
A nested divide-and-conquer method for tensor Sylvester

equations with positive definite hierarchically semiseparable

coefficients

Stefano Massei∗ Leonardo Robol∗

Abstract

Linear systems with a tensor product structure arise naturally when considering the
discretization of Laplace type differential equations or, more generally, multidimensional
operators with separable coefficients. In this work, we focus on the numerical solution of
linear systems of the form

(I ⊗ · · · ⊗ I ⊗A1 + · · ·+Ad ⊗ I ⊗ · · · ⊗ I)x = b,

where the matrices At ∈ Rn×n are symmetric positive definite and belong to the class of
hierarchically semiseparable matrices.

We propose and analyze a nested divide-and-conquer scheme, based on the technology
of low-rank updates, that attains the quasi-optimal computational cost O(nd log(n)). Our
theoretical analysis highlights the role of inexactness in the nested calls of our algorithm and
provides worst case estimates for the amplification of the residual norm. The performances
are validated on 2D and 3D case studies.

Keywords Tensor equation, Sylvester equation, Divide and conquer, Rational approximation.

Mathematics Subject Classification 15A06, 65F10, 65Y20

1 Introduction

In this work we are concerned with the numerical solution of linear systems with a Kronecker
sum-structured coefficient matrix of the form:

(I ⊗ · · · ⊗ I ⊗A1 + · · ·+Ad ⊗ I ⊗ · · · ⊗ I)x = b, (1)

where the matrices At ∈ Rnt×nt are symmetric and positive definite (SPD) with spectrum
contained in [αt, βt] ⊂ R+ := {z ∈ R s.t. z > 0}, and have low-rank off-diagonal blocks, for
t = 1, . . . , d. By reshaping x, b ∈ Rn1...nd into d-dimensional tensors X ,B ∈ Rn1×...nd , we rewrite
(1) as the tensor Sylvester equation

X ×1 A1 + · · ·+ X ×d Ad = B, (2)

where ×j denotes the j-mode product for tensors [17, Section 2.6].

∗Department of Mathematics, University of Pisa. E-mails: stefano.massei@unipi.it, leonardo.robol@unipi.it.
Both authors are members of the INdAM/GNCS research group.

1

Tensor Sylvester equations, not necessarily with SPD coefficients, arise naturally when dis-
cretizing d-dimensional Laplace-like operators by means of tensorized grids that respect the
separability of the operator [13, 22, 26, 31, 32]. In the case d = 2, we recover the well-known
case of matrix Sylvester equations, that also plays a dominant role in the model reduction of
dynamical systems [1].

Several methods for solving matrix and tensor Sylvester equations assume that the right-hand
side has some structure, such as being low-rank. This is a necessary assumption for dealing with
large scale problems. In this paper, we only consider unstructured right-hand sides B, for which
the cases of interest are those where the memory cost O(

∏d
t=1 nt) still allows storing B and the

solution X . Note that, this limits the scenarios where our algorithm is effective to small values
of d, i.e. d = 2, 3. The structure in the coefficients At (which are SPD and have off-diagonal
blocks of low-rank), will be crucial to improve the complexity of the solver with respect to the
completely unstructured case. We also remark that when the Ats arise from the discretization
of elliptic differential operators, the structure assumed in this work is often present [8, 15].

1.1 Related work

In the matrix case (i.e., d = 2 in (2)) there are two main procedures that make no assumptions
on A1, A2, and B: the Bartels-Stewart algorithm [3, 16] and the Hessenberg-Schur method [14].
These are based on taking the coefficients A1, A2 to either Hessenberg or triangular form, and
then solving the linear system by (block) back-substitution. The idea has been generalized to
d-dimensional tensor Sylvester equations in [9]. In the case where n = n1 = . . . = nd, the
computational complexity of these approaches is O(dn3 + nd+1) flops.

When d = 2 and the right-hand side B is a low-rank matrix or d > 2 and B is representable in a
low-rank tensor format (Tucker, Tensor-Train, Hierarchical Tucker, . . .) the tensor equation can
be solved much more efficiently, and the returned approximate solution is low-rank, which allows
us to store it in a low-memory format. Indeed, in this case it is possible to exploit tensorized
Krylov (and rational Krylov) methods [12,19,30], or the factored Alternating Direction Implicit
Method (fADI) [6, 28]. The latter methods build a rank s approximant to the solution X by
solving O(s) shifted linear systems with the matrices At. This is very effective when also the
coefficients At are structured. For instance, when the At are sparse or hierarchically low-rank,
this often brings the cost of approximating X to O(sn loga n) for a ∈ {0, 1, 2} [15]. In the tensor
case, another option is to rely on methods adapted to the low-rank structure under consideration:
AMEn [11] or TT-GMRES [10] for Tensor-Trains, projection methods in the Hierarchical Tucker
format [2], and other approaches.

In this work, we consider an intermediate setting, where the coefficients At are structured,
while the right-hand side B is not. More specifically, we assume that the At are SPD and
efficiently representable in the Hierarchical SemiSeparable format (HSS) [34]. This implies that
each coefficient At can be partitioned in a 2× 2 block matrix with low-rank off-diagonal blocks,
and diagonal blocks with the same recursive structure.

A particular case of this setting has been considered in [13], where the At are banded SPD
(and therefore have low-rank off-diagonal blocks), and a nested Alternating Direction Implicit
(ADI) solver is applied to a 3D tensor equation with no structure in B. The complexity of the
algorithm is quasi-optimal O(n3 log3 n), but the hidden constant is very large, and the approach
is not practical already for moderate n; see [31] for a comparison with methods with a higher
asymptotic complexity.

We remark that, when the coefficients At are SPD, the tensor equation (2) can be solved
by diagonalization of the Ats in a stable way, as described in the pseudocode of Algorithm 1.
Without further assumptions, this costs O(dn3 + nd+1) when all dimensions are equal.

2

Algorithm 1

1: procedure lyapnd diag(A1, A2, . . . , Ad,B)
2: for i = 1, . . . , d do
3: [Si, Di] = eig(Ai)
4: B ← B ×i S

∗
i

5: end for
6: for i1 = 1, . . . , n1, . . . , id = 1, . . . , nd do
7: X (i1, . . . , id)← B(i1, . . . , id)/([D1]i1i1 + · · ·+ [Dd]idid)
8: end for
9: for i = 1, . . . , d do

10: X ← X ×i Si

11: end for
12: return X
13: end procedure

If the At can be efficiently diagonalized, then Algorithm 1 attains a quasi-optimal complexity.
For instance, in the case of finite difference discretizations of the d-dimensional Laplace operator,
diagonalizing the matrices At via the fast sine or cosine transforms (depending on the boundary
conditions) yields the complexity O(nd log n). Recently, it has been shown that positive definite
HSS enjoy a structured eigendecomposition [25], that can be retrieved in O(n log2 n) time. In
addition, multiplying a vector by the eigenvector matrix costs only O(n log(n)) because the
latter can be represented as a product of permutations and Cauchy-like matrices, of logarithmic
length. These features can be exploited into Algorithm 1 to obtain an efficient solver. The
approach proposed in this work has the same O(nd log n) asymptotic complexity but, as we will
demonstrate in our numerical experiments, will result in significantly lower computational costs.

1.2 Main contributions

The main contribution is the design and analysis of an algorithm with O(
∏d
j=1 nj log(maxj nj))

complexity for solving the tensor equation (2) with HSS and SPD coefficients At. The algorithm
is based on a divide-and-conquer scheme, where (2) is decomposed into several tensor equations
that have either a low-rank right-hand side, or a small dimension. In the tensor case, the low-
rank equations are solved exploiting nested calls to the (d − 1)-dimensional solver. Concerning
the theoretical analysis, we provide the following contributions:

• An error analysis that, assuming a bounded residual error on the low-rank subproblems,
guarantees the accuracy on the final result of the divide-and-conquer scheme (Theorem 3.6
and Lemma 4.1).

• A novel a priori error analysis for the use of fADI with inexact solves; more precisely, in
Theorem 4.3 we provide an explicit bound for the difference between the residual norm
after s steps of fADI in exact arithmetic, and the one obtained by performing the fADI
steps with inexact solves. This enables us to control the residual norm of the error based
only on the number of shifts used in all calls to fADI in our solver (Theorem 4.4). These
results are very much related to those in [20, Theorem 3.4 and Corollary 3.1], where also
the convergence of fADI with inexact solves is analyzed. Nevertheless, the assumptions and
the techniques used in the proofs of such results are quite different. The goal of [20] is to
progressively increase the level of inexactness, along the iterations of fADI, ensuring that
the final residual norm remain below a target threshold. The authors proposed an adaptive
relaxation strategy that requires the computation of intermediate quantities generated
during the execution of the algorithm. In our work, the level of inexactness is fixed and,

3

by exploiting the decay of the residual norm when using optimal shifts, we provide upper
bounds for the number of iterations needed to attain the target accuracy.

• We prove that for a d-dimensional problem, the condition number κ of the tensor Sylvester
equation can (in principle) amplify the residual norm by a factor κd−1, when a nested solver
is used. When the At are M -matrices, we show that the impact is reduced to (

√
κ)d−1

(Lemma 3.7).

• A thorough complexity analysis (Theorem 3.9 and 4.6), where the role of the HSS ranks,
the target accuracy, and the condition number of the Ats are fully revealed. In particular,
we show that the condition numbers have a mild impact on the computational cost.

The paper is organized as follows. In Section 2, we provide a high-level description of the proposed
scheme, for a d-dimensional tensor Sylvester equation. Section 3 and Section 4 are dedicated to
the theoretical analysis of the algorithm for the matrix and tensor case, respectively. Finally, in
the numerical experiments of Section 5 we compare the proposed algorithm with Algorithm 1
where the diagonalization is performed with a dense method or with the algorithm proposed
in [25] for HSS matrices.

1.3 Notation

Throughout the paper, we denote matrices with capital letters (X, Y , . . .), and tensors with
calligraphic letters (X ,Y, . . .). We use the same letter with different fonts to denote matriciza-
tions of tensors (e.g., X is a matricization of X). The Greek letters αt, βt indicate the extrema
of the interval [αt, βt] enclosing the spectrum of At, and κ is used to denote the upper bound on
the condition number of the Sylvester operator κ = (β1 + . . .+ βd)/(α1 + . . .+ αd).

2 High-level description of the divide-and-conquer scheme

We consider HSS matrices At, so that each At can be decomposed as At = Adiag
t + Aoff

t where

Adiag
t is block diagonal with square diagonal blocks, Aoff

t is low-rank and the decomposition

applies recursively to the blocks of Adiag
t . A particular case, where this assumption is satisfied,

is when the coefficients At are all banded.
In the spirit of divide and conquer solvers for matrix equations [18,24], we remark that, given

the additive decomposition A1 = Adiag
1 +Aoff

1 , the solution X of (2) can be written as X (1) + δX
where

X (1) ×1 A
diag
1 + X (1) ×2 A2 + · · ·+ X (1) ×d Ad = B, (3)

δX ×1 A1 + δX ×2 A2 + · · ·+ δX ×d Ad = −X (1) ×1 A
off
1 . (4)

If Adiag
1 =

[
A

(1)
1,11

A
(1)
1,22

]
, then (3) decouples into two tensor equations of the form

X (1)
j ×1 A

(1)
1,jj + X (1)

j ×2 A2 + · · ·+ X (1)
j ×d Ad = Bj , j = 1, 2, (5)

with X (1)
1 containing the entries of X (1) with the first index restricted to the column indices of

A
(1)
1,11, and X (1)

2 to those of A
(1)
1,22.1 Equation (4) has the notable property that its right-hand

1In Matlab notation, if A
(1)
1,11 is of size m ×m we have X (1)

1 = X (1)(1 : m, :, . . . , :) and X (1)
2 = X (1)(m + 1 :

end, :, . . . , :)

4

side is a d-dimensional tensor multiplied in the first mode by a low-rank matrix. Merging the
modes from 2 to d (in the sense of [17, Section 2.6]) in (4) yields the matrix Sylvester equation

A1δX + δX (I ⊗ . . . I ⊗A2 + · · ·+Ad ⊗ I ⊗ · · · ⊗ I) = −Aoff
1 X(1). (6)

In particular, the right-hand side of (6) has rank bounded by rank(Aoff
1) and the matrix co-

efficients of the equation are positive definite. This implies that δX has numerically low-rank
and can be efficiently approximated with a low-rank Sylvester solver such as a rational Krylov
subspace method [12,30] or the alternating direction implicit method (ADI) [6].

We note that, applying the splitting simultaneously to all d modes yields an update equation
for δX of the form

δX ×1 A1 + δX ×2 A2 + · · ·+ δX ×d Ad = −
d∑
t=1

X (1) ×t Aoff
t , (7)

and 2d recursive calls:

X (1)
j1,...,jd

×1 A
(1)
1,j1j1

+ · · ·+ X (1)
j1,...,jd

×d Ad,jdjd = Bj1,...,jd , jt ∈ {1, 2}. (8)

However, when d > 2, the right-hand side of (7) is not necessarily low-rank for any matricization.
On the other hand, by additive splitting of the right-hand side we can write δX := δX1+. . .+δXd,
where δXt is the solution to an equation of the form (4).

In view of the above discussion, we propose the following recursive strategy for solving (1):

1. if all the nis are sufficiently small then solve (1) by diagonalization,

2. otherwise split the equation along all modes as in (7) and (8),

3. compute X (1) by solving the 2d equations in (8) recursively,

4. approximate δXt by applying a low-rank matrix Sylvester solver for t = 1, . . . , d.

5. return X = X (1) + δX1 + . . .+ δXd.

The procedure will be summarized in Algorithm 4 of Section 4, where we will consider the case
of tensors in detail. To address point 4. we can use any of the available low-rank solvers for
Sylvester equations [30]; in this work we consider the fADI and the rational Krylov subspace
methods that are discussed in detail in the next sections. In Algorithm 4 we refer to the chosen
method with low rank sylv. We remark that both these choices require to have a low-rank
factorization of the mode j unfolding of X0 ×j Aoff

j and to solve shifted linear systems with a
Kronecker sum of d− 1 matrices At. The latter task is again of the form (1) with d − 1 modes
and is performed recursively with Algorithm 4, when d > 2; this makes our algorithm a nested
solver. At the base of the recursion, when (1) has only one mode, this is just a shifted linear
system. We discuss this in detail in section 3.3.

2.1 Notation for Hierarchical matrices

The HSS matrices At (t = 1, . . . , d) can be partitioned as follows:

At =

[
A

(1)
t,11 A

(1)
t,12

A
(1)
t,21 A

(1)
t,22

]
∈ Rnt×nt , (9)

5

I
(0)
1

I
(1)
1 I

(1)
2

I
(2)
1 I

(2)
2 I

(2)
3 I

(2)
4

I
(3)
1 I

(3)
2 I

(3)
3 I

(3)
4 I

(3)
5 I

(3)
6 I

(3)
7 I

(3)
8

h = 0

At

h = 1

A
(1)
t,11

A
(1)
t,21

A
(1)
t,12

A
(1)
t,22

h = 2

A
(h)
t,11

A
(h)
t,21

A
(h)
t,31

A
(h)
t,41

A
(h)
t,12

A
(h)
t,22

A
(h)
t,32

A
(h)
t,42

A
(h)
t,13

A
(h)
t,23

A
(h)
t,33

A
(h)
t,43

A
(h)
t,14

A
(h)
t,24

A
(h)
t,34

A
(h)
t,44

h = 3

Figure 1: Example of the hierarchical low-rank structure obtained with the recursive partitioning
in (9). The light blue blocks are the low-rank submatrices identified at each level.

where A
(1)
t,12 and A

(1)
t,21 have low rank, and A

(1)
t,ii are HSS matrices. In particular, the diagonal

blocks are square and can be recursively partitioned in the same way `t−1 times. The depth `t is
chosen to ensure that the blocks at the lowest level of the recursion are smaller than a prescribed
minimal size nmin × nmin.

More formally, after one step of recursion we partition I
(0)
1 = {1, . . . , nt} = I

(1)
1 t I(1)

2 where

I
(1)
1 and I

(1)
2 are two sets of contiguous indices; the matrices At,ij in (9) have I

(1)
i and I

(1)
j as

row and column indices, respectively, for i, j = 1, 2.

Similarly, after h ≤ `t steps of recursion, one has the partitioning {1, . . . , nt} = I
(h)
1 t. . .tI

(h)

2h ,

and we denote by A
(h)
t,ij with 1 ≤ i, j ≤ 2h the submatrices of At with row indices I

(h)
i and column

indices I
(h)
j . Note that A

(h)
t,ii+1 and A

(h)
t,i+1i indicate the low-rank off-diagonal blocks uncovered

at level h (see Figure 1).
The quad-tree structure of submatrices of At, corresponding to the above described splitting

of row and column indices, is called the cluster tree of At; see [24, Definition 1] for the rigorous
definition. The integer `t is called the depth of the cluster tree.

Often, we will need to group together all the diagonal blocks at level h; we denote by A
(h)
t

such matrix, that is:

At =


A

(h)
t,11

. . .

. . .

A
(h)

t,2h2h


︸ ︷︷ ︸

A
(h)
t

+


0 ? . . . ?

?
. . .

. . .
...

...
. . .

. . . ?
? . . . ? 0

 . (10)

Finally, the maximum rank of the off-diagonal blocks of an HSS matrix is called the HSS rank.

6

2.2 Representation and operations with HSS matrices

An n×n matrix in the form described in the previous section, with HSS rank k, can be effectively
stored in the HSS format [34], using only O(nk) memory. Using this structured representation,
matrix-vector multiplications and solution of linear systems can be performed with O(nk) and
O(nk2) flops, respectively.

Our numerical results leverage the implementation of this format and the related matrix
operations available in hm-toolbox [23].

3 The divide-and-conquer approach for matrix Sylvester
equations

We begin by discussing the case d = 2, that is the matrix Sylvester equation

A1X +XA2 = B, B ∈ Cn1×n2 , (11)

since there is a major difference with respect to d > 2 that makes the theoretical analysis much
simpler. Indeed, the call to low rank sylv for solving (6) does not need to recursively call
the divide-and-conquer scheme, which is needed when d > 2 for generating the right Krylov
subspaces. Moreover, we assume that `1 = `2 =: `, that automatically implies that n1 and
n2 are of the same order of magnitude; the algorithm can be easily adjusted for unbalanced
dimensions, as we discuss in detail in Section 3.2.

We will denote by B(h) = [B
(h)
ij] the matrix B seen as a block matrix partitioned according

to the cluster trees of A1 and A2 at level h for the rows and columns, respectively.
Splitting both modes at once yields the update equation

A1δX + δXA2 = −Aoff
1 X(1) −X(1)Aoff

2 , X(1) =

[
X

(1)
11 X

(1)
12

X
(1)
21 X

(1)
22

]
(12)

where X
(1)
ij is the solution of A

(1)
1,iiX

(1)
ij +X

(1)
ij A

(1)
2,jj = B

(1)
ij and B

(1)
ij is the block in position (i, j)

in B(1). The right-hand side of (12) has rank bounded by rank(Aoff
1) + rank(Aoff

2), therefore we
can use low rank sylv to solve (12). The procedure is summarized in Algorithm 2.

Algorithm 2

1: procedure lyap2d d&c balanced(A1, A2, B, ε)
2: if maxi ni ≤ nmin then
3: return lyapnd diag(A1, A2, B)
4: else
5: X

(1)
ij ← Lyap2D D&C(A

(1)
1,ii, A

(1)
2,jj , B

(1)
ij), for i, j = 1, 2

6: X(1) ←
[

X
(1)
11 X

(1)
12

X
(1)
21 X

(1)
22

]
7: Retrieve a low-rank factorization of Aoff

1 X(1) +X(1)Aoff
2 = UV T

8: δX ← low rank sylv(A1, A2, U, V, ε)
9: return X(1) + δX

10: end if
11: end procedure

Remark 1. Efficient solvers of Sylvester equations with low-rank right-hand sides need a fac-
torization of the latter; see line 7 in Algorithm 2. Once the matrix X(1) is computed, the factors

7

U and V are retrieved with explicit formula involving the factorizations of the matrices Aoff
1 and

Aoff
2 [18, Section 3.1]. The low-rank representation can be cheaply compressed via a QR-SVD

based procedure; our implementation always apply this compression step.

3.1 Analysis of the equations generated in the recursion

In this section we introduce the notation for all the equations solved in the recursion, as this will
be useful in the error and complexity analysis.

We denote with capital letters (e.g., X, δX) the exact solutions of such equations, and with

an additional tilde (i.e., X̃ and δX̃) their inexact counterparts obtained in finite precision com-
putations.

3.1.1 Exact arithmetic

We begin by considering the computation, with Algorithm 2, of the solution of a matrix Sylvester
equation, assuming that all the equations generated during the recursion are solved exactly. In
this scenario, the solution X admits the additive splitting

X = X(`) + δX(`−1) + . . .+ δX(0),

where X(`) or δX(h) contains all the solutions determined at depth ` and h in the recursion,
respectively. More precisely, X(`) takes the form

X(`) :=


X

(`)
1,1 . . . X

(`)

1,2`

...
...

X (`)

2`,1
. . . X (`)

2`,2` .

 , (13)

where X
(`)
i,j solves the Sylvester equation A

(`)
1,iiX

(`)
i,j + X

(`)
i,j A

(`)
2,jj = Bi,j ; for h < `, we denote

X(h) := X(`) + δX(`−1) + . . .+ δX(h), that solves A
(h)
1 X(h) +X(h)A

(h)
2 = B(h).

The matrix δX(h) = [δX
(h)
i,j] containing the solutions of the update equations at level h < `

is block-partitioned analogously to B(h) and X(h). The diagonal blocks A
(h)
1,ii can be in turn split

into their diagonal and off-diagonal parts as follows:

A
(h)
1,ii =

[
A

(h+1)
1,2i−1,2i−1

A
(h+1)
1,2i,2i

]
+

[
0 A

(h+1)
1,2i−1,2i

A
(h+1)
1,2i,2i−1 0

]
,

and the same holds for A
(h)
2,jj . Then δX

(h)
i,j solves A

(h)
1,iiδX

(h)
i,j + δX

(h)
i,j A

(h)
2,jj = Ξ

(h)
ij where

Ξ
(h)
ij :=−

[
0 A

(h+1)
1,2i−1,2i

A
(h+1)
1,2i,2i−1 0

][
X

(h+1)
2i−1,2i−1 X

(h+1)
2i−1,2i

X
(h+1)
2i,2i−1 X

(h+1)
2i,2i

]

−

[
X

(h+1)
2i−1,2i−1 X

(h+1)
2i−1,2i

X
(h+1)
2i,2i−1 X

(h+1)
2i,2i

][
0 A

(h+1)
2,2j−1,2j

A
(h+1)
2,2j,2j−1 0

]
.

(14)

Since X
(h)
ij solves the Sylvester equation

A
(h)
1,iiX

(h)
ij +X

(h)
ij A

(h)
2,jj = B

(h)
ij ,

8

then, by rewriting the above equation as a linear system, we can bound

‖X(h)
ij ‖F ≤

‖B(h)
ij ‖F

α1 + α2
.

Applying this relation in (14) we get the following bound for the norm of the right-hand side

Ξ
(h)
ij :

‖Ξ(h)
ij ‖F ≤ (β1 + β2)

∥∥∥∥∥
[
X

(h+1)
2i−1,2i−1 X

(h+1)
2i−1,2i

X
(h+1)
2i,2i−1 X

(h+1)
2i,2i

]∥∥∥∥∥
F

≤ β1 + β2

α1 + α2

√
‖B(h+1)

2i−1,2i−1‖2F + ‖B(h+1)
2i−1,2i‖2F + ‖B(h+1)

2i,2i−1‖2F + ‖B(h+1)
2i,2i ‖2F

=
β1 + β2

α1 + α2
‖B(h)

ij ‖F .

We define the block matrix Ξ(h) = [Ξ
(h)
ij]; collecting all the previous relation as (i, j) varies, we

obtain A
(h)
1 δX(h) + δX(h)A

(h)
2 = Ξ(h) and ‖Ξ(h)‖F ≤ β1+β2

α1+α2
‖B‖F .

3.1.2 Inexact arithmetic

In a realistic scenario, the Sylvester equations for determiningX(`) and δX(h) are solved inexactly.
We make the assumption that all Sylvester equations of the form A1X + XA2 = B are solved
with a residual satisfying

A1X̃ + X̃A2 = B +R, ‖R‖F ≤ ε‖B‖F . (15)

Then, the approximate solutions computed throughout the recursion verify:

A
(`)
1,iiX̃

(`)
i,j + X̃

(`)
i,j A

(`)
2,jj = B

(`)
i,j +R

(`)
ij

A
(h)
1,iiδX̃

(h)
i,j + δX̃

(h)
i,j A

(h)
2,jj = Ξ̃

(h)
ij +R

(h)
ij ,

where Ξ̃
(h)
ij is defined by replacing X

(h+1)
ij with X̃

(h+1)
ij in (14). Thanks to our assumption on

the inexact solver, we have that ‖R(`)
ij ‖F ≤ ε‖B(`)

ij ‖F ; bounding ‖R(h)
ij ‖F for h < `, is slightly

more challenging, since it depends on the accumulated inexactness. Let us consider the matrices

R(h) = [R
(h)
ij] that correspond to the residuals of the Sylvester equations

A
(`)
1 X̃(`) + X̃(`)A

(`)
2 = B(`) +R(`), (16)

A
(h)
1 δX̃(h) + δX̃(h)A

(h)
2 = Ξ̃(h) +R(h). (17)

A bound on ‖R(h)‖F can be derived by controlling the ones of Ξ̃(h).

Lemma 3.1. If the Sylvester equations generated in Algorithm 4 are solved with the accuracy
prescribed in (15) then X̃(h) := X̃(`) + δX̃(`−1) + . . .+ δX̃(h) satisfies

A
(h)
1 X̃(h) + X̃(h)A

(h)
2 = B +R(`) + . . .+R(h), (18)

where R(h) are the residuals of (16) and (17). In addition, if κε < 1 where κ := β1+β2

α1+α2
, then

‖R(h)‖F ≤ κε(1 + ε)(1 + κε)`−h−1‖B‖F .

9

Proof. We start with the proof of (18) by induction over h. For h = `, the claim follows by (16).

If h < `, we decompose X̃(h) = X̃(h+1) + δX̃(h) to obtain

A
(h)
1 X̃(h) + X̃(h)A

(h)
2 = A

(h)
1 X̃(h+1) + X̃(h+1)A

(h)
2 +A

(h)
1 δX̃(h) + δX̃(h)A

(h)
2

= (A
(h)
1 −A(h+1)

1)X̃(h+1) + X̃(h+1)(A
(h)
2 −A(h+1)

2)︸ ︷︷ ︸
−Ξ̃(h)

+A
(h+1)
1 X̃(h+1) + X̃(h+1)A

(h+1)
2 + Ξ̃(h) +R(h),

and the claim follows by the induction step.
We now show the second claim, once again, by induction. For h = `, we obtain the result by

collecting all the residuals together in a block matrix:

‖R(`)
ij ‖F ≤ ε‖B

(`)
ij ‖F =⇒ ‖R(`)‖F ≤ ε‖B(`)‖F .

Since κ ≥ 1, we have ε ≤ κε(1 + ε)(1 + κε)−1, so that the bound is satisfied. For h < ` we have

‖R(h)‖F ≤ ε‖Ξ̃(h)‖F ≤ ε(β1 + β2)‖X̃(h+1)‖F
≤ ε(β1 + β2)‖X(h+1)‖F + ε(β1 + β2)‖X̃(h+1) −X(h+1)‖F .

By subtracting A
(h+1)
1 X(h+1) +X(h+1)A

(h+1)
2 = B from (18) we obtain

A
(h+1)
1 (X̃(h+1) −X(h+1)) + (X̃(h+1) −X(h+1))A

(h+1)
2 = R(`) + . . .+R(h+1).

Bounding the norm of the solution of this Sylvester equations by 1
α1+α2

times the norm of the
right-hand side yields

‖R(h)‖F ≤ κε

‖B‖F +
∑̀
j=h+1

‖R(j)‖F

 .

For h < `, by the induction step, we have

‖R(h)‖F ≤ κε

‖B‖F + ‖R(`)‖F +

`−1∑
j=h+1

‖R(j)‖F


≤ κε

1 + ε+ κε(1 + ε)

`−1∑
j=h+1

(1 + κε)`−j−1

 ‖B‖F
= κε(1 + ε)

(
1− κε1− (1 + κε)`−h−1

κε

)
‖B‖F

= κε(1 + ε)(1 + κε)`−h−1‖B‖F .

We can leverage the previous result to bound the residual of the approximate solution X̃
returned by Algorithm 2.

Lemma 3.2. Under the assumptions of Lemma 3.1, with the additional constraint κε < 2
` the

approximate solution X̃ := X̃(0) returned by Algorithm 4 satisfies

‖A1X̃ + X̃A2 −B‖F ≤ (`+ 1)2κε‖B‖F .

10

Proof. In view of Lemma 3.1 the residual associated with X̃ = X̃(0) satisfies

‖A1X̃
(0) + X̃(0)A2 −B‖F ≤ ‖R(0)‖F + ‖R(1)‖F + · · ·+ ‖R(`)‖F .

Hence, summing the upper bounds for ‖R(h)‖F given in Lemma 3.1 we obtain

‖A1X̃
(0) + X̃(0)A2 −B‖F ≤

(
κε(1 + ε)

1 + κε

∑̀
h=0

(1 + κε)`−h

)
‖B‖F

≤
[
(1 + κε)`+1 − 1

]
‖B‖F =

[
`+1∑
h=1

(
`+ 1

h

)
(κε)h

]
‖B‖F .

The assumption κε < 2
` guarantees that the dominant term in the sum occurs for h = 1, and

therefore we have
‖A1X̃

(`) + X̃(`)A2 −B‖F ≤ (`+ 1)2κε‖B‖F .

3.2 Unbalanced dimensions

In the general case, when n1 � n2 and we employ the same nmin for both cluster trees of A1

and A2, we end up with `1 > `2. We can artificially obtain `1 = `2 by adding `1 − `2 auxiliary
levels on top of the cluster tree of A2. In all these new levels, we consider the trivial partitioning
{1, . . . , n2} = {1, . . . , n2} ∪ ∅.

This choice implies that for the first `1 − `2 levels of the recursion only the first dimension is
split, so that only 2 matrix equations are generated by these recursive calls. This allows us to
extend all the results in Section 3.4 by setting ` = max{`1, `2}.

In the practical implementation, for n1 ≥ n2, this approach is encoded in the following steps:

• As far as n1 is significantly larger than n2, e.g. n1 ≥ 2n2, apply the splitting on the first
mode only.

• When n1 and n2 are almost equal, apply Algorithm 2.

The pseudocode describing this approach is given in Algorithm 3.

3.3 Solving the update equation

The update equation (12) is of the form

A1δX + δXA2 = UV ∗ (19)

where A1, A2 are positive definite matrices with spectra contained in [α1, β1] and [α2, β2], re-
spectively, U ∈ Rm×k, V ∈ Rn×k with k � min{m,n}. Under these assumptions, the singular
values σj(δX) of the solution δX of (19) decay rapidly to zero [5,27]. More specifically, it holds

σ1+jk(δX) ≤ σ1(δX)Zj([α1, β2], [−β2,−α2]), Zj(E,F) := min
r(z)∈Rj,j

maxE |r(z)|
minF |r(z)|

where Rj,j is the set of rational functions of the form r(z) = p(z)/q(z) having both numerator
and denominator of degree at most j. The optimization problem associated with Zj(E,F) is
known in the literature as third Zolotarev problem and explicit estimates for the decay rate of
Zj(E,F), as j increases, are available when E and F are disjoint real intervals [5]. In particular,
we will make use of the following result.

11

Algorithm 3

1: procedure lyap2d d&c(A1, A2, B, ε)
2: if maxi ni ≤ nmin then
3: return lyapnd diag(A1, A2, B)
4: else if n1 ≤ 2n2 and n2 ≤ 2n1 then
5: return lyap2d d&c balanced(A1, A2, B, ε) . Algorithm 2
6: else
7: if n1 > 2n2 then
8: Partition B as

[
B1
B2

]
, according to the partitioning in A

(1)
1

9: X1 ← lyap2d d&c(A
(1)
1,11, A2, B1), X2 ← lyap2d d&c(A

(1)
1,22, A2, B2)

10: X(1) ←
[
X1
X2

]
11: Retrieve a low-rank factorization of Aoff

1 X(1) = UV T

12: else if n2 > 2n1 then
13: Partition B as [B1 B2], according to the partitioning in A

(1)
2

14: X1 ← lyap2d d&c(A1, A
(1)
2,11, B1), X2 ← lyap2d d&c(A1, A

(1)
2,22, B2)

15: X(1) ← [X1 X2]
16: Retrieve a low-rank factorization of X(1)Aoff

2 = UV T

17: end if
18: δX ← low rank sylv(A1, A2, U, V, ε)
19: return X(1) + δX
20: end if
21: end procedure

Lemma 3.3 ([5, Corollary 4.2]). Let E = [α1, β1] ⊂ R+, F = [−β2,−α2] ⊂ R− be non-empty
real intervals, then

Zj(E,F) ≤ 4 exp

(
π2

2 log(16γ)

)−2j

, γ :=
(α1 + β2)(α2 + β1)

(α1 + α2)(β1 + β2)
. (20)

Lemma 3.3 guarantees the existence of accurate low-rank approximations of δX. In this
setting, the extremal rational function for Zj(E,F) is explicitly known and close form expressions
for its zeros and poles are available.2 We will see in the next sections that this enables us to
design approximation methods whose convergence rate matches the one in (20).

3.3.1 A further property of Zolotarev functions

We now make an observation that will be relevant for the error analysis in Section 4.
Consider the Zolotarev problem associated with the symmetric configuration [α, β]∪[−β,−α],

and let us indicate with p1, . . . , ps and q1, . . . , qs the zeros and poles of the optimal Zolotarev
rational function. The symmetry of the configuration yields pi = −qi, and in turn the bound
|z − pi|/|z − qi| ≤ 1 for all z ∈ [α, β].

The last inequality also holds for nonsymmetric spectra configurations [α1, β1] ∪ [−β2,−α2].
Indeed, the minimax problem is invariant under Möbius transformations, and the property holds
for the evaluations of rational functions on any transformed domains. Since the optimal rational
Zolotarev function on [α1, β1]∪ [−β2,−α2] can be obtained by remapping the configuration into
a symmetric one, the inequality holds on [α1, β1].

2Given E = [α1, β1] ⊂ R+, F = [−β2,−α2] ⊂ R− an expression in terms of elliptic functions for the zeros and
poles of the extremal rational function is given in [5, Eq. (12)]. Our implementation is based on the latter.

12

3.3.2 Alternating direction implicit method

The ADI method iteratively approximates the solution of (19) with the following two-steps
scheme, for given scalar parameters pj , qj ∈ C:

(A1 − qs+1I)δXs+ 1
2

= UV ∗ − δXs(A2 + qs+1I),

δXs+1(A2 + ps+1I) = UV ∗ − (A1 − pj+1I)δXs+ 1
2
.

The initial guess is δX0 = 0, and it is easy to see that rank(δXs) ≤ sk. This property is exploited
in a specialized version of ADI, which is called factored ADI (fADI) [6]; the latter computes a
factorized form of the update ∆s := δXs− δXs−1 = (qs− ps)WsY

∗
s with the following recursion:{

W1 = (A1 − q1I)−1U

Wj+1 = (A1 − qj+1)−1(A1 − pj)Wj

{
Y1 = −(A2 + p1I)−1V

Yj+1 = (A2 + pj+1)−1(A2 + qj)Yj
. (21)

The approximate solution δXs after s steps of fADI takes the form

δXs = ∆1 + . . .+ ∆s =

s∑
j=1

(qj − pj)WjY
∗
j .

Observe that, the most expensive operations when executing s steps of fADI are the solution of s
shifted linear systems with the matrix A1 and the same amount with the matrix A2. Moreover,
the two sequences can be generated independently.

The choice of the parameters pj , qj is crucial to control the convergence of the method,
as highlighted by the explicit expressions of the residual and the approximation error after s
steps [6]:

δX − δXs = rs(A1)δXrs(−A2)−1 (22)

A1δXs + δXsA2 − UV ∗ = −rs(A1)UV ∗rs(−A2)−1, (23)

where rs(z) =
∏s
j=1

z−pj
z−qj and the second identity is obtained by applying the operator X 7→

A1X+XA2 to δXs−δX. Taking norms yields the following upper bound for the approximation
error:

‖δXs − δX‖F ≤
maxz∈[α1,β1] |r(z)|

minz∈[−β2,−α2] |r(z)|
‖δX‖F , (24)

‖A1δXs − δXA2 − UV ∗‖F ≤
maxz∈[α1,β1] |r(z)|

minz∈[−β2,−α2] |r(z)|
‖UV ∗‖F , (25)

Inequalities (24) and (25) guarantee that if the shift parameters pj , qj are chosen as the zeros
and poles of the extremal rational function for Zs([α1, β1], [−β2,−α2]), then the approximation
error and the residual norm decay (at least) as prescribed by Lemma 3.3. This allows us to give
an a priori bound to the number of steps required to achieve a target accuracy ε.

Lemma 3.4. Let ε > 0, δX be the solution of (19) and δXs the solution returned by applying
the fADI method to (19) with parameters chosen as the zeros and poles of the extremal rational
function for Zs([α1, β1], [−β2,−α2]). If

s ≥ 1

π2
log

(
4

ε

)
log

(
16

(α1 + β2)(α2 + β1)

(α1 + α2)(β1 + β2)

)
, (26)

then

‖A1δXs + δXsA2 − UV ∗‖F ≤ ε‖UV ∗‖F .

Proof. Combining Lemma 3.3 and inequality (25) yields the claim.

13

3.3.3 Rational Krylov (RK) method

Another approach for solving (19) is to look for a solution in a well-chosen tensorization of
low-dimensional subspaces. Common choices are rational Krylov subspaces of the form Ks,A1

:=
span{U, (A1−p1I)−1U, . . . , (A1−psI)−1U}, Ks,A2

:= span{V, (AT2 +q1I)−1V, . . . , (AT2 +qsI)−1V };
more specifically, one consider an approximate solution δXs = Qs,A1δY Q

∗
s,A2

where Qs,A1 , Qs,A2

are orthonormal bases of Ks,A1 ,Ks,A2 , respectively, and δY solves the projected equation

(Q∗s,A1
A1Qs,A1

)δY + δY (Q∗s,A2
A2Qs,A2

) = Q∗s,A1
UV ∗Qs,A2

. (27)

Similarly to fADI, when the parameters qj , pj are chosen as the zeros and poles of the extremal
rational function for Zs([α1, β1], [−β2,−α2]) then the residual of the approximation can be related
to (20) [4, Theorem 2.1]:

‖A1δXs + δXsA2 − UV ∗‖F ≤ 2

(
1 +

β1 + β2

α1 + α2

)
Zs([α1, β1], [−β2,−α2])‖UV ∗‖F . (28)

Based on (28) we can state the analogue of Lemma 3.4 for rational Krylov.

Lemma 3.5. Let ε > 0, δX be the solution of (19) and δXs the solution returned by applying the
rational Krylov method to (19) with shifts chosen as the zeros and poles of the extremal rational
function for Zs([α1, β1], [−β2,−α2]). If

s ≥ 1

π2
log

(
8(α1 + α2 + β1 + β2)

ε(α1 + α2)

)
log

(
16

(α1 + β2)(α2 + β1)

(α1 + α2)(β1 + β2)

)
, (29)

then

‖A1δXs + δXsA2 − UV ∗‖F ≤ ε‖UV ∗‖F .

3.4 Error analysis for Algorithm 3

In Section 3.3 we have discussed two possible implementations of low rank sylv in Algorithm 3
that return an approximate solution of the update equation, with the residual norm controlled by
the choice of the parameter s. This allows us to use Lemma 3.2 to bound the error in Algorithm 3.

Theorem 3.6. Let A1, A2 be symmetric positive definite HSS matrices with cluster trees of depth
at most `, and spectra contained in [α1, β1] and [α2, β2], respectively. Let X̃ be the approximate
solution of (11) returned by Algorithm 3 where low rank sylv is either fADI or RK and
uses the s zeros and poles of the extremal rational function for Zs([α1, β1], [−β2,−α2]) as input
parameters. If ε > 0 and s is such that s ≥ sADI (when low rank sylv is fADI) or s ≥ sRK

(when low rank sylv is RK) where

sADI =
1

π2
log

(
4

(β1 + β2)

ε(α1 + α2)

)
log

(
16

(α1 + β2)(α2 + β1)

(α1 + α2)(β1 + β2)

)
,

sRK =
1

π2
log

(
8

(β1 + β2)(α1 + α2 + β1 + β2)

ε(α1 + α2)2

)
log

(
16

(α1 + β2)(α2 + β1)

(α1 + α2)(β1 + β2)

)
,

and Algorithm 1 solves the Sylvester equations at the base of the recursion with a residual norm
bounded by ε times the norm of the right-hand side, then the computed solution satisfies:

‖A1X̃ + X̃A2 −B‖F ≤ (`+ 1)2 β1 + β2

α1 + α2
ε‖B‖F . (30)

14

Proof. In view of Lemma 3.4 (for fADI) and Lemma 3.5 (for RK), the assumption on s guarantees
that the norm of the residual of each update equation is bounded by ε times the norm of its
right-hand side. In addition, the equations at the base of the recursion are assumed to be solved
at least as accurately as the update equations, and the claim follows by applying Lemma 3.2.

We remark that, usually, the cluster trees for A1 and A2 are chosen by splitting the indices
in a balanced way; this implies that their depths verify `i ∼ O(log(ni/nmin)).

Remark 2. We note that sRK in Theorem 3.6 is larger than sADI; under the assumption α1 +
α2 + β1 + β2 ≈ β1 + β2, we have that

sRK − sADI ≈
2

π2
log

(
2
β1 + β2

α1 + α2

)
log

(
16

(α1 + β2)(α2 + β1)

(α1 + α2)(β1 + β2)

)
.

In practice, it is often observed that the rational Krylov method requires fewer shifts than fADI
to attain a certain accuracy, because its convergence is linked to a rational function which is
automatically optimized over a larger space [4].

3.4.1 The case of M-matrices

The term κ in the bound of Theorem 3.6 arises from controlling the norms of Ξ(h) and Ξ̃(h)−Ξ(h).
In the special case where Aj are positive definite M-matrices, i.e. Aj = cjI − Nj with Nj ≥ 0
and cj at least as large as the spectral radius of Nj , this can be reduced to

√
κ as shown in the

following result.

Lemma 3.7. Let A1, A2 be symmetric positive definite M -matrices. Then, the right-hand sides
Ξ(h) of the intermediate Sylvester equations solved in exact arithmetic in Algorithm 3 satisfy

‖Ξ(h)‖F ≤
√
κ‖B‖F , ‖Ξ̃(h) − Ξ(h)‖F ≤

√
κ‖R(`) + . . .+R(h+1)‖F ,

where κ = (β1 + β2)/(α1 + α2).

Proof. We note that Ξ
(h)
ij can be written as Ξ

(h)
ij = NM−1B

(h)
ij , whereN andM are the operators

MY :=

[
A

(h+1)
1,2i−1,2i−1

A
(h+1)
1,2i,2i

]
Y + Y

[
A

(h+1)
2,2i−1,2i−1

A
(h+1)
2,2i,2i

]

NY := −

[
A

(h+1)
1,2i−1,2i

A
(h+1)
1,2i,2i−1

]
Y − Y

[
A

(h+1)
2,2i−1,2i

A
(h+1)
2,2i,2i−1

]

In addition, M−N = I ⊗ A(h)
1,ii + A

(h)
2,ii ⊗ I is a positive definite M-matrix, and so is M. In

particular, M−N is a regular splitting, and therefore ρ(M−1N) < 1. Hence,

‖Ξ(h)
ij ‖F ≤ ‖NM

−1‖2‖Bij‖F
≤ ‖M 1

2 ‖2‖M−
1
2NM− 1

2 ‖2‖M−
1
2 ‖2‖Bij‖F ≤

√
κ‖Bij‖F ,

where we have used that the matrixM− 1
2NM− 1

2 is symmetric and similar to NM−1, therefore
has both spectral radius and spectral norm bounded by 1, and that the condition number of M
is bounded by the one of I ⊗A1 +A2 ⊗ I.

For the second relation we have

Ξ̃(h) − Ξ(h) = −(A
(h)
1 −A(h+1)

1)(X̃(h+1) −X(h+1))− (X̃(h+1) −X(h+1))(A
(h)
2 −A(h+1)

2),

15

and X̃(h+1) −X(h+1) solves the Sylvester equation (see Lemma 3.1)

A
(h+1)
1 (X̃(h+1) −X(h+1)) + (X̃(h+1) −X(h+1))A

(h+1)
2 = R(`) + . . .+R(h+1).

Following the same argument used for the first point we obtain the claim.

Corollary 3.8. Under the same hypotheses and settings of Theorem 3.6, with the additional
assumption of A1, A2 being M-matrices, Algorithm 1 computes an approximate solution X̃ that
satisfies

‖A1X̃ + X̃A2 −B‖F ≤ (`+ 1)2

√
β1 + β2

α1 + α2
ε‖B‖F . (31)

3.4.2 Validation of the bounds

We now verify the dependency of the final residual norm on the condition number of the problem
to inspect the tightness of the behavior predicted by Theorem 3.6 and Corollary 3.8. We consider
two numerical tests concerning the solution of Lyapunov equations of the form A(i)X +XA(i) =
C, where the n × n matrices A(i) have size n = 256 and increasing condition numbers with
respect to i; the minimal block size is set to nmin = 32.

In the first example we generate A(i) = QD(i)Q
∗ where

• D(i) = Dpi is the pith power of the diagonal matrix D containing the eigenvalues of the
1D discrete Laplacian, i.e. 2 + 2 cos(πj/(n + 1)), j = 1, . . . , n. The pi are chosen with a
uniform sampling of [1, 2.15], so that the condition numbers range approximately between
104 and 109.

• Q is the Q factor of the QR factorization of a randomly generated matrix with lower
bandwidth equal to 8, obtained with the MATLAB command Q = orth(triu(randn(n),

-8), 0). This choice ensures that A(i) is SPD and HSS with HSS rank bounded by 8 [33].

• C = QSQ∗, where Q is the matrix defined in the previous point, and S is diagonal with

entries Sii =
(
i−1
n−1

)10

. The latter choice aims at giving more importance to the component

of the right-hand side aligned with the smallest eigenvectors of the Sylvester operator. We
note that this is helpful to trigger the worst case behavior of the residual norm.

For each value of i we have performed 100 runs of Algorithm 3, using fADI as low rank sylv
with threshold ε = 10−6. The measured residual norms ‖A(i)X̃ + X̃A(i) − C‖F /‖C‖F are
reported in the left part of Figure 2. We remark that the growth of the residual norm appears
to be proportional to

√
κ suggesting that the bound from Theorem 3.6 is pessimistic.

In the second test, the matrices A(i) are chosen as shifted 1D discrete Laplacian, where the
shift is selected to match the same range of condition number of the first experiment; note
that, the matrices A(i) are SPD M-matrices, with HSS rank 1 (they are tridiagonal). The right-
hand side C is chosen as before, by replacing Q with the eigenvector matrix of the 1D discrete
Laplacian. Corollary 3.8 would predict an O(

√
κ) growth for the residual norms; however, as

shown in the right part of Figure 2, the residual norms seems not influenced by the condition
number of the problem.

Remark 3. The examples reported in this section have been chosen to display the worst case
behavior of the residual norms; in the typical case, for instance by choosing C = randn(n), the
influence of the condition number on the residual norms is hardly visible also in the case of non
M-matrix coefficients.

16

104 105 106 107 108 109 1010

10−7

10−5

10−3

10−1

κ

General SPD

Res. norm

O(
√
κ)

105 106 107 108 109

10−7

10−5

10−3

10−1

κ

SPD M-matrix

Res. norm

Figure 2: Residual norm behavior for Algorithm 3, with respect to the conditioning of problem.
On the left, the coefficients of the matrix equation are generic HSS SPD matrices; On the right,
the coefficients have the additional property of being M-matrices.

3.5 Complexity of Algorithm 3

In order to simplify the complexity analysis of Algorithm 3 we assume that n1 = 2`1nmin and
n2 = 2`2nmin and that A1, A2 are HSS matrices of HSS rank k, with a partitioning of depth `1, `2
obtained by halving the dimension at every level.

We start by considering the simpler case n := n1 = n2 and therefore ` = `1 = `2. We remark
that given s ∈ N, executing s steps of fADI or RK for solving (6) with size n× n, requires

CADI(n, s, k) = O(k2sn), CRK(n, s, k) = O(k2s2n), (32)

flops, respectively. Indeed, each iteration of fADI involves the solution of two block linear systems
with 2k columns each and an HSS matrix coefficient; this is performed by computing two ULV
factorizations (O(k2n), see [34]) and solving linear systems with triangular and unitary HSS
matrices (O(kn) for each of the 2k columns). The cost analysis of rational Krylov is analogous,
but it is dominated by reorthogonalizing the basis at each iteration; this requires O(k2jn) flops
at iteration j, for j = 1, . . . , s.

Combining these ingredients yields the following.

Theorem 3.9. Let A1, A2 ∈ Rn×n, n = 2`nmin, and assume that A1, A2 are HSS matrices
of HSS rank k, with a partitioning of depth ` obtained by halving the dimension at every level.
Then, Algorithm 2 requires:

(i) O((k log(n) + nmin + sk2)n2) flops if low rank sylv implements s steps of the fADI
method,

(ii) O((k log(n) + nmin + s2k2)n2) flops if low rank sylv implements s steps of the rational
Krylov method.

Proof. We only prove (i) since (ii) is obtained with an analogous argument. Let us analyze the
cost of Algorithm 4 at level j of the recursion. For j = ` it solves 2` · 2` Sylvester equations
of size nmin × nmin by means of Algorithm 1; this requires O(4` · n3

min) = O(nminn
2) flops. At

17

level j < `, 4j Sylvester equations of size n
2j × n

2j and right-hand side of rank (at most) 2k are
solved via fADI. According to (32), the overall cost of these is O(2jk2sn). Finally, we need to
evaluate 4j multiplications at line 11 which yields a cost O(4jk(n/2j)2) = O(kn2). Summing

over all levels j = 0, . . . , `− 1 we get O(
∑`−1
j=0(kn2 + 2jk2sn)) = O(`kn2 + 2`k2sn). Noting that

` = O(log(n)) provides the claim.

We now consider the cost of Algorithm 3 in the more general case n1 6= n2. Without loss
of generality, we assume n1 = 2`1nmin > 2`2nmin = n2; Algorithm 3 begins with `1 − `2 split-
tings on the first mode. This generates 2`1−`2 subproblems of size n2 × n2, 2`1−`2 − 1 calls to
low rank sylv and 2`1−`2 − 1 multiplications with a block vector at line 12. In particular,
we have 2j calls to low rank sylv for problems of size n1/2

j × n2, j = 0, . . . , `1 − `2 − 1;
this yields an overall cost of O((`1 − `2)sk2n1) and O((`1 − `2)s2k2n1) when fADI and rational
Krylov are employed, respectively. Analogously, the multiplications at line 11 of this initial phase
require O((`1 − `2)kn1n2) flops. Summing these costs to the estimate provided by Theorem 3.9,
multiplied by 2`1−`2 , yields the following corollary.

Corollary 3.10. Under the assumptions of Theorem 3.9, apart from n1 = 2`1nmin ≥ n2 =
2`2nmin with n2 ≥ log(n1/n2), we have that Algorithm 3 costs:

(i) O((k log(n1)+nmin+sk2)n1n2) if low rank sylv implements s steps of the fADI method,

(ii) O((k log(n1) + nmin + s2k2)n1n2) if low rank sylv implements s steps of the rational
Krylov method.

4 Tensor Sylvester equations

We now proceed to describe the procedure sketched in the introduction for d > 2. Initially, we
assume that all dimensions are equal, so that the splitting is applied to all modes at every step
of the recursion.

We identify two major differences with respect to the case d = 2, both concerning the update
equation (7):

δX ×1 A1 + δX ×2 A2 + · · ·+ δX ×d Ad = −
d∑
t=1

X (1) ×t Aoff
t .

First, the latter equation cannot be solved directly with a single call to low rank sylv, since
the right-hand side does not have a low-rank matricization. However, the t-mode matricization
of the term X (1) ×t Aoff

t has rank bounded by k for t = 1, . . . , d. Therefore, the update equation
can be addressed by d separate calls to the low-rank solver, by splitting the right-hand side, and
matricizing the tth term in a way that separates the mode t from the rest, as follows:

AtδXt + δXt

∑
j 6=t

I ⊗ · · · ⊗ I ⊗Aj ⊗ I ⊗ · · · ⊗ I = −Aoff
t X(1), (33)

where, in this case, X(1) denotes the t-mode matricization of X (1).
Second, the solution of (33) by means of low rank sylv requires solving shifted linear

systems with a Kronecker sum of d − 1 matrices, that is performed by recursively calling the
divide-and-conquer scheme. This generates an additional layer of inexactness, that we have to
take into account in the error analysis. This makes the analysis non-trivial, and requires results
on the error propagation in low rank sylv; in the next section we address this point in detail
for fADI, that will be the method of choice in our implementation.

18

In the case where the dimensions ni are unbalanced, we follow a similar approach to the
case d = 2. More precisely, at each level we only split on the r dominant modes which satisfy
2ni ≥ maxj nj , and which are larger than nmin. This generates 2r recursive calls and r update
equations.

We summarize the procedure in Algorithm 4.

Remark 4. Other recursive solvers for tensor and matrix equations (such as recsy [9]) adopt a
different strategy and always split one mode at a time. Here we pursue the simultaneous splitting
approach because it comes with a few computational advantages. In particular, the low-rank
Sylvester solvers for the different modes can be run in parallel and the depth of the recursion tree
is reduced. We only resort on splitting one (or some) mode at a time when the dimensions are
unbalanced because it facilitates the analysis of the computational complexity.

Algorithm 4

1: procedure lyapnd d&c(A1, A2, . . . , Ad,B, ε)
2: if maxi ni ≤ nmin then
3: return lyapnd diag(A1, A2, . . . , Ad,B)
4: else
5: Permute the modes to have 2ni ≥ maxj{nj} and ni ≥ nmin, for i ≤ r.
6: for j1, . . . , jr = 1, 2 do
7: Y(j1,...,jr) ←lyapnd d&c(A

(j1j1)
1 , . . . , A

(jrjr)
s , Ar+1, . . . , Ad,B(j1,...,jr), ε)

8: Copy Y(j1,...,jr) in the corresponding entries of X (1).
9: end for

10: for j = 1, . . . , r do
11: Retrieve a rank k factorization Aoff

j = UṼ T

12: V ← reshape(−X (1) ×j Ṽ ,
∏

i 6=j ni, k)
13: δXj ← low rank sylv(Aj ,

∑
i6=j I ⊗ · · · ⊗ I ⊗Ai ⊗ I ⊗ · · · ⊗ I, U, V, ε)

14: δXj ← tensorize δXj , inverting the j-mode matricization.
15: end for
16: return X (1) + δX1 + . . .+ δXr.
17: end if
18: end procedure

4.1 Error analysis

The use of an inexact solver for tensor Sylvester equations with d− 1 modes in low rank sylv
has an impact on the achievable accuracy of the method. Under the assumption that all the
update equations at line 13 are solved with a relative accuracy ε we can easily generalize the
analysis performed in Section 3.1.1.

More specifically, we consider the additive decomposition of X̃ = X̃ (0) = X̃ (`) + δX̃ (`−1) +
. . .+ δX̃ (0), where the equations solved by the algorithm are the following:

d∑
t=1

X̃ (`) ×t A(`)
t = B +R(`) (34)

d∑
t=1

δX̃ (h,j) ×t A(h)
t = Ξ̃(h,j) +R(h,j), (35)

with A
(h)
t are the block-diagonal matrices defined in (10), and δX̃ (h) = δX̃ (h,1) + . . . + δX̃ (h,d),

19

and Ξ̃(h,j) is defined as follows:

Ξ̃(h,j) := −X̃ (h−1) ×j (A
(h)
j −A

(h+1)
j).

We remark that the matrix A
(h)
j − A(h+1)

j contains the off-diagonal blocks that are present in

A
(h)
j but not in A

(h+1)
j . When the dimensions ni are unbalanced we artificially introduce some

levels in the HSS partitioning (see Section 3.2), some of these may be the zero matrix. Then, we
state the higher-dimensional version of Lemma 3.2.

Lemma 4.1. If the tensor Sylvester equations (34) and (35) are solved with the relative accu-

racies ‖R(`)‖F ≤ ε‖B‖F and ‖R(h,j)‖F ≤ ε‖Ξ̃(h,j)‖F and κε < 1, with κ := β1+...+βd

α1+...+αd
, then the

approximate solution X̃ returned by Algorithm 4 satisfies

∥∥∥ d∑
i=1

X̃ ×i Ai − B
∥∥∥
F
≤ (`+ 1)2κε‖B‖F .

Proof. Let us consider X̃ (h) = X̃ (h) + δX̃ (`−1) + . . . + δX̃ (h). Following the same argument in
the proof of Lemma 3.1, we obtain

d∑
i=1

X̃ (h) ×i Ai = B +R(`) + . . .+R(h),

where R(h) :=
∑d
j=1R(h,j). Hence, we bound

‖R(h)‖F ≤
d∑
j=1

‖R(h,j)‖F ≤ ε
d∑
j=1

‖Ξ̃(h,j)‖F

≤ ε
d∑
j=1

βj(‖X (h+1)‖F + ‖X (h+1) − X̃ (h+1)‖F)

≤ εκ(‖B‖F + ‖R(`)‖F + . . .+ ‖R(h+1)‖F).

By induction one can show that

‖R(h)‖F ≤ κε(1 + ε)(1 + κε)`−h−1‖B‖F ,

and the claim follows applying the same reasoning as in the proof of Lemma 3.2.

Lemma 4.1 ensures that if the update equations are solved with uniform accuracy the growth
in the residual is controlled by a moderate factor, as in the matrix case.

We now investigate what can be ensured if we perform a constant number of fADI steps
throughout all levels of recursions (including the use of the nested Sylvester solvers). This
requires the development of technical tools for the analysis of factored ADI with inexact solves.

4.1.1 Factored ADI with inexact solves

Algorithm 4 solves update equations that can be matricized as A1δX + δXA2 = UV ∗, where
the factors U and V are retrieved analogously to the matrix case, see Remark 1, and A1 is the
Kronecker sum of d− 1 matrices. In particular, linear systems with A1 are solved inexactly by a

20

nested call to Algorithm 4. In this section we investigate how the inexactness affects the residual
of the solution computed with s steps of fADI.

We begin by recalling some properties of fADI. Assume to have carried out j+1 steps of fADI
applied to the equation A1δX + δXA2 = UV ∗. Then, the factors Wj+1, Yj+1 can be obtained
by running a single fADI iteration for the equation

A1δX + δXA2 = −rj(A1)UV ∗rj(−A2)−1, rj(z) :=

j∏
h=1

z − ph
z − qh

,

using parameters pj+1, qj+1.

We now consider the sequence W̃j obtained by solving the linear systems with A1 inexactly:

(A1 − qj+1I)W̃j+1 = (A1 − pjI)W̃j + ηj+1, (A1 − q1I)W̃1 = U + η1, (36)

where ‖ηj+1‖2 ≤ ε‖U‖.
The following lemma quantifies the distance between W̃j and Wj . Note that we make the

assumption |z − pj | ≤ |z − qj | over [α1, β1], that is satisfied by the parameters of the Zolotarev
functions, as discussed in Section 3.3.1.

Lemma 4.2. Let A1 be positive definite, and pj , qj satisfying |z−pj | ≤ |z−qj | for any z ∈ [α1, β1].

Let W̃j be the sequence defined as in (36) Then, it holds

(A− pjI)W̃j = rj(A1)U +Mj , ‖Mj‖F ≤ jε‖U‖F , rj(z) :=

j∏
i=1

z − pi
z − qi

.

Proof. For j = 1, the claim follows directly from the assumptions. For j > 1, we have

(A1 − pj+1I)W̃j+1 = (A1 − pj+1I)(A1 − qj+1I)−1
[
(A1 − pjI)W̃j + ηj+1

]
=
rj+1

rj
(A1) [rj(A1)U +Mj + ηj+1]

= rj+1(A1)U +
rj+1

rj
(A1) (Mj + ηj+1) .

The claim follows by settingMj+1 :=
rj+1

rj
(A1) (Mj + ηj+1), and using the property rj+1(z)/rj(z) =

|z − pj+1|/|z − qj+1| ≤ 1 over the spectrum of A1.

Remark 5. We remark that the level of accuracy required in (36) is guaranteed up to second

order terms in ε, whenever the residual norm for the linear systems (A1 − qj+1I)W̃j+1 = (A1 −
pjI)W̃j + ηj+1 satisfies ‖ηj+1‖ ≤ ε‖(A1 − pjI)W̃j‖F . Indeed, the argument used in the proof of
Lemma 4.2 can be easily modified to get

‖Mj‖F ≤ [(1 + ε)j − 1]‖U‖F = jε‖U‖F +O(ε2).

The slightly more restrictive choice made in (36), allows us to obtain more readable results.

We can then quantify the impact of carrying out the fADI iteration with inexactness in one
of the two sequences on the residual norm.

21

Theorem 4.3. Let us consider the solution of (19) by means of the fADI method using shifts
satisfying the property |z − pj | ≤ |z − qj | for any z ∈ [α1, β1], and let ε > 0 such that the linear

systems defining W̃j are solved inexactly as in (36). Then, the computed solution δX̃s verifies:

‖A1δX̃s + δX̃sA2 − UV ∗‖F ≤ εs,ADI + 2sε‖U‖F ‖V ‖2,

where εs,ADI := ‖A1δXs + δXsA2 −UV ∗‖F is the norm of the residual after s steps of the fADI
method in exact arithmetic.

Proof. We indicate with δX̃j the inexact solution computed at step j of fADI. We note that δX̃1

corresponds to the outcome of one exact fADI iteration for the slightly modified right-hand side
(U + η1)V ∗; hence, by (23) δX̃1 satisfies the residual equation:

A1δX̃1 + δX̃1A2 − (U + η1)V ∗ = −r1(A1)(U + η1)V ∗r1(−A2)−1,

which allows to express the residual on the original equation as follows:

A1δX̃1 + δX̃1A2 − UV ∗ = −r1(A1)(U + η1)V ∗r1(−A2)−1 + η1V
∗.

We now derive an analogous result for the update ∆j+1 := δX̃j+1−δX̃j = (qj+1−pj+1)W̃j+1Y
∗
j+1

where ∆1 = δX̃1 by setting δX̃0 = 0. We prove that for any j the correction ∆j+1 satisfies

A1∆j+1 + ∆j+1A2 =
[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj(−A2)−1

− rj+1

rj
(A1)

[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj+1(−A2)−1, j ≥ 1.

We verify the claim for j = 1; W̃2 is defined by the relation

(A1 − q2I)W̃2 = (A1 − p1I)W̃1 + η2 = r1(A1)(U + η1) + η2.

Hence, as discussed in the beginning of this proof, W̃2 is the outcome of one exact iteration of
fADI applied to the equation A1δX + δXA2 − (r1(A1)(U + η1) + η2)V ∗r1(−A2)−1 = 0. Hence,
thanks to (23) the residual of the computed update ∆2 verifies

A1∆2 + ∆2A2 − (r1(A1)(U + η1) + η2)V ∗r1(−A2)−1

= −r2

r1
(A1) [r1(A1)(U + η1) + η2)V ∗] r2(−A2)−1

Then, the claim follows for j = 1 noting that (A − p1I)W̃1 = r1(A1)(U + η1) using the

first relation in (36). For j > 1 we have (A1 − qj+1I)W̃j+1 = (A − pjI)W̃j + ηj+1 and with a
similar argument ∆j+1 is obtained as a single fADI iteration in exact arithmetic for the equation

A1δX+δXA2−((A−pjI)W̃j+ηj+1)V ∗rj(−A2)−1 = 0, and in view of the residual equation (23)

A1∆j+1 + ∆j+1A2 −
[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj(−A2)−1

= −rj+1

rj
(A1)

[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj+1(−A2)−1.

22

We now write δX̃s =
∑s
j=1 ∆j , so that by linearity the residual associated with δX̃s satisfies

A1δX̃s + δX̃sA2 − UV ∗ = A1∆1 + ∆1A2 − UV ∗ +

s−1∑
j=1

(A1∆j+1 + ∆j+1A2)

= −r1(A1)(U + η1)V ∗r1(−A2)−1 + η1V
∗

+

s−1∑
j=1

{
− rj+1

rj
(A1)

[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj+1(−A2)−1

+
[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj(−A2)−1

}
.

We now observe that, thanks to (36)

rj+1

rj
(A1)

[
(A1 − pjI)W̃j − ηj+1

]
= (A1 − pj+1I)W̃j+1.

Plugging this identity in the summation yields

s−1∑
j=1

{[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj(−A2)−1 − rj+1

rj
(A1)

[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj+1(−A2)−1

}

=

s−1∑
j=1

{[
(A1 − pjI)W̃j + ηj+1

]
V ∗rj(−A2)−1 − (A− pj+1I)W̃j+1V

∗rj+1(−A2)−1

}

= (A− p1I)W̃1V
∗r1(−A2)−1 − (A1 − psI)W̃sV

∗rs(−A2)−1 +

s−1∑
j=1

ηj+1V
∗rj(−A2)−1

Summing this with the residual yields

A1δX̃s + δX̃sA2 − UV ∗ = −(A− psI)W̃sV
∗rs(−A2)−1 +

s−1∑
j=0

ηj+1V
∗rj(−A2)−1,

where we have used the relation r1(A1)(U + η1) = (A− p1I)W̃1 from (36). In view Lemma 4.2

we can write (A− psI)W̃s = rs(A1)U +Ms, where ‖Ms‖F ≤ sε. Therefore,

‖A1δX̃s + δX̃sA2 + UV ∗‖F ≤ ‖rs(A1)UV ∗rs(−A2)−1‖F + sε‖U‖F ‖V ‖2

+

s−1∑
j=0

‖ηj+1V
∗rj(−A2)−1‖F

≤ εADI,s + 2sε‖U‖F ‖V ‖2.

Remark 6. We note that, the error in Theorem 4.3 depends on ‖U‖F ‖V ‖2; this may be larger
than ‖UV ∗‖F , which is what we need to ensure the relative accuracy of the algorithm. However,
under the additional assumption that V has orthogonal columns, we have ‖UV ∗‖F = ‖U‖F ‖V ‖2.
We can always ensure that this condition is satisfied by computing a thin QR factorization of V ,
and right-multiplying U by R∗. This does not increase the complexity of the algorithm.

23

4.1.2 Residual bounds with inexactness

We can now exploit the results on inexact fADI to control the residual norm of the approximate
solution returned by Algorithm 4, assuming that all the update equations are solved with a fixed
number s of fADI steps with optimal shifts.

Theorem 4.4. Let A1, . . . , Ad ∈ Rn×n, symmetric positive definite with spectrum contained in
[α, β], and κ := β

α . Moreover, assume that the Ajs are HSS matrices of HSS rank k, with a
partitioning of depth `. Let ε > 0 and suppose that low rank sylv uses fADI with the s zeros
and poles of the extremal rational function for Zs([α, β], [−(d − 1)β,−α]) as input parameters,
with right-hand side reorthogonalized as described in Remark 6. If

s ≥ 1

π2
log

(
2
dκ

ε

)
log

(
8

(α+ (d− 1)β)(α+ β)

dαβ

)
and Algorithm 1 solves the Sylvester equations at the base of the recursion with residual bounded
by ε times the norm of the right-hand side, then the solutions X̃ computed by Algorithm 4 satisfies:

‖X̃ ×1 A1 + · · ·+ X̃ ×d Ad − B‖F ≤
([
κ(`+ 1)2

]d−1
(1 + 2s)d−2ε

)
‖B‖F .

Proof. Let εlr,d be the relative residual at which the low-rank update equations with d modes
are solved in the recursion and let εd := (`+ 1)2κεlr,d. Note that, thanks to Lemma 4.1, we have

‖X̃ ×1 A1 + · · ·+ X̃ ×d Ad − B‖F ≤ εd‖B‖F ,

so that εd is an upper bound for the relative residual of the target equation. Moreover, using the
error bound for inexact fADI of Theorem 4.3, we can write εlr,d ≤ (1 + 2s)εd−1, which implies

εd ≤

{
(`+ 1)2κε d = 2 (Theorem 3.6)

(`+ 1)2κ(1 + 2s)εd−1, d ≥ 3.
,

where ε is Zs([α, β], [−(d− 1)β,−α]). Expanding the recursion yields the sought bound.

Theorem 4.4 bounds the residual error with a constant depending on κd−1, which can often

be pessimistic. This term arises when bounding ‖Ξ(h,j)‖F with ‖A(h)
j ‖2 multiplied by ‖X (h+1)‖F .

When the Ajs are M-matrices, this can be improved, by replacing κ with
√
κ.

Corollary 4.5. Under the same hypotheses of Theorem 4.4 and the additional assumption that
the Ats are symmetric positive definite M -matrices, we have

‖X̃ ×1 A1 + · · ·+ X̃ ×d Ad − B‖F ≤
([
d
√
κ(`+ 1)2

]d−1
(1 + 2s)d−2ε

)
‖B‖F .

Proof. By means of the same argument used in Lemma 3.7 we have that ‖Ξ(h,j)‖ ≤
√
κ‖B‖F and

‖Ξ(h,j)− Ξ̃(h,j)‖F ≤
√
κ‖R(`) + . . .+R(h+1)‖F . Plugging these bounds in the proof of Lemma 4.1

yields the inequality

‖R(h)‖F ≤ ε
d∑
j=1

[
‖Ξ(h,j)‖F + ‖Ξ̃(h,j) − Ξ(h,j)‖F

]
≤ dε
√
κ
[
‖B‖F + ‖R(`)‖F + . . .+ ‖R(h+1)‖F

]
.

Then, following the same steps of Lemma 4.1 yields

‖R(h)‖F ≤ d
√
κε(1 + ε)(1 + d

√
κε)`−h−1‖B‖F .

Using this bound in Theorem 4.4 yields the claim.

24

4.2 Complexity analysis

Theorem 3.9 can be generalized to the d-dimensional case, providing a complexity analysis when
nested solves are used.

Theorem 4.6. Let Ai ∈ Rni×ni ni = 2`inmin, with n1 ≥ n2 ≥ · · · ≥ nd, nd ≥ skd, nd ≥
log(n1/nd), and assume that Ai are HSS matrices of HSS rank k, with a partitioning of depth `i
obtained by halving the dimension at every level, for i = 1, . . . , d. Then, Algorithm 4 costs:

(i) O((k(d + log(n1)) + nmin + sk2)n1 . . . nd) if low rank sylv implements s steps of the
fADI method,

(ii) O((k(d + log(n1)) + nmin + s2k2)n1 . . . nd) if low rank sylv implements s steps of the
rational Krylov method.

Proof. We only prove (i) because (ii) is completely analogous.
Let us assume that we have r different mode sizes and each of those occurs dh times, i.e.:

n1 = n2 = · · · = ni1︸ ︷︷ ︸
d1

> ni1+1 = · · · = ni2︸ ︷︷ ︸
d2

> · · · > nir−1+1 = · · · = nir︸ ︷︷ ︸
dr

.

We proceed by (bivariate) induction over d ≥ 2 and `1 ≥ 0; the cases d = 2 and `1 ≥ 0 are given by
Theorem 3.9 and Corollary 3.10. For d > 2 and `1 = 0, we have that n := n1 = · · · = nd = nmin

and Algorithm 4 is equivalent to Algorithm 1 whose cost is O(nd+1) = O(nminn
d); so also in

this case the claim is true. For d > 2 and `1 > 0, the algorithm begins by halving the first d1

modes generating 2d1 subproblems having dominant size n1/2 = 2`1−1nmin. By induction these
subproblems cost

O
(

2d1(k(d+ log(n1/2)) + nmin + sk2)(ni1/2)d1nd2i2 n
d3
i3
. . . ndrir

)
= O

(
(k(d+ log(n1)) + nmin + sk2)

d∏
i=1

ni

)
.

Then, we focus on the cost of the update equations and of the tensor times (block) vector
multiplications, in this first phase of Algorithm 4. The procedure generates d1 update equations
of size n1 × · · · × nd. The cost of each call to low rank sylv is dominated by the complexity
of solving sk (shifted) linear systems with a Kronecker sum structured matrix with d− 1 modes.
By induction, the cost of all the calls to low rank sylv is bounded by

O

skd1(k(d+ log(n1)) + nmin + sk2)

d−1∏
j=1

nj


= O

(k(d+ log(n1)) + nmin + sk2)

d∏
j=1

nj

 .

Finally, since the tensor times (block) vector multiplications are in one-to-one correspondence
with the calls to low rank sylv, we have that the algorithm generates d1 products of complexity
O(kn1 . . . nd). Adding the contribution O(dkn1 . . . nd) to the cost of the subproblems provides
the claim.

25

5 Numerical experiments

We now test the proposed algorithm against some implementations of Algorithm 1 where the
explicit diagonalization of the matrix coefficients At is either done in dense arithmetic or via
the algorithm proposed in [25]. Note that, the dense solver delivers accuracy close to machine
precision while the other approaches aim at a trading of some accuracy for a speedup in the
computational time. We assess this behavior on 2D and 3D examples.

5.1 Details of the implementation

An efficient implementation of Algorithm 3 and Algorithm 4 takes some care. In particular:

• In contrast to the numerical tests of Section 3.4, the number of Zolotarev shifts for fADI
and RK is adaptively chosen on each level of the recursion to ensure the accuracy described

in (15). More precisely, this requires estimates of the spectra of the matrix coefficients A
(h)
t

at all levels of recursion h; this is done via the MATLAB built-in function eigs. However,

since A
(h)
i appears in 2(d−1)h equations, estimating the spectra in each recursive call would

incur in redundant computations. Therefore, we precompute estimates of the spectra for
each block before starting Algorithm 3 and 4, by walking the cluster tree.

• Since the Ats are SPD, we remark that the correction equation can be slightly modified to
obtain a right-hand side with half of the rank. This is obtained by replacing Aoff

j with a
low-rank matrix having suitable non-zero diagonal blocks. See [18, Section 4.4.2] for the
details on this idea. This is crucial for problems with higher off-diagonal ranks, and is used
in the 2D Fractional cases described below.

• A few operations in Algorithm 4 are well suited for parallelism: the solution of the Sylvester
equations at the base of the recursions are all independent, and the same holds for the body
of the for loop at lines 11–14. We exploit this fact by computing all the solutions in parallel
using multiple cores in a shared memory environment.

• When the matrices At are both HSS and banded, they are represented within the sparse
format and the sparse direct solver of MATLAB (the backslash operator) is used for the
corresponding system solving operations. Note that, in this case the peculiar location of
the nonzero entries makes easy to construct the low-rank factorizations of the off-diagonal
blocks.

In addition to fADI and rational Krylov, we consider another popular low-rank solver for Sylvester
equations: the extended Krylov method [29] (EK). The latter corresponds to the rational Krylov
method where the shift parameters alternate between the values 0 and ∞. In particular, EK’s
iteration leverages the precomputation of either the Cholesky factorization of the sparse coeffi-
cient matrices, or the ULV factorization [34] in the HSS case. This is convenient because the
shift parameters do not vary. A slight downside is that we do not have a priori bounds on the
error, and we have to monitor the residual norm throughout the iterations to detect convergence.

An implementation of the proposed algorithms is freely available at https://github.com/

numpi/teq_solver, and requires rktoolbox3 [7] and hm-toolbox4 [23] as external dependencies.
The repository contains the numerical experiments included in this document, and includes a
copy of the SuperDC solver.5 [25]

3https://rktoolbox.org
4https://github.com/numpi/hm-toolbox
5https://github.com/fastsolvers/SuperDC

26

https://github.com/numpi/teq_solver
https://github.com/numpi/teq_solver
https://rktoolbox.org
https://github.com/numpi/hm-toolbox
https://github.com/fastsolvers/SuperDC

Figure 3: Hierarchical low-rank structure of the 1D fractional Laplace operator discretized
through Grünwald-Letnikov finite differences. The blue blocks are dense, while the gray blocks
are stored as low-rank matrices whose rank is indicated by the number in the center.

The experiments have been run on a server with two Intel(R) Xeon(R) E5-2650v4 CPU with
12 cores and 24 threads each, running at 2.20 GHz, using MATLAB R2021a with the Intel(R)
Math Kernel Library Version 11.3.1. The examples have been run using the SLURM scheduler,
allocating 8 cores and 240 GB of RAM.

5.2 Laplace and fractional Laplace equations

In this first experiment we validate the asymptotic complexity of Algorithm 3 and compare the
performances of various low-rank solvers for the update equation. As case studies we select
two instances of the matrix equation AX + XA = B. In one case A ∈ Rn×n is chosen as the
usual central finite difference discretization of the 1D Laplacian. In the other case A is the
Grünwald-Letnikov finite difference discretization of the 1D fractional Laplacian with order 1.5,
see [21, Section 2.2.1]. In both cases the reference solution X is randomly generated by means
of the MATLAB command randn(n), and B is computed as B := AX +XA. We remark that
for both equations the matrix A is SPD and HSS; in particular for the Laplace equation A is
tridiagonal and stored in the sparse format, while for the fractional Laplace equation it has the
rank structure depicted in Figure 3. For the Laplace equation we set nmin = 512. In view of
the higher off-diagonal ranks of the fractional case, we consider the larger minimal block size
nmin = 2048. In the next section we will investigate how varying this parameter affects the
performances.

We consider increasing sizes n = 2j , j = 10, . . . , 15 and the following solvers:

diag Algorithm 1 with explicit diagonalization of the matrix A performed in dense arithmetic.

dst Algorithm 1 incorporating the fast diagonalization by means of the Discrete Sine Transform
(DST). This approach is only considered for the 2D Laplace equation.

superdc solver implementing Algorithm 1 using the fast diagonalization for SPD HSS matrices
described in [25].

dc adi Algorithm 3 where the fADI iteration is used as low rank sylv.

dc rk Algorithm 3 where the rational Krylov method is used as low rank sylv.

dc ek Algorithm 3 where the extended Krylov method is used as low rank sylv.

27

Table 1: Timings and residuals for the solution of the 2D Laplace equation of size n×n by means
of Algorithm 3 using different low rank solvers, and nmin = 512.

diag dc adi dc rk dc ek
nmin = 512 nmin = 512 nmin = 512

n Time Res Time Res Time Res Time Res

1,024 0.2 2.9 · 10−13 0.6 2.5 · 10−10 0.6 1.4 · 10−10 0.5 3.1 · 10−10

2,048 0.9 3.9 · 10−13 1.0 3.1 · 10−10 2.0 1.5 · 10−10 2.4 4.0 · 10−10

4,096 5.9 1.2 · 10−12 3.5 3.4 · 10−10 8.4 1.5 · 10−10 10.5 4.4 · 10−10

8,192 41.9 3.4 · 10−12 14.9 3.7 · 10−10 35.5 1.5 · 10−10 43.2 4.7 · 10−10

16,384 320.8 7.8 · 10−12 61.4 3.7 · 10−10 149.6 1.5 · 10−10 181.5 4.8 · 10−10

32,768 2,511.3 8.9 · 10−12 258.1 3.7 · 10−10 625.8 1.5 · 10−10 760.0 4.9 · 10−10

n = 4096 n = 8192 n = 16384

0

20

40

60

P
er

ce
n
ta

g
e

o
f

ti
m

e

2D Laplace, nmin = 512

Dense

Low-rank

RHS+Sol

Spectra

Figure 4: Distribution of the time spent in the different tasks in Algorithm 3. The results are
for some instances of the 2D Laplace equation considered in Section 5.2 with fADI as low-rank
solver and nmin = 512.

The shifts used in dc adi and dc rk are the optimal Zolotarev zeros and poles. The number of
shifts is chosen to obtain similar residual norms Res := ‖AX̃+ X̃A−B‖F /‖B‖F of about 10−10.

We start by comparing the different implementation of Algorithm 3 with diag. A detailed
comparison with dst and superdc is postponed to Section 5.4.

The running times and residuals are reported in Table 1 for the Laplace equation. The
fractional case is reported in Table 2, for which we do not report the timings for n = 1024, 2048
since our choice of nmin makes Algorithm 3 equivalent to Algorithm 1.

For both experiments, using fADI as low-rank solver yields the cheapest method. We remark
that, in the fractional case, dc ek outperforms dc rk since the precomputation of the Cholesky
factorization of A (and of its sub blocks) makes the iteration of extended Krylov significantly
cheaper than the one of rational Krylov.

In Figure 4 and 5 we display how the time is distributed among the various subtasks of
dc adi, i.e., the time spent on solving dense matrix equations, computing the low-rank updates,
forming the RHS of the update equation and updating the solution, and estimating the spectra.

28

Table 2: Timings and residuals for the solution of the 2D fractional Laplace equation of size
n× n by means of Algorithm 3 using different low rank solvers, and nmin = 2048.

diag dc adi dc rk dc ek
nmin = 2048 nmin = 2048 nmin = 2048

n Time Res Time Res Time Res Time Res

4,096 16.0 8.3 · 10−15 20.9 4.5 · 10−11 24.7 1.6 · 10−11 19.1 1.2 · 10−10

8,192 137.2 1.8 · 10−14 99.4 5.9 · 10−11 120.7 2.5 · 10−10 97.8 1.2 · 10−10

16,384 1,061.1 2.3 · 10−14 439.0 6.8 · 10−11 593.2 2.2 · 10−10 471.3 1.6 · 10−10

32,768 8,297.0 3.2 · 10−14 1,998.0 3.1 · 10−10 2,948.1 3.6 · 10−10 2,467.1 3.0 · 10−10

n = 4096 n = 8192 n = 16384

0

20

40

60

P
er

ce
n
ta

g
e

o
f

ti
m

e

Fractional 2D Laplace, nmin = 2048

Dense

Low-rank

RHS+Sol

Spectra

Figure 5: Distribution of the time spent in the different tasks in Algorithm 3. The results are
for some instances of the 2D Fractional Laplace equation considered in Section 5.2 with fADI as
low-rank solver and nmin = 2048.

29

Table 3: Timings and residuals for the solution of the 2D Laplace equation of size n×n by means
of Algorithm 3 using fADI as low rank solver, with different choices of nmin.

diag dc adi dc adi dc adi
nmin = 256 nmin = 512 nmin = 1024

n Time Res Time Res Time Res Time Res

2,048 1.1 5.2 · 10−13 2.0 3.7 · 10−10 1.0 3.1 · 10−10 1.0 1.8 · 10−10

4,096 5.9 1.3 · 10−12 5.0 3.9 · 10−10 3.5 3.4 · 10−10 3.7 2.0 · 10−10

8,192 42.0 3.3 · 10−12 19.6 4.2 · 10−10 14.7 3.7 · 10−10 16.5 2.4 · 10−10

16,384 319.9 7.8 · 10−12 80.4 4.2 · 10−10 59.8 3.7 · 10−10 67.1 2.5 · 10−10

32,768 2,512.5 8.9 · 10−12 340.5 4.2 · 10−10 259.1 3.7 · 10−10 283.3 2.6 · 10−10

Table 4: Timings and residuals for the solution of the 2D fractional Laplace equation of size
n× n by means of Algorithm 3 using fADI as low rank solver, with different choices of nmin.

diag dc adi dc adi dc adi
nmin = 2048 nmin = 4096 nmin = 8192

n Time Res Time Res Time Res Time Res

2,048 2.2 6.4 · 10−15 − − − − − −
4,096 16.8 8.2 · 10−15 21.8 5.4 · 10−11 − − − −
8,192 139.3 1.8 · 10−14 108.9 1.2 · 10−10 100.6 5.5 · 10−11 − −
16,384 1,036.1 2.3 · 10−14 524.6 1.5 · 10−10 478.9 8.6 · 10−11 652.6 5.5 · 10−11

32,768 7,934.2 3.2 · 10−14 2,337.5 1.7 · 10−10 2,034.1 1.2 · 10−10 2,741.5 8.2 · 10−11

5.3 Varying the block size

We perform numerical tests similar to the ones of the previous section, but we only consider
the low-rank solver fADI for the update equations and, instead, we vary the minimal block
size, aiming at determining the best block-size for each test problem. Table 1 and Table 2
report the results concerning nmin ∈ {256, 512, 1024} for the 2D Laplace equation, and nmin ∈
{2048, 4096, 8192} for the fractional Grünwald-Letnikov finite differences case.

The results indicate that the choice nmin = 512 is ideal for the 2D Laplace case, and nmin =
4096 for the fractional case. We expect that problems involving larger off-diagonal ranks will
need a larger choice of nmin.

5.4 Comparison with 2D state-of-the art solvers

In this section we compare Algorithm 3 with solvers based on fast diagonalization strategies (dst
and superdc). The fast diagonalization procedure of superdc requires to set a minimal block
size. We have chosen nmin = 2048, which yields the best results on the cases of study.

The results are shown in Table 5 and 6 and the running times are also displayed in Figure 6.
Both dst and superdc have the quasi-optimal complexity O(n2 log n), as Algorithm 3. Algo-
rithm 3 significantly outperforms superdc in all examples, with an acceleration of more than
10x on the largest examples. The performances in the 2D Laplace case are comparable with
those of dst. We remark that, having as size a power of 2 is the worst case scenario for the
performance of the discrete sine transform; we expect an additional speed up of the approach
based on dst when considering sizes of the form 2k − 1. On the other hand, dst only applies to
the specific case of the 2D Laplace equation with constant coefficients.

30

Table 5: Timings and residuals for the solution of the 2D Laplace equation of size n×n by means
of Algorithm 3 using fADI and nmin = 512, superdc and dst.

dc adi dst superdc
nmin = 512 nmin = 2048

n Time Res Time Res Time Res

1,024 0.6 2.5 · 10−10 0.2 6.3 · 10−14

2,048 1.0 3.1 · 10−10 0.9 1.1 · 10−13

4,096 3.5 3.4 · 10−10 3.3 3.3 · 10−13 15.5 2.9 · 10−12

8,192 14.9 3.7 · 10−10 13.5 1.1 · 10−12 95.3 4.5 · 10−11

16,384 61.4 3.7 · 10−10 55.1 2.7 · 10−12 593.4 9.6 · 10−11

32,768 258.1 3.7 · 10−10 240.6 2.4 · 10−12 3,342.6 1.5 · 10−10

Table 6: Timings and residuals for the solution of the 2D Fractional Laplace equation of size
n× n by means of Algorithm 3 using fADI and nmin = 2048, 4096, and superdc.

dc adi dc adi superdc
nmin = 2048 nmin = 4096 nmin = 2048

n Time Res Time Res Time Res

4,096 21.8 5.4 · 10−11 91.4 4.0 · 10−9

8,192 108.9 1.2 · 10−10 100.6 5.5 · 10−11 685.7 5.3 · 10−9

16,384 524.6 1.5 · 10−10 478.9 8.6 · 10−11 4,715.0 5.7 · 10−9

32,768 2,337.5 1.7 · 10−10 2,034.1 1.2 · 10−10 27,546.0 5.9 · 10−9

103 104

10−1

101

103

n

T
im

e
(s

)

2D Laplace

dc adi

dst

superdc

O(n2 log(n))

104 104.5

101

102

103

104

105

n

T
im

e
(s

)

2D fractional Laplace

dc adi 2048

dc adi 4096

superdc

O(n2 log(n))

Figure 6: Log-log plot of the running times for the solution of the 2D Laplace equation (left) and
the 2D fractional Laplace equation (right) associated with the numerical tests in Section 5.4.

31

Table 7: Timings and residuals for the solution of the 3D Laplace equation of dimension n×n×n
by means of Algorithm 3 using fADI as low rank solver, with different choices of nmin for the 3D
splitting. The nmin used in the recursive 2D solver is fixed to nmin = 1024.

diag dc adi dc adi dc adi
nmin = 128 nmin = 256 nmin = 512

n Time Res Time Res Time Res Time Res

256 1.0 9.9 · 10−15 4.8 1.6 · 10−8 − − − −
512 11.5 1.1 · 10−14 25.4 2.1 · 10−8 18.1 1.3 · 10−8 − −

1,024 144.1 1.8 · 10−14 258.0 2.4 · 10−8 242.5 1.7 · 10−8 193.4 1.1 · 10−8

5.5 3D Laplace equation

We now test the 3D version of the Laplace solver described in Section 5.2. More precisely, we
solve the tensor equation

X ×1 A1 + X ×2 A2 + X ×3 A3 = B, (37)

where At are finite difference discretization of the 1D Laplacian with zero Dirichlet bound-
ary condition of sizes ni × ni. The reference solution X is randomly generated by means of
randn(n1,n2,n3), and B is set evaluating (37). We remark that in the 3D case we can choose
two different block sizes: one for the recursion in the tensor equation, and one for the recursive
calls to the 2D solver. In this section we indicate the former with nmin and the latter is set to
1024 in all the examples, with the only exception of the scaling test in Section 5.6, where all
block sizes (2D and 3D) are set to 32.

The low-rank solver for the update equations is fADI, and the tolerance ε in Algorithm 4 is
set to ε = 10−6. We consider two test cases.

Test 1 We choose n = n1 = n2 = n3 ranging in {256, 512, 1024} and the considered block sizes
are nmin ∈ {128, 256, 512}. Note that, in this test case all the 2D problems in the recursion are
solved with the dense method, in view of our choice of the minimal block size. The results are
reported in Table 7.

The results show that the dense method is faster for all choices of n and nmin, although
the scaling suggests that a breakeven point should be reached around n = 2048 and nmin 1024.
However, this is not achievable with the computational resources at our disposal, since in the
case n = 2048 the solution cannot be stored in the system memory.

Test 2 We choose the unbalanced dimensions n1 × 512× 512 with n1 = 2j for j = 10, . . . , 14.
We choose nmin = 256 for the 3D splitting. Since the recursion is structured to split larger
dimensions first, also in this case the recursive 2D problems are solved with the dense solver.
The results in Table 8 confirm the expected linear scaling with respect to n1, and the approach
is faster than the dense solver from dimension n1 = 4096.

5.6 Asymptotic complexity in the 3D case

The previous experiment provides too few data points to assess the expected cubic complexity.
In addition, the use of the dense solver does not allow to validate the error analysis that we have
performed, and that guarantees that the inexact solving of the subproblems does not destroy the
final accuracy.

32

Table 8: Timings and residuals for the solution of the 3D Laplace equation of dimension n1 ×
512 × 512 by means of Algorithm 3 using fADI as low rank solver, with nmin = 256 for the 3D
splitting, and nmin = 1024 for the recursive 2D solver.

diag dc adi
nmin = 256

n1 Time Res Time Res

1,024 25.7 1.3 · 10−14 41.0 1.4 · 10−8

2,048 68.5 1.5 · 10−14 87.9 1.4 · 10−8

4,096 202.0 1.4 · 10−14 187.5 1.4 · 10−8

8,192 680.8 1.5 · 10−14 404.0 1.4 · 10−8

16,384 2,417.9 1.7 · 10−14 975.1 1.4 · 10−8

dc adi
nmin = 32

n Time Res

64 0.6 2.3 · 10−8

128 1.7 2.9 · 10−8

256 11.5 3.4 · 10−8

512 89.1 3.6 · 10−8

1,024 839.8 7.8 · 10−8
n = 256 n = 512 n = 1024

0

50

P
er

ce
n
ta

g
e

o
f

ti
m

e

3D Laplace, nmin = 32

Dense Low-rank RHS+Sol Spectra

Figure 7: On the left, timings and residuals for the 3D Laplace example in Section 5.6, with
nmin = 32 and fADI as a low-rank solver for the update equations. On the right, the distribution
of the time spent in the different subtasks of Algorithm 4.

To validate the scaling and accuracy of Algorithm 4 as n grows, we set the minimal block size
to the small value nmin = 32, and we measure the timings for problems of size between n = 64
and n = 1024. The results are reported in Figure 7 and Figure 8; the latter confirm the predicted
accuracy and the almost cubic scaling.

In addition, in the right part of Figure 7 we display the time spent in the various parts of
Algorithm 4. This highlights that the solution of the update equations dominates the other costs,
which is expected in view of the small nmin. We remark that the latter include the calls to the
2D solver described in Algorithm 3.

6 Conclusions

We have proposed a new solver for positive definite tensor Sylvester equation with hierarchically
low-rank coefficients that attains the quasi-optimal complexity O(nd log(n)). Our procedure
is based on a nested divide-and-conquer paradigm. We have developed an error analysis that
reveals the relation between the level on inexactness in the solution of the nested subproblems
and the final accuracy.

The numerical results demonstrate that the proposed solver can significantly speed up the
solution of matrix Sylvester equations of medium size. In the 3D-tensor case with equal size,
the method is slower than the dense solver based on diagonalization, when addressing sizes up

33

102 103

10−1

101

103

n

T
im

e
(s

)

3D Laplace, nmin = 32

dc adi

O(n3 log(n))

Figure 8: Log-log plot of the running times for the solution of the 3D Laplace example in
Section 5.6.

to 1024× 1024× 1024. On the other hand, the performances are quite close, and we expect that
running the simulations in a distributed memory environment or on a machine with a high level
of performance would uncover a breakeven point around 2048× 2048× 2048.

A further speed up might be reached employing a relaxation strategy for the inexactness of
the linear system solving in fADI or RK [20]. This may provide significant advantages for d > 2,
where the time spent on solving the equations with low-rank right-hand side is above the 70%
of the total.

Another promising direction is to adapt the method to exploit block low-rank structures in
the right-hand side; this will subject of future investigations.

References

[1] A. C. Antoulas, Approximation of large-scale dynamical systems, vol. 6 of Advances in
Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2005. With a foreword by Jan C. Willems.

[2] J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor
format, Numer. Linear Algebra Appl., 20 (2013), pp. 27–43.

[3] R. H. Bartels and G. W. Stewart, Solution of the Matrix equation AX + XB = C
[F4], Commun. ACM, 15 (1972), pp. 820–826.

[4] B. Beckermann, An error analysis for rational Galerkin projection applied to the Sylvester
equation, SIAM J. Numer. Anal., 49 (2011), pp. 2430–2450.

[5] B. Beckermann and A. Townsend, On the singular values of matrices with displacement
structure, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1227–1248.

[6] P. Benner, R.-C. Li, and N. Truhar, On the ADI method for Sylvester equations, J.
Comput. Appl. Math., 233 (2009), pp. 1035–1045.

[7] M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an appli-
cation to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916.

34

[8] S. Börm, Data-sparse approximation of non-local operator by H 2-matrices, Linear Algebra
Appl., 422 (2007), pp. 380–403.

[9] M. Chen and D. Kressner, Recursive blocked algorithms for linear systems with Kro-
necker product structure, Numer. Algorithms, 84 (2020), pp. 1199–1216.

[10] S. V. Dolgov, TT-GMRES: solution to a linear system in the structured tensor format,
Russian J. Numer. Anal. Math. Modelling, 28 (2013), pp. 149–172.

[11] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods for linear
systems in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248–A2271.

[12] V. Druskin, L. Knizhnerman, and V. Simoncini, Analysis of the rational Krylov sub-
space and ADI methods for solving the Lyapunov equation, SIAM J. Numer. Anal., 49 (2011),
pp. 1875–1898.

[13] D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, IMA J.
Numer. Anal., 40 (2020), pp. 1994–2018.

[14] G. H. Golub, S. Nash, and C. Van Loan, A Hessenberg-Schur method for the problem
AX +XB = C, IEEE Trans. Automat. Control, 24 (1979), pp. 909–913.

[15] W. Hackbusch, Hierarchical matrices: algorithms and analysis, vol. 49 of Springer Series
in Computational Mathematics, Springer, Heidelberg, 2015.

[16] I. Jonsson and B. Kågström, Recursive blocked algorithm for solving triangular systems.
I. One-sided and coupled Sylvester-type matrix equations, ACM Trans. Math. Software, 28
(2002), pp. 392–415.

[17] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[18] D. Kressner, S. Massei, and L. Robol, Low-rank updates and a divide-and-conquer
method for linear matrix equations, SIAM J. Sci. Comput., 41 (2019), pp. A848–A876.

[19] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor
product structure, SIAM J. Matrix Anal. Appl., 31 (2009/10), pp. 1688–1714.

[20] P. Kürschner and M. A. Freitag, Inexact methods for the low rank solution to large
scale Lyapunov equations, BIT, 60 (2020), pp. 1221–1259.

[21] S. Massei, M. Mazza, and L. Robol, Fast solvers for two-dimensional fractional diffu-
sion equations using rank structured matrices, SIAM J. Sci. Comput., 41 (2019), pp. A2627–
A2656.

[22] S. Massei and L. Robol, Rational Krylov for Stieltjes matrix functions: convergence and
pole selection, BIT, 61 (2021), pp. 237–273.

[23] S. Massei, L. Robol, and D. Kressner, hm-toolbox: Matlab software for HODLR and
HSS matrices, SIAM J. Sci. Comput., 42 (2020), pp. C43–C68.

[24] , Hierarchical adaptive low-rank format with applications to discretized partial differ-
ential equations, Numer. Linear Algebra Appl., (2022), p. e2448.

35

[25] X. Ou and J. Xia, Superdc: Superfast divide-and-conquer eigenvalue decomposition with
improved stability for rank-structured matrices, SIAM J. Sci. Comput., 44 (2022), pp. A3041–
A3066.

[26] D. Palitta and V. Simoncini, Matrix-equation-based strategies for convection–diffusion
equations, BIT, 56 (2016), pp. 751–776.

[27] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric
case, Systems Control Lett., 40 (2000), pp. 139–144.

[28] T. Shi and A. Townsend, On the compressibility of tensors, SIAM J. Matrix Anal. Appl.,
42 (2021), pp. 275–298.

[29] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations,
SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288.

[30] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016),
pp. 377–441.

[31] C. Strössner and D. Kressner, Fast global spectral methods for three-dimensional partial
differential equations, IMA J. Numer. Anal., (2022).

[32] A. Townsend and S. Olver, The automatic solution of partial differential equations using
a global spectral method, J. Comput. Phys., 299 (2015), pp. 106–123.

[33] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix computations and
semiseparable matrices: linear systems, vol. 1, JHU Press, 2007.

[34] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically
semiseparable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

36

	Introduction
	Related work
	Main contributions
	Notation

	High-level description of the divide-and-conquer scheme
	Notation for Hierarchical matrices
	Representation and operations with HSS matrices

	The divide-and-conquer approach for matrix Sylvester equations
	Analysis of the equations generated in the recursion
	Exact arithmetic
	Inexact arithmetic

	Unbalanced dimensions
	Solving the update equation
	A further property of Zolotarev functions
	Alternating direction implicit method
	Rational Krylov (RK) method

	Error analysis for Algorithm 3
	The case of M-matrices
	Validation of the bounds

	Complexity of Algorithm 3

	Tensor Sylvester equations
	Error analysis
	Factored ADI with inexact solves
	Residual bounds with inexactness

	Complexity analysis

	Numerical experiments
	Details of the implementation
	Laplace and fractional Laplace equations
	Varying the block size
	Comparison with 2D state-of-the art solvers
	3D Laplace equation
	Asymptotic complexity in the 3D case

	Conclusions

