tests with multithreading enabled.

uses a dense secular representation. The same holds for the Mignotte-like polynomials
that have a sparse representation.

A
E R R O R A N A LY S I S I N F L O AT I N G P O I N T

This appendix has the purpose of making light in some error analysis performed in the
thesis. Giving the exact error bounds in floating computations might be tricky; this is
particularly true when complex arithmetic is involved since (most) computers don’t
have a logic unit that can handle complex numbers directly.

We start by fixing some notation and conventions:

• u denotes the machine precision. In the case of double precision arithmetic this
constant takes the value u = 2−53 = 10−16. In general, working with d binary
digits, it holds that u = 21−d.

• In real arithmetic for every operation op in {+, /,−, ·} the following relation holds:

fl (x op y) = (x op y)(1+ δ) |δ| 6 u

A detailed analysis of this argument can be found on [Hig96].

a.1 basic operations on the complex field

Arithmetic on the complex field will be based on real floating point arithmetic using
the natural representation z = a+ ib, for a,b ∈ R, where i denotes the imaginary unit
such that i2 = −1.

The sum z3 = z1 + z2 of two complex numbers z1 = a1 + ib1 and z2 = a2 + ib2 is
trivially computed by means of

z3 = (a1 + a2) + i(b1 + b2).

The product z3 = z1 ∗ z2 is computed with the algorithm based on 4 real multiplications
and 2 real additions

z3 = (a1 ∗ a2 − b1 ∗ b2) + i(a1 ∗ b2 + a2 ∗ b1).

73

74 error analysis in floating point

The algorithm for computing the quotient z3 = z1/z2 relies on computing the reciprocal
of z2 and on multiplying it by z1. We refer the reader to the book [Hig96].

Performing complex floating point arithmetic with the algorithm we have the follow-
ing properties.

Theorem A.1: Given the model above for complex arithmetic, the following bounds are valid
for the standard operations.

fl (x± y) = (x± y)(1+ δ) |δ| 6 u (26)

fl (xy) = (xy)(1+ δ) |δ| 6
√
2
2u

1− 2u
(27)

fl
(
x

y

)
=

(
x

y

)
(1+ δ) |δ| 6

√
2
7u

1− 7u
(28)

These bounds will be called ε±, ε∗ and ε÷, respectively.

We report the error bound in performing the summation σ =
∑n
i=1 xi of n numbers.

we consider two different algorithms. The first one computes σ sequentially, the second
one recursively

Algorithm 6 Algorithm for the sequential evaluation of σ

1: procedure SequentialSum(x)
2: σ← 0

3: for i = 1 : n do
4: σ← σ+ xi
5: end for
6: return σ
7: end procedure

Algorithm 7 Algorithm for the sequential evaluation of σ
1: procedure RecursiveSum(x)
2: if n = 1 then
3: σ← x1
4: else if n = 2 then
5: σ← x1 + x2
6: else
7: σ← RecursiveSum(x1, x3, . . .) + RecursiveSum(x2, x4, . . .)
8: end if
9: return σ

10: end procedure

A.1 basic operations on the complex field 75

Both the algorithms perform the same number of arithmetic operations, moreover
they are backward stable as stated by the following:

Theorem A.2: Let fl (σsec) and fl (σrec) the values delivered by the sequential and the recursive
summation algorithms performed in floating point arithmetic with complex numbers. Then

fl (σsec)
.
=
∑n
i=1 xi(1+ εi) |εi| 6 (n− i+ 1)ε±

fl (σsec)
.
=
∑n
i=1 xi(1+ δi) |δi| 6 dlog2 neε±

(29)

B I B L I O G R A P H Y

[Abe73] O. Aberth. Iteration methods for finding all zeros of a polynomial simul-
taneously. Mathematics of Computation, 27(122):339–344, 1973.

[Bai20] L. Bairstow. Applied aerodynamics. Longmans, Green and co., 1920.

[BF] DA Bini and G. Fiorentino. Numerical computation of polynomial roots
using mpsolve version 2.2 (january 2000). Software package and documenta-
tion available for download at ftp://ftp. dm. unipi. it/pub/mpsolve.

[BF00] D.A. Bini and G. Fiorentino. Design, analysis, and implementation of a
multiprecision polynomial rootfinder. Numerical Algorithms, 23(2):127–173,
2000.

[BG07] R. P. Boyer and W. M. Y. Goh. Partition polynomials: asymptotics and
zeros. Arxiv preprint arXiv:0711.1373, 2007.

[BGP04] DA Bini, L. Gemignani, and VY Pan. Inverse power and durand-kerner
iterations for univariate polynomial root-finding. Computers & Mathematics
with Applications, 47(2-3):447–459, 2004.

[Bin96] D.A. Bini. Numerical computation of polynomial zeros by means of
aberth’s method. Numerical Algorithms, 13(2):179–200, 1996.

[BNS78] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen. Rank-one modification of
the symmetric eigenproblem. Numerische Mathematik, 31(1):31–48, 1978.

[BS63] W. Börsch-Supan. A posteriori error bounds for the zeros of polynomials.
Numer. Math., 5:380–398, 1963.

[Car91] C. Carstensen. Linear construction of companion matrices. Linear Algebra
and Its Applications, 149:191–214, 1991.

[CGM80] R A Cuninghame-Green and P F J Meijer. An algebra for piecewise-linear
minimax problems. In Discrete Applied Mathematics,2:267–294, 1980.

[Dem] J.W. Demmel. Applied numerical linear algebra. 1997. SIAM, Philadelphia,
PA.

77

78 bibliography

[EH12] Y. Eidelman and I. Haimovici. Divide and conquer method for matrices
with quasiseparable representations. Presented at Structured Numerical
Linear and Multilinear Algebra Problems Analysis, Algorithms, and Applications,
KU Leuven, September 2012.

[Ehr67] L. W. Ehrlich. A modified newton method for polynomials. Commun.
ACM, 10(2):107–108, February 1967.

[FGHO97] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary. Regularization
by truncated total least squares. SIAM Journal on Scientific Computing,
18(4):1223, 1997.

[For] S. Fortune. Convergence analysis of an iterated-eigenvalue polynomial
root-finding algorithm. In submitted to workshop proceedings.

[For02] S. Fortune. An iterated eigenvalue algorithm for approximating roots of
univariate polynomials. Journal of Symbolic Computation, 33(5):627–646,
2002.

[Fra91] P. Fraigniaud. The durand-kerner polynomials roots-finding method in
case of multiple roots. BIT Numerical Mathematics, 31(1):112–123, 1991.

[Gan80] W. Gander. Least squares with a quadratic constraint. Numerische Mathe-
matik, 36(3):291–307, 1980.

[GGvM89] W. Gander, G. H. Golub, and U. von Matt. A constrained eigenvalue
problem. Linear Algebra and its applications, 114:815–839, 1989.

[Gol73] G.H. Golub. Some modified matrix eigenvalue problems. Siam Review,
pages 318–334, 1973.

[Gra72] R.L. Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Information processing letters, 1(4):132–133, 1972.

[GS09] S. Gaubert and M. Sharify. Tropical scaling of polynomial matrices. Positive
systems, pages 291–303, 2009.

[GVL80] G. H. Golub and C.F. Van Loan. An analysis of the total least squares
problem. SIAM Journal on Numerical Analysis, pages 883–893, 1980.

[Han62] D. C. Handscomb. Computation of the latent roots of a hessenberg matrix
by bairstow’s method. The Computer Journal, 5(2):139–141, 1962.

bibliography 79

[Hen88] P. Henrici. Applied and Computational Complex Analysis, Power Series Inte-
gration Conformal Mapping Location of Zero. Wiley Classics Library. Wiley,
1988.

[Hig96] N.J. Higham. Accuracy and stability of numerical algorithms. Number 48.
SIAM, 1996.

[Luk96] WS Luk. Finding roots of a real polynomial simultaneously by means of
Bairstow’s method. BIT Numerical Mathematics, 36(2):302–308, 1996.

[McN07] J.M. McNamee. Numerical methods for roots of polynomials, volume 14.
Elsevier Science, 2007.

[MMMM06] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured poly-
nomial eigenvalue problems: good vibrations from good linearizations.
SIAM J. Matrix Anal. Appl., 28(4):1029–1051 (electronic), 2006.

[MS49] M. Marden and American Mathematical Society. The Geometry of the Zeros
of a Polynomial in a Complex Variable, volume 3. American mathematical
society New York, 1949.

[MV95] F. Malek and R. Vaillancourt. A composite polynomial zerofinding matrix
algorithm. Computers & Mathematics with Applications, 30(2):37–47, 1995.

[Sha11] M. Sharify. Scaling Algorithms and Tropical Methods in Numerical Matrix
Analysis. PhD thesis, ÉCOLE POLYTECHNIQUE, 2011.

[Til98] P. Tilli. Convergence conditions of some methods for the simultaneous
computation of polynomial zeros. Calcolo, 35(1):3–15, 1998.

[Wil59] J. H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials.
part i. Numerische Mathematik, 1(1):150–166, 1959.

	Introduction
	Notation
	Secular equations
	Introduction to secular equations
	Secular equations and polynomials
	Floating point evaluation and root neighborhood
	Stop condition
	Root neighborhoods

	Computing a new representation
	Transforming a polynomial equation into a secular equation
	Changing the nodes of a secular equation
	Partial regeneration

	Conditioning of the roots
	Conditioning number in the general case
	Computing the condition number using linear algebra

	Computation of the Newton correction
	Formal computation
	Error analysis
	Computing Newton correction at the poles

	Secular roots inclusions
	Gerschgorin based results
	Gerschgorin bounds and root neighborhood

	Simultaneous approximation
	Polynomial evaluation
	The Horner scheme
	Basic Horner scheme
	Computing the derivatives of P(x)

	The Durand-Kerner method
	The iteration
	Quadratic convergence

	The Erlich-Aberth method
	Implicit deflation
	Convergence

	The Bairstow method
	Classic Bairstow method
	The parallel implementation
	Cost of the Bairstow iteration

	Polynomial's roots inclusions
	Newton inclusions
	Preliminary results
	Higher order inclusion

	Gerschgorin inclusions
	From polynomials to linear algebra
	Guaranteed radius computation

	Inclusion results for selecting starting points
	Choice of starting points based on the Rouché theorem
	The Newton polygon
	Maximizing starting points distances
	Solving the starting minimax problem
	Finding starting points for secular equations

	Inclusion results based on tropical algebra
	General notions of tropical algebra
	Computing tropical roots
	Using tropical roots to find classical roots

	Roots isolation and convergence rates
	The Newton method
	Aberth's method

	Cluster detection and shifting techniques
	Cluster detection
	Shrinking clusters to overcome linear convergence

	The algorithms
	The MPSolve algorithm
	The MPSolve philosophy
	Description of the algorithm
	Starting points selection
	Aberth iterations
	Cluster analysis
	Placing refined approximations
	Identifying multiple roots
	Refinement step

	Outline of secsolve
	The first implementation
	Modified algorithm with regeneration

	Managing precision

	Computational issues
	Implementation
	Extensions to the original algorithm
	Implementation of the new algorithm
	Parallelization
	Input format
	Input examples

	Numerical experiments

	Error analysis in floating point
	Basic operations on the complex field

	Bibliography

