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I N T R O D U C T I O N

The main purpose of this thesis is to analyze the relation between matrix polynomials and
quasiseparable matrices. We show that these two apparently different topics have a very strict
connection that becomes evident in the construction of linearizations for the solutions of poly-
nomial eigenvalue problems. We say that P(x) is a matrix polynomial if it is a polynomial with
matrix coefficients or a matrix with polynomial entries. The two definitions are easily seen to
be equivalent, and the set of m1 ×m2 matrix polynomials is denoted by Fm1×m2 [x] where F

is a field. Often, in this thesis, we consider the case where m := m1 = m2. In this case we say
that the matrix polynomials are square. In the following we will often assume that F = C, but
some of the results also hold in a more general setting.

A matrix is said quasiseparable if each of its off-diagonal submatrices has rank bounded
by a small constant. The quasiseparability rank is defined as the maximum of the ranks of
lower (resp. upper) off-diagonal submatrices. We often use QS rank as an abbreviation for
these ranks when they coincide. A typical example of these kinds of structures are banded
matrices (which originally inspired the definition of quasiseparable structures) and also di-
agonal plus low rank matrices. Quasiseparable matrices enjoy some nice properties, such as
invariance of the QS rank under inversion and its subadditivity for addition and multiplica-
tion. These structures have been studied by many authors in the past, such as Boito, Eidelman
and Gemignani [23], Chandrasekaran and Gu [28], Eidelman, Gohberg and Haimovici [49, 50],
Eidelman, Gemignani and Gohberg [48], Mastronardi, Van Barel, Vandebril [89, 90] and many
others.

The work by Gohberg, Lancaster and Rodman [61] is a standard reference in the field
of matrix polynomials, together with the book of Gantmacher [58] where the name λ-matrix
is also used in place of matrix polynomials. More recently an interesting overview of the
properties of linearizations and, more generally, the different equivalences relations between
matrix polynomials has been given by De Terán, Dopico and Mackey in [35].

Many scientific problems rely on the solution of matrix polynomials (see [8] for a well or-
ganized collection of such problems), either by requiring the computation of a solvent, i.e., a
matrix X such that

∑n
i=0 PiX

i = 0, or by requiring the computation of the polynomial eigen-
values and eigenvectors, i.e., by finding the solutions of detP(x) = 01 and the relative vectors
in the kernel. The latter problems can be seen as a generalization of standard eigenvalue prob-
lems, i.e., problems of the form (A− xI)v = 0, and scalar polynomials, i.e., problems of the
form p(x) =

∑n
i=0 pix

i = 0, x ∈ C. In fact, polynomial eigenvalue problems (usually called
PEPs) reduce to the former when the degree is n = 1 and the polynomial is monic, and to the
latter when the size of the matrices is m = 1.

The main idea of this thesis is to exploit quasiseparable structures that are found in some
linearizations for scalar polynomials in order to obtain an effective approximation algorithm
for the rootfinding problem, and then generalize most of the ideas used in this setting to the
context of matrix polynomials and polynomial eigenvalue problems.

We start our work in Chapter 1 by analyzing the scalar rootfinding problem. We consider a
scalar polynomial p(x) =

∑n
i=0 pix

i ∈ C[x] and we want to find its roots ξi, with i = 1, . . . ,n,

1 The general definition of eigenvalues of a matrix polynomial does not rely on the determinant in order to be able to
handle infinite eigenvalues and non-square matrix polynomials. It is given with all the details in Section 2.1
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vi introduction

such that p(x) = pn
∏n
i=1(x− ξi). We briefly review some of the most widespread methods

available in the literature for the approximations of the roots. Section 1.1 is devoted to the
analysis of classical functional iterations usually obtained as generalizations of the Newton’s
method, such as the Durand–Kerner iteration of [45] and the Ehrlich–Aberth iteration of [1].
In Section 1.2 we analyze the approaches based on linearizations, such as the well-known
Frobenius linearization (see [35] or [61]) and the linearizations for other polynomial bases.
These constructions are typically used to solve polynomials by applying an eigenvalues solver
(such as the celebrated QR method of [55] and [73]). This is the method on which the roots

command of MATLAB relies.
Then, in Section 1.3 we introduce a class of linearizations that can be used as a building

block for an approximation algorithm. We also show the relation that these linearizations have
with secular equations, i.e., equations of the form S(x) =

∑n
i=1

ai
x−bi

− 1 = 0. This kind of
equations is interesting on its own since they arise in the computation of eigenvalues of rank
1 corrected matrices [62] and the application of Divide and Conquer techniques as proposed
in [32] and [64]. The family of linearizations that we introduce can be used to solve secular
equations directly or to solve polynomials by constructing intermediate secular equations with
good numerical properties. We turn our attention to the latter problem, and provide a practical
and easy way to compute these intermediate secular equations based on tropical algebra ([59]
of Gaubert and Sharify is a good reference, and handles also the more involved case of matrix
polynomials).

In Section 1.5 we show how it is possible to use functional iterations such as Ehrlich–
Aberth’s method in order to find the eigenvalues of matrices like the one of Section 1.3. We
show how to exploit the connection with secular equations in order to obtain a fast algorithm
and also to derive guaranteed bounds for the location of the roots. We combine all these
elements together in order to provide a stable algorithm that can approximate the roots of a
polynomial with a guaranteed arbitrary number of digits (at least in the case where the input
coefficients are known exactly). In Section 1.7 some numerical experiments are reported that
validate our approach by comparing the results with the older version of the MPSolve package
[15] and the rootfinding package eigensolve [53].

The algorithm and the theoretical analysis of secular equations in the context of polynomial
rootfinding have been published as an original contribution in [20].

In Section 1.6 we show that our framework is very easy to extend to particular classes of
polynomials and we show how we have been able to compute the roots of the Mandelbrot
polynomial of degree 222 − 1. The roots of this polynomial are the periodic point of the
Mandelbrot map of order 22. Its coefficient in the monomial basis are very large integers and
the rootfinding problem is badly conditioned. For this reason the computation of the roots
starting from the coefficients is a very difficult problem. We show that it is possible to build a
customized approach for the solution of these polynomials based on their recursive definition,
and we show how it is possible to use the software package implementing the algorithm of
Section 1.5, called MPSolve, in order to apply this strategy. Numerical experiments that validate
the approach are reported at the end of Section 1.6. This algorithm is, as of now, the fastest
method available for the approximation of roots of Mandelbrot polynomials.

Other approaches found in the literature are the one of Corless and Lawrence [31] and of
Schleicher et al. [84]. The former approach allowed to approximate the roots of the polynomial
of degree 220 − 1 on a large cluster in approximately the equivalent of 31 years of sequential
computational time. In the latter instead, the authors propose to accelerate the computations
by using an heuristic that is quite effective in practice but typically misses a non negligible
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portion of the roots. We have been able to approximate the roots of the polynomial of degree
222 − 1 in about one month of computational time on a single machine. The approach is a
novel contribution developed in the context of the PhD thesis.

In Chapter 2 we deal with the solution of PEPs. This kind of problems is usually solved
through the use of linearizations, typically using the Frobenius companion linearization [61].
In Section 2.1 we review the concept of linearizations and `-ifications for matrix polynomials.
Recently much interest has been devoted in finding new linearizations that preserve particular
structures of the original matrix polynomial. This is the reason that has inspired the work in
[74], where new vector spaces of linearizations for matrix polynomials are introduced with the
aim of finding new structured linearizations for structured polynomials. Other contributions
are [2] where linearizations in non-monomial basis are analyzed, and [33, 34], where another
family of linearizations called Fiedler linearizations has been studied by De Terán, Dopico
and Mackey. These linearizations have been originally introduced by Fiedler in [52] for scalar
polynomials. They generalize the Frobenius companion matrices and are very easy to construct.
Some interesting structured matrices are available in this class, such as a block pentadiagonal
linearization. Exploiting these structures, though, remains an open problem.

In Section 2.2 we construct a family of linearizations and `-ifications inspired by the one
introduced in Section 1.3 for the scalar case. We show that when rough estimates for the
moduli of the eigenvalues are known the linearizations obtained in this framework have very
good conditioning properties. In Section 2.3 we discuss the use of tropical roots to determine
the parameter defining the secular linearizations, that is, the estimates for the moduli of the
eigenvalues, in a similar way of what is done in Section 1.4 for scalar polynomials. Section 2.4
reports numerical experiments that show the effectiveness of the approach in many interesting
cases. In Section 2.5 we introduce a new extension of the class of secular linearizations that is
built using a different strategy. We show that the two linearizations coincide in the simplest
cases and that the former can be extended to higher degree (building an `-ification with ` >
1 instead of a linearization) while the latter has the same optimal properties regarding the
conditioning of the scalar linearization of Section 1.3, at least when good estimates for the
eigenvectors are available. The class of secular linearizations of Section 2.2 has been analyzed
in [21], and is one of the original contributions to the literature developed in the context of
the PhD. The latter class, instead, is part of a work that is currently in preparation and will be
submitted soon [81].

In Chapter 3 the definitions of quasiseparable matrices, along with a brief review of the
main results that we use, are introduced. We show that all the linearizations and `-ifications
that we have presented share this structure, which justify our interest in this topic. The secular
linearizations and `-ifications are special in this sense because they have the quasiseparability
structure but they do not have the sparsity that is common to other linearizations such as
the Frobenius or the ones for matrix polynomials expressed in orthogonal basis (even if in
Section 2.2 a sparse version of the secular `-ification is presented).

For this reason, we are interested in exploiting this structure in order to make many com-
mon operations faster on these classes of matrices. In order to obtain better results we restrict
to a subclass of the quasiseparable matrices that is the one interesting for us: the class of di-
agonal plus low rank matrices. This class, in fact, contains all the matrix coefficients of the
secular linearizations and `-ifications. We show how to efficiently construct their Hessenberg
form and the Hessenberg triangular form for pencils. We take particular care of having a low
complexity bound with respect to the rank k. In the literature there are several methods to
compute the Hessenberg reduction of quasiseparable matrices but they usually have complex-
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ity O(n2kα) with α > 1 where n is the size of the matrices and k is the quasiseparability rank
(see for example [56] and [48]). While this is not important if k is negligible (the most studied
case is when k = 1) in the case of linearizations k < n but, in general, we do not have k � n.
We design and analyze an algorithm that has O(n2k) complexity and so, up to constants, is
always competitive with the classical O(n3) algorithm for dense unstructured matrices. We
show two different approaches for the reduction. The first is given in Section 3.3 and has been
published in [22]. It is then extended to the Hessenberg triangular reduction in Section 3.4.
The latter is based on different ideas and is presented in Section 3.5.

In Section 3.6 we discuss another application of quasiseparable structures to the solution
of matrix polynomials. This problem arises in the solution of particular Markov chains called
QBDs (Quasi-Birth and Death) where, in order to find the stationary vector characterizing the
limit probability distribution, one needs to find a solvent of a quadratic matrix polynomial.
One of the most efficient methods available for the computation of such a solvent is the cyclic
reduction, which is carefully analyzed in relation to this application in [18]. We introduce a
new kind of approximated quasiseparable structures that allows to efficiently represent ma-
trices with a particular property of decaying singular values in off-diagonal submatrices. We
show that this allows an acceleration of the cyclic reduction method used to solve quadratic ma-
trix equations. We report some numerical experiments that validate this approach both from
the point of view of speed and from the one of accuracy. A paper describing this approach in
detail is currently in preparation and will be soon submitted [16].

At the end we draw some conclusions from the work presented in this thesis and we give
some ideas for future development of these topics.

notation and symbols

Here we recap a list of notations and symbols used throughout the thesis. Every new symbol
or notation that is introduced is explained in detail in the relevant chapter. When available,
the reference to the page with the definition is added in the rightmost column of the following
table.

Symbol Meaning Reference

C The field of complex numbers.

R The field of real numbers.

F A generic field.

N The positive integers, starting from 0.

N+ The strictly positive integers, without the 0.

Z The integer ring.

It J The disjoint union of the sets I and J.

Fn×m The set of n×m matrices on the field F. Usually in this the-
sis we will have F ∈ {C, R}, but some more general results
are also presented.
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Fn×m[x] The set of matrix polynomials with coefficients in the matrix
ring Fn×m, or, that is the same, the set of matrices with
coefficients in the ring F[x].

Page 33

At The transpose of the matrix A

A∗ The complex conjugated transpose of the matrix A

diag(d1, . . . ,dn) The diagonal matrix with d1, . . . ,dn on the diagonal. When
d1, . . . ,dn are matrices themselves this notation is used to
mean the block diagonal matrix with diagonal blocks equal
to d1, . . . ,dn.

fl(F(x)) The result of the floating point evaluation of the function
F(x).

degP(x) The degree of the polynomial P(x).

P#(x) The reversed version of P(x), that is, the matrix polynomial
xdegP(x)P(x−1). This can be also seen as the polynomial
with the coefficients in the reversed order.

Page 35

A(x) ∼ B(x) The matrix polynomial A(x) is unimodularly equivalent to
the matrix polynomial B(x).

Page 35

A(x) ∼= B(x) The matrix polynomial A(x) is strictly equivalent to the ma-
trix polynomial B(x).

Page 35

A(x) ^ B(x) The matrix polynomial A(x) is extended unimodularly
equivalent to the matrix polynomial B(x).

Page 35

A(x) � B(x) The matrix polynomial A(x) is spectrally equivalent to the
matrix polynomial B(x).

Page 36

A⊕B The block diagonal matrix with diagonal blocks equal to A
and B

A⊗B The Kronecker product of the matrices A and B. This is
the block matrix whose blocks are equal to aijB where A =

(aij).

A(x) mod b(x) When A(x) is a matrix polynomial and b(x) a scalar polyno-
mial this means the element-wise projection of A(x) in the
ring F[x]/(b(x)), that can be seen as the remainder of the
division by b(x).

tp(x) A tropical polynomial. The sum, product and exponentia-
tion in the tropical semiring are denoted as a⊕ b, a⊗ b and
a⊗b, respectively.

Page 16

κi The condition number of the i-th eigenvalue of a matrix
polynomial.

Page 55

QSHnk The set of n× n Hermitian quasiseparable matrices of QS
rank (k,k).

Page 82
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QSHk The same as QSHkn with the n omitted when it is clear
from the context.

Page 82

G This notation is used for the sequences of Givens rotations. Page 82

Gv, G∗v The action of sequences of Givens rotations on a vector. Page 82

G[I] A subsequence of a sequence of Givens rotations, with only
the one acting on the indices contained in I.

Page 82

i : j The (ordered) subset of Z containing the integers between i
and j, i.e., i : j := Z∩ [i, j].

Page 83

G[: j] A shorthand for G[2 : j]. Page 82

G[i :] A shorthand for G[i : n− 1]. Page 82

A pictorial representation of a Givens rotationGi. The index
i is determined by the vertical alignment of the symbol.

Page 83.

SnG The set of Givens sequences built using n× n Givens rota-
tions

Page 82.

M(G) The matrix operator on the set of Givens sequences. Page 88

.



1
S O LV I N G S C A L A R P O LY N O M I A L S

Solving scalar polynomials is a very well-studied problem in numerical analysis. In this chap-
ter we present a review of the most well-known methods available to tackle this problem,
together with a new algorithm that has been developed to improve an available numerical
package for polynomial rootfinding called MPSolve.

It is possible to distinguish two different classes of methods for the approximation of poly-
nomials roots:

functional iterations This class of methods contains iterations based on the repeated
application of a fixed point map that has the roots of the polynomials as fixed points. As
we will see, this kind of iterations often has very good local convergence properties but
it is difficult, in general, to provide proofs for the global convergence, and in some cases
it is even possible to show that not all the starting points lead to convergence. Anyway,
it is often possible to choose starting points wisely in order to avoid these unfortunate
cases.

eigenvalue methods This class of methods relies on linear algebra in order to obtain the
roots of the polynomials. The basic idea is to find a matrix such that its eigenvalues
are the roots of the polynomials, and then to use a standard eigenvalue method to ob-
tain them. The resulting matrices (the so-called companion matrices) are endowed with
particular structures, that are not always easy to use in the practical computations.

1.1 standard simultaneous iteration methods

In this section we present some classical iteration algorithms for the solution of scalar poly-
nomials. We are mainly interested in functional iterations, i.e., algorithms that start from a
certain number of approximations of the roots x(0)1 , . . . , x(0)n , and perform an iteration of this
kind:

x
(k+1)
i = Fi(x

(k)
1 , . . . , x(k)n ).

Notice that Fi can be a different function depending on the index of the approximation that is
being updated, and that the update to a single approximation might depend from all the other
approximations.

As we will see, the main tool used to develop such simultaneous methods is the Newton’s
iteration, that we recall here for completeness and to fix the notation.

Definition 1.1.1. Let p(x) =
∑n
i=0 pix

i be a scalar polynomial of degree n. The complex
number

Np(x) =
p(x)

p ′(x)

is called the Newton’s correction of p(x) at the point x.

1



2 solving scalar polynomials

The Newton’s method can be defined as the iteration of the Newton’s correction to a single
approximation:

x(k+1) = x(k) −Np(x
(k))

where x(0) is chosen to be a guess for a root ξ of the polynomial p(x). The Newton’s method
has local quadratic convergence for simple roots and linear convergence to multiple roots. Its
main limitation is that it is not easy to use it to approximate all the roots for a polynomial at
once.

In fact, it is difficult to control to which root the method is convergent, or if it is convergent
at all. It should be mentioned that it is possible to use the method to approximate all the roots
by using the strategy proposed in [70]. In this work the authors propose to choose more than
n starting approximations placed on a circle of radius sufficiently large. They show that in this
case it is guaranteed that at least one approximation is contained in the attraction basin of each
root, so that the Newton’s method applied to all these approximations will converge to all the
roots (possibly more than once). More precisely, the authors show that O(nlog2n) starting
points are enough in order to approximate all the roots. However, the cost of this approach
may be not optimal, since in general the computation of Np(x) costs O(n) flops. This leads to
a total cost of O(t ·n2log2n) flops where t is the mean number of iterations needed to obtain
the approximations within an error bound ε. Numerical experiments show that t may be as
large as O(n), thus leading to a total cost of O(n3log2n) flops [15].

Several authors tried in the past to modify Newton’s method to achieve simultaneous ap-
proximation of all the roots of a polynomial. We recall here two basic methods, namely the
Durand–Kerner and the Ehrlich–Aberth algorithm.

Both can achieve simultaneous approximation with a cost of O(n2) flops per step. We
show that, experimentally, it is possible to choose the starting points in a smart way so that
practically a constant number of iterations per roots are required, thus obtaining an algorithm
with quadratic cost for the approximations of the roots.

1.1.1 Durand–Kerner algorithm

The Durand–Kerner iteration, also known as the Weierstrass iteration, has been first introduced
by Weierstrass in [92] and then by Durand in [45] and Kerner in [72].

Given a set of approximations x(k)1 , . . . , x(k)n of the roots of a polynomial p(x), the Durand–
Kerner iteration is defined by

x
(k+1)
i = x

(k)
i −

p(x
(k)
i )∏n

j=1
j 6=i

(x
(k)
i − x

(k)
j )

.

The Durand–Kerner iteration has a local quadratic convergence to simple roots, and linear
convergence on multiple roots. However, it is important to note that if ξ is a multiple root of
p(x) of order s then s approximations x(k)i1 , . . . , x(k)is will converge to ξ. In this case it can be

shown that even if each of the x
i
(k)
j

converges only linearly to ξ, their mean 1
s (x

(k)
i1

+ . . .+ x
(k)
is

)

still has the quadratic convergence property [54].
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1.1.2 Ehrlich–Aberth iteration

Here we describe another important iteration for the approximation of the roots of a polyno-
mial, originally introduced by Oliver Aberth in [1] and by Ehrlich in [46]. As usual, suppose
that we have a set of approximations x(k)1 , . . . , x(k)n of the roots of the monic polynomial p(x).
We consider, for each i = 1, . . . ,n, the rational function defined by

fi(x) =
p(x)∏n

j=1
j6=i

(x− x
(k)
j )

, i = 1, . . . ,n.

Recall that since we can write p(x) = pn
∏n
i=1(x− ξi) if the approximations x(k)j are good

approximations of ξj then fi(x) is a good approximation of pn(x− ξi). Being aware of this we
can define the following iteration:

x
(k+1)
i = x

(k)
i −Nfi(x

(k)
i ). (1.1)

If x(k)j = ξj for every j 6= i then fi(x) is a linear function and so we can expect that x(k+1)i = ξi,
since the Newton’s method applied to linear functions converges in one step. When this is not
the case we can show that the method converges cubically to simple roots. This is proved, for
example, in [1].

It should be noted that the efficiency of these methods is strictly connected with the quality
of the starting approximations. Both for Ehrlich–Aberth and Durand–Kerner iterations, in fact,
the total cost for the factorization of a polynomial is O(t · n2) where t is the mean number
of iterations needed for every root. In the original paper by Aberth [1] the author suggests
to place the initial approximations on a circle of radius large enough to contain all the roots.
This method works relatively well, and experimentally it is possible to show that this leads to
t = O(n) (see for example [15]). We show in Section 1.4 how to make a smarter choice that
often provides starting points accurate enough in order to make t = O(1). This leads to a
method with quadratic complexity.

Expanding the derivatives of formula 1.1 leads to the following more explicit (but some-
what involved) expression

x
(k+1)
i = x

(k)
i −

p(x
(k)
i )

p ′(x
(k)
i )

1−
p(x

(k)
i )

p ′(x
(k)
i )
·
∑n
j=1

1

x
(k)
i −x

(k)
j

(1.2)

It is important to stress the following fact, that will used several times in the following.

Remark 1.1.2. In order to apply the Ehrlich–Aberth iteration to a polynomial p(x) we do not
necessarily need to explicitly know its coefficients. It is sufficient to being able to evaluate
(possibly in a numerically stable way) its Newton’s correction p(x)

p ′(x) .

1.2 linearizations

A standard approach for the solution of scalar polynomial equations is the use of linearizations.
In this section we survey the basic notions about linearizations and we provide the theory
needed to cover the scalar case. Let p(x) =

∑n
i=0 pix

i be a scalar polynomial of degree n and
assume that ξ1, . . . , ξn are its roots.
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1.2.1 Companion matrices

We introduce the concept of companion matrix for a polynomial p(x).

Definition 1.2.1. We say that A is a companion matrix for a polynomial p(x) if its entries are
obtained directly from the coefficients of the polynomial through the use of elementary opera-
tions and its eigenvalues and their multiplicities matches the ones of the roots of the polyno-
mial p(x).

Observe that the previous definition is not really precise, in a mathematical sense, since we
avoided to be very specific on what we consider “elementary” operations. This is intended,
since the concept of companion matrix changes in different contexts but is linked to this prin-
ciple: the companion matrix can be obtained starting from the coefficients of p(x) with little
effort, typically in a way that each entry of the matrix A can be computed in a constant time,
independent of the degree n.

The main property of such a matrix A is that the spectrum of A coincides with the roots of
p(x). More precisely, it can be directly verified that det(xI−A) = p(x) if p(x) is monic. This
property can be exploited to approximate the roots of p(x) by means of an eigenvalue solver,
such as the QR method. This is precisely the strategy used by popular mathematical software
when the user requests the roots of a polynomial specified via its coefficients. A well-known
example is the command roots found in MATLABTM.

Many companion matrices have been introduced over the years in the literature. The most
famous and widespread are the Frobenius forms. We present here one of the possible choices
for the Frobenius form. Other possibilities are reported in Section 2.1 where the case of matrix
polynomials is discussed. We note that in the scientific literature these companion matrices,
having being the de-facto standard for a long time, are sometimes called simply companion
matrices.

Definition 1.2.2. Given a scalar polynomial p(x) of degree n the Frobenius form of p(x) is the
n×n matrix F defined as

F =


−p−1n pn−1 . . . . . . −p−1n p0

1 0
. . .

...

1 0

 .

Observe that the matrix F is highly structured. More precisely, we can observe that only
O(n) elements are different from 0 and that the matrix is already in upper Hessenberg form.
Moreover, F can be decomposed as F = Z− p−1n e1q

t where

Z =


0 · · · 0 1

1
. . .

1 0

 , q =


pn−1
...

p1
p0 + pn

 , e1 =


1

0
...

0


so that F is a rank 1 correction of a unitary matrix. The sparsity of F is not preserved in the
iterations of the QR method, but the unitary plus rank 1 structure is maintained. In [5] the
authors have exploited this structure in order to devise a fast QR iteration that only uses O(n)
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storage and O(n2) time. Others algorithms exploiting this structure have been introduced by
many authors in recent years. Several contributions have been given by Aurentz, Bini, Boito,
Chandrasekaran, Del Vaux, Eidelman, Gemignani, Gohberg, Gu, Mach, Van Barel, Vandebril,
Watkins and Xia. A selection of these works can be found in [13, 14, 28, 56, 87, 23].

1.2.2 Linearizations in different basis

In principle, it is possible to construct many different matrices that have the roots of a polyno-
mial as eigenvalues. This suggests that there is some room to make better choices in order to
improve some of the properties of the companion matrix.

In the previous subsection we have introduced companion matrices built starting from the
coefficients of the polynomial in the monomial basis. While this is a very typical choice to
represent a polynomial, it is not always the case and, more importantly, it is not very well-
suited from a numerical point of view. For this reason, we introduce some other companion
forms, that can be used to solve polynomials represented in different basis.

In order to achieve this result we present a slightly more abstract version of these com-
panion matrices. Consider the ring of univariate polynomials on a field F that we denote by
F[x], and a polynomial p(x) ∈ F[x]. In the following we assume for simplicity that p(x) is
monic, but this is not a strict requirement. Consider F ⊇ F one algebraic closure of F so that
there exist ξ1, . . . , ξn ∈ F such that p(x) =

∏n
i=1(x − ξi). We have that the quotient ring

Sp := F[x]/(p(x)) is a n-dimensional vector space on the field F. Consider the linear applica-
tion L defined by the multiplication by x in Sp. We have that for every ξi ∈ F the polynomial
pi(x) :=

∏
j 6=i(x− ξj) ∈ F[x] and L(pi(x)) = ξipi(x) where q(x) denotes the projection of q(x)

in the quotient ring. In particular, ξi is an eigenvalue for the linear operator L. More precisely,
it can be shown that the roots of p(x) are the only eigenvalues of L since

L(q(x)) = ξq(x) ⇐⇒ (x− ξ)q(x) ≡ 0 mod p(x)

and so (x− ξ) divides p(x) thanks to the condition q(x) 6= 0. The above remarks suggest the
following definition:

Definition 1.2.3. We say that a linear operator L(x) on a vector space of dimension n is a
companion linear operator for a polynomial of degree n if and only if its eigenvalues coincides
with the roots of p(x) in an algebraic closure.

Observe that at this point we can choose an arbitrary basis of the polynomials of degree less
than n and represent a companion operator L(x) as a matrix. Since the concept of eigenvalue
carries over from the more abstract formulation, every choice of basis automatically provides
a companion matrix for the polynomial p(x).

Moreover, since a basis for the quotient ring Sp can be seen as a basis for the polynomial
of degree less than n, we also have a companion matrix for every choice of a basis for the
polynomials of degree at most n− 1, thus removing the dependency on the specific polynomial
p(x).

As a first example, consider the basis 1, x, . . . , xn−1. We have that, in the quotient ring Sp,
L(xi) = x · xi = xi+1 for every i < n− 1. For i = n− 1 we have

L(xn−1) = xn−1 · x ≡ −

n−1∑
i=0

pix
i mod p(x).
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With this information we can build the matrix for the linear operator L in this basis, and we
obtain the companion matrix of Definition 1.2.2.

F =


0 −p0

1
...

. . .
...

1 −pn−1

 .

This makes clear how this more abstract version of the companion matrices is in fact a gener-
alization of the definitions given in the previous section.

Here we present another concrete choice of basis and the resulting companion form. An
additional choice for the basis in the rootfinding setting is given in Section 1.3.

1.2.3 Chebyshev linearizations

As a practical example of the above framework, we consider the set of Chebyshev polynomials
of the first kind defined by the recurrence relation

Ti(x) =


1 if i = 0
x if i = 1
2xTi−1(x) − Ti−2(x) otherwise

.

Assume that we have the coefficients of a polynomial p(x) represented in the Chebyshev basis:

p(x) = Tn(x) +

n−1∑
i=0

piTi(x).

Here we assume that the polynomial is monic for simplicity but, as in the previous case, this
can be obtained without loss of generality by simply dividing the polynomial for the leading
coefficient. Notice that a monic polynomial in the Chebyshev basis does not correspond to a
monic polynomial in the monomial basis, since Tn has 2n−1 as leading coefficient.

We study the usual operator L representing the multiplication for the polynomial x = T1(x)
in the quotient ring Sp = F[x]/(p(x)). A direct inspection shows that for any 0 < i < n− 1 we
have xTi(x) = 1

2Ti+1(x) +
1
2Ti−1(x). For i = 0 we have xT0(x) = T1(x) and when i = n− 1 the

following relation holds:

xTn−1(x) ≡
1

2
Tn−2(x) +

1

2
Tn(x) ≡

1

2
Tn−2(x) −

1

2

n−1∑
i=0

piTi(x) mod p(x).

This leads to the following representation for the operator L in the basis defined by T0(x), . . . , Tn−1(x):

C =



0 1
2 −12p1

1
. . .

. . .
...

1
2

. . . 1
2 −12pn−3

. . . 0 1
2 −

1
2pn−2

1
2 −12pn−1


.
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Note that also in this case the companion matrix for the Chebyshev basis is highly structured.
If an appropriate scaling is introduced, C can be decomposed as the sum of a real symmetric
tridiagonal matrix plus a rank 1 correction.

These two examples show how this framework can be used to obtain companion matrices
for any polynomial basis. The same procedure can be applied almost verbatim to obtain
companion matrices for any orthogonal basis, for example. The presence of a recurrence
relation with a limited number of terms guarantees that the resulting matrix will be sparse,
while asking that the basis is degree-graded gives the upper Hessenberg structure.

1.3 secular basis and regenerations

In this section we introduce a new kind of linearization by looking at somewhat different alge-
braic objects with respect to polynomials: secular equations. Consider, for complex coefficients
ai 6= 0 and pairwise distinct bi, the following secular equation:

S(x) =

n∑
i=1

ai
x− bi

− 1 = 0. (1.3)

where S(x) is called a secular function. In the following we will call bi the nodes of the secular
equation and ai its weights.

1.3.1 Polynomials and secular equations

Since the nodes bi cannot be solutions of (1.3) we can solve it by multiplying by Π(x) =∏n
i=1(x − bi). Then the solutions of S(x) = 0 are the roots of the monic polynomial p(x)

defined by

p(x) = −Π(x)S(x) = Π(x) −

n∑
i=1

ai
∏
j 6=i

(x− bj). (1.4)

This equation can also be read the other way round: every polynomial of the form of the right-
hand side of (1.4) can be solved by solving the associated secular equation with nodes bi and
weights ai.

Lemma 1.3.1. Let b1, . . . ,bn be pairwise distinct points in the complex plane. Then for every monic
polynomial p(x) ∈ C[x] of degree n such that p(bi) 6= 0 for i = 1, . . . ,n there exist nonzero weights
a1, . . . ,an such that

p(x) = Π(x) −

n∑
i=1

ai
∏
j6=i

(x− bj).

Proof. Notice that
∏
j 6=i(x − bj) are scaled versions of the Lagrange polynomials of degree

n− 1. Since p(x) is monic Π(x) − p(x) is of degree n− 1 and admits a representation

Π(x) − p(x) =

n∑
i=1

ai
∏
j6=i

(x− bj).

Moreover, since the ai are simply scaled version of the Lagrange coefficients of p(x) − Π(x)
and Π(bi) = 0 we have

ai =
−p(bi)∏
j6=i(bi − bj)

, i = 1, . . . ,n. (1.5)
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The hypothesis on p(bi) 6= 0 guarantees that ai 6= 0.

Definition 1.3.2. If S(x) =
∑n
i=1

ai
x−bi

− 1 = 0 is a secular equation whose weights have been
computed using Lemma 1.3.1, that is the equality (1.5) holds, we say that S(x) is a secular
equation equivalent to p(x). In particular, in this case the solution of S(x) = 0 are exactly the
roots of p(x).

Lemma 1.3.1 allows to shift from the problem of finding the roots of a polynomial to the
one of solving a secular equation. It is natural to ask if there is a practical way to exploit this
fact.

For us, the main interest in secular equations is the following Theorem, originally presented
in [51].

Theorem 1.3.3. Let S(x) =
∑n
i=1

ai
x−bi

− 1 be a secular function as defined in (1.3). Then the matrix
A = D− eat where

D =

b1 . . .

bn

 , e =

1...
1

 , a =
[
a1 · · · an

]
has the solutions of S(x) = 0 as eigenvalues.

Proof. Note that for any x 6= bi

det(xI−D+ eat) = det(xI−D)det(I+ (xI−D)−1eat).

Since det(I+ uvt) = 1− vtu we have that

det(xI−D+ eat) =

n∏
i=1

(x− bi)

(
1−

n∑
i=1

ai
x− bi

)
= −Π(x)S(x).

Since Π(x) vanishes only at x = bi which are not solutions of S(x) = 0 by hypothesis, we
conclude that the eigenvalues of xI−D+ eat are exactly the solutions of our equation.

Theorem 1.3.3, combined with the remarks about the connection between secular equations
and polynomials, leads to the following corollary.

Corollary 1.3.4. Let p(x) be a scalar polynomial and b1, . . . ,bn be complex numbers such that
p(bi) 6= 0 for any i = 1, . . . ,n. Then the matrix polynomial

A(x) = xI−D+ eat, ai =
−p(bi)∏
j6=i(bi − bj)

is a linearization for p(x).

1.3.2 Numerical properties of secular equations

We have shown that it is easy to move from polynomials to secular functions. We want to show
that the latter class of functions enjoys very nice numerical properties. Moreover, we introduce
two concepts that will be useful for the analysis of the convergence: the root neighborhood and
the secular neighborhood.

Consider Algorithm 1 for the evaluation of S(x) + 1. The algorithm evaluates the sums
recursively by splitting the set of summands in two (almost) equal parts. We have then
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Algorithm 1 Evaluation of a secular function at a point in the complex plane.
1: function SecularEvaluation(a, b, x)
2: n = Length(a)

3: if n == 1 then
4: return a1

x−b1
5: else
6: `← bn2 c
7: s− ← SecularEvaluation(a[1 : `],b[1 : `], t)
8: s+ ← SecularEvaluation(a[`+ 1 : n],b[`+ 1 : n], t)
9: return s− + s+

10: end if
11: end function

Lemma 1.3.5. Consider the use of Algorithm 1 for the evaluation of the secular function S(x) and
assume that the coefficients ai and bi can be represented as floating point numbers. We can use it to
evaluate the sum S+(x) and then obtain S(x) = S+(x) − 1 where

S+(x) =

n∑
i=1

ai
x− bi

.

We have that, if u is the unit roundoff at the current machine precision,

fl(S+(x)) =

(
n∑
i=1

ai(1+ θi)

x− bi
(1+ δ)

)
, |δ| 6 u, |θi| 6

u

1− u
(dlog2 ne+ 7

√
2).

Proof. By using the bounds on floating points arithmetic reported in [69] it is easy to show that

fl
(

ai
x− bi

)
=

(
ai

x− bi

)
(1+ εi), |εi| 6

u

1− u
(1+ 7

√
2)u.

The result is then obtained by moving the error term εi on the ai and taking into account the
error propagation due to the parallel sum of Algorithm 1.

Define κn and σ(x) as follows

κn :=
1

1− u
dlog2 ne+ 7

√
2, σ(x) =

n∑
i=1

|ai|

|x− bi|
.

Then, by Lemma 1.3.5 we obtain the following.

Corollary 1.3.6. The floating point evaluation of a secular function at a machine precision with unit
roundoff u is such that

|fl(S(x))| 6 (1+ u)|S(x)|+ κnσ(x)u(1+ u), |S(x)| 6
1

1− u
|flS(x)|+ uκnσ(x).

Proof. The statement is a direct consequence of Lemma 1.3.5 by writing

fl(S(x)) = S(x) +
n∑
i=1

aiθi
x− bi

+ δS(x).
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Recalling that |θi| 6 κnu and that |δ| 6 u leads to the thesis by rearranging the terms and
using the triangular inequality.

The consequences of this corollary deserve to be stressed: we are able to rigorously bound
the error on the evaluation of a secular function using its floating point evaluation, and at the
same time we are sure that whenever the actual evaluation of the secular function is “small”
the same will also hold for its floating point evaluation.

We are now interested in studying the set of “nearby” solutions of a secular equation. The
following definitions will make this concept less vague.

Definition 1.3.7 (Secular neighborhood). The ε-secular neighborhood of a secular function
S(x) is the set of secular functions SNε(S(x)) defined by

SNε(S(x)) :=

{
S̃(x) =

n∑
i=1

ãi
x− bi

− 1 | |ãi − ai| 6 ε|ai|

}

Notice that the definition is given by perturbing only the weights of the secular equations,
and not the nodes. This is linked to the fact that Lemma 1.3.5 guarantees that the floating
point evaluation of a secular function is the evaluation of a nearby secular function with only
the weights perturbed.

It is now natural to give the following definition.

Definition 1.3.8 (Root neighborhood). The ε-root neighborhood of a secular function is the set
of solutions of S̃(x) = 0 for S̃(x) ∈ SNε(S(x)). More formally we have

RNε(S(x)) =
{
x̄ | ∃ S̃(x) ∈ SNε(S(x)), S̃(x̄) = 0

}
.

In Figure 1.1 the root neighborhoods of a simple secular equation are plotted with different
colors for different values of ε (darker colors represents larger ε).

Remark 1.3.9. Recalling that the solution of a secular equation S(x) = 0 are the eigenvalues
of a diagonal plus rank 1 matrix we can conclude that the root neighborhood can also be seen
as a structured pseudospectra of these matrices. In fact, a perturbation on the vector of the ai
coefficients corresponds to a perturbation that transforms the generalized companion matrix
D− eat into D− eãt.

The root neighborhood is linked with the concept of conditioning of the rootfinding prob-
lem. The condition number of the secular equation S(x) = 0 is a measure of how much the
roots change when we perturb the coefficients of the equation.

Since we have seen that in our analysis the error can be offloaded entirely on the coefficients
ai, we define the condition number of a secular equation S(x) = 0 in the following way.

Definition 1.3.10 (Condition number). Let ξi be one of the (simple) solutions of a secular
equation S(x) = 0 as in Equation (1.3). Consider the function ΓS(a) defined as

ΓS,i(ã) := min

|ξi − ξ|,
n∑
j=1

ãj

ξ− bj
= 1

.

We define the condition number of S(x) = 0 relative to ξi as |Γ ′S,i(a)|.
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Figure 1.1: Root neighborhoods of the secular equation 5
2(x−2) −

2
x−1−i +

2
x+i − 1 = 0 for

various values of ε.

Remark 1.3.11. In order to guarantee that the above definition makes sense we need to be sure
that ΓS is derivable. In fact, this can be guaranteed at least in a neighborhood of ξi. This can be
obtained, for example, remembering that the roots of the secular equations are the eigenvalues
of the matrix D + eat. A small enough perturbation will move the eigenvalues so that the
nearest eigenvalue to ξi is uniquely determined and so that ΓS,i is analytic [71].

The concepts of secular and root neighborhoods are strictly linked together. To design an
algorithm that is able to approximate the roots of a secular equation we are likely to want to
prove that the final approximations are contained in RNε(S(x)) for a small enough value of ε.
Apparently, though, it is much easier to verify if a S̃(x) ∈ SNε(S(x)) than to check if a set of
approximations are contained in the root neighborhood relative to a certain ε.

The following theorem gives an explicit criterion for the verification of the latter condition.

Proposition 1.3.12. Let S(x) be a secular equation as in (1.3). Then the set RNε(S(x)) can be described
as

RNε(S(x)) = {x | |S(x)| 6 εσ(x)} , σ(x) =

n∑
i=1

|ai|

|x− bi|
.

Proof. Let us call Y = {x | |S(x)| 6 εσ(x)}. We want to prove that Y = RNε(S(x)). Note that if
ξ ∈ RNε(S(x)) then there exists a slightly perturbed secular equation S̃(x) such that S̃(ξ) = 0.
In particular the weights ãi of S̃(x) are equal to ai(1+ εi), |εi| 6 ε. This leads to

0 = S̃(ξ) =

n∑
i=1

ãi
ξ− bi

− 1 =

n∑
i=1

ai
ξ− bi

− 1+

n∑
i=1

εiai
ξ− bi

= S(ξ) +

n∑
i=1

εiai
ξ− bi

.
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Rearranging the terms we have

|S(ξ)| =

∣∣∣∣∣
n∑
i=1

εiai
ξ− bi

∣∣∣∣∣ 6 εσ(ξ).
On the other hand, if |S(ξ)| 6 εσ(ξ) then we can set η = S(ξ) and choose

ãi = ai

(
1−

ξ− bi
ai

|ai|

|ξ− bi|

η

|σ(ξ)|

)
.

A direct computation then shows that |ãi − ai| 6 |ai|ε and that S̃(ξ) = 0.

The above result gives us a practical check to verify if a complex point x lies in the root
neighborhood for S(x) relative to a certain ε. It is natural to ask whether it is safe to check this
in floating point. Can we trust the result obtained from this computation?

In view of Proposition 1.3.12 let us define the floating point version of the root neighbor-
hood as

R̃Nε(S(x)) := {x ∈ C | fl |S(x)| 6 εσ(x)} .

The following lemma helps us to characterize the connection between the floating point
and the standard root neighborhoods.

Lemma 1.3.13. Let S(x) be a secular function. Then, for any ε > (1+u)uκn, the following inclusions
hold:

RN ε
1+u−uκn

(S(x)) ⊆ R̃Nε(S(x)) ⊆ RN 1
1−uε+uκn

(S(x)),

R̃N(1−u)(ε−uκn)(S(x)) ⊆ RNε(S(x)) ⊆ R̃N(1+u)(ε+uκn)(S(x)).

Proof. Let us start from the inclusion RNε(S(x)) ⊆ R̃N(1+u)(ε+uκn)(S(x)). If ξ ∈ RNε(S(x))
then |S(x)| 6 εσ(x). Applying Corollary 1.3.6 we have that

|flS(ξ)| 6 (1+ u)|S(x)|+ κnσ(x)u(1+ u) 6 (1+ u) (ε+ uκn)σ(x)

that gives us the thesis. Corollary 1.3.6 can be applied also to obtain the other inclusion, that
is R̃Nε(S(x)) ⊆ RN 1

1−uε+uκn
(S(x)) by noting again that if ξ ∈ R̃Nε(S(x)) then |flS(x)| 6 εσ(x)

and then

|S(x)| 6
1

1− u
εσ(x) + uκnσ(x) 6

(
1

1− u
ε+ uκn

)
σ(x).

1.3.3 The relevance of the choice of nodes

As we have seen in the previous subsection, when a polynomial p(x) is given, the nodes
b1, . . . ,bn can be chosen freely provided that they are pairwise distinct. We can investigate if
smart choices of the nodes lead to secular equations with good numerical properties.

In fact, it is worth remembering that this kind of secular equations is very much related to
Lagrange interpolation. If we want to find the roots of a polynomial, that is, the solutions of a
secular equation, it might be reasonable to choose bi as good approximations to the zeros. The
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aim of this subsection is exactly to analyze the behavior of the conditioning for the rootfinding
problem when the bi → ξi, where p(ξi) = 0.

We have already given the definition of the condition number in Definition 1.3.10, and we
recall that it is the modulus of the derivative of the change of the solutions relative to the
perturbations of the weights ai. So, in order to evaluate it, we study the change of a root
ξ when we perturb a weight aj, with 1 6 j 6 n fixed. The general case can be seen as a
composition of n such perturbations.

Let âi = ai for i 6= j and âj = aj(1+ εj). Suppose then that ξ is a root of S(x) and ξ̂ is a
root of Ŝ(x) the secular equation with âj as weights and bi as nodes. We have

S(ξ) :=

n∑
i=1

ai
ξ− bi

− 1 = 0

Ŝ(ξ̂) :=

n∑
i=1

âi

ξ̂− bi
− 1 = 0

Let δξ := ξ̂− ξ. Subtracting on both sides yields

S(x) − Ŝ(ξ) =

n∑
i=1

aiδξ

(ξ− bi)(ξ̂− bi)
−
ajεj

ξ̂− bj
= 0.

Recall that we want to estimate the variation of the roots as a function of the variation of the
coefficients, so in this case we can write

δξ
εj

=
aj

(ξ̂− bj) ·
(∑n

i=1
ai

(ξ−bi)(ξ̂−bi)

) .

The first order expansion of the above expression with respect to δξ gives∣∣∣∣δξεj
∣∣∣∣ = |aj|

|ξ− bj| · |S ′(ξ)|
+O(δξ)

Moreover, if we suppose that all the coefficients ai have been perturbed with a relative per-
turbation |εi| 6 |ε| we can compose the above bound for n times and obtain the first order
estimate ∣∣∣∣δξε

∣∣∣∣ 6̇ |σ(ξ)|

|S ′(ξ)|
, σ(x) =

n∑
i=1

|ai|

|x− bi|
. (1.6)

Notice that the expression lim supε→0
∣∣∣δξε ∣∣∣ can be taken as another definition of conditioning,

which is defined also in the case of multiple roots. In the following we will consider this
formulation in order to be able to bound the conditioning also in the case of multiple roots.

Now it is natural to ask whether accurate choices of nodes lead to small conditioning
number of the rootfinding problem. This would be interesting in order to devise an effective
numerical algorithm for the computation of the roots of p(x). We can state the following
theorem.

Theorem 1.3.14. Let b(k)i be a sequence of nodes and S(k)(x) the secular equations equivalent to a
polynomial p(x) computed on the nodes b(k)i , i = 1, . . . ,n. Suppose that limk→∞ b(k)i = ξi where ξi
are the roots of p(x). Then we have
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(i) If ξi is a simple root then the conditioning of Equation (1.6) relative to ξi for the secular equation
S(k)(x) goes to 0 as k→∞, that is,

lim
k→∞ σ(k)(ξ)

(S(k)(ξ)) ′
= 0, σ(k)(x) :=

n∑
i=1

|a
(k)
i |

|x− b
(k)
i |

.

(ii) If ξ := ξi = . . . = ξi+m−1 is a multiple root of order m and b(k)i , . . . ,b(k)i+m−1 converge to ξ

in a way that the ratio (ξ−b
(k)
i )

b
(k)
j −b

(k)
i

remains bounded for every j as k→∞ then the conditioning of

S(k)(x) relative to ξ goes to 0.

Proof. Let ` be a fixed index. We start to analyze the easiest case where the root ξ` is simple.
Recall that, by Equation (1.5) we have

a
(k)
i =

−p(b
(k)
i )∏

j6=i(b
(k)
j − b

(k)
i )

.

In our hypothesis, since the b(k)i go to the roots ξi, the a(k)i tends to p(x)
p ′(x) and so to 0. In

particular, the only relevant term of the sum defining σ(k)(x) is the `-th one since the others
go to 0. We can write

a
(k)
` =

ε`p
′(ξ`) +O(ε

2
` )∏

j 6=`(ξ` − ξj + ε` − εj)
, εj = ξj − b

(k)
j ,

so that
|a

(k)
` |

|ξ` − b
(k)
` |

=
|a

(k)
` |

|ε`|
=

p ′(ε`) +O(ε`)∏
j6=`(ξ` − ξj + ε` − εj)

.

When all the εj → 0, the denominator of the right-hand side goes to p ′(ξ`) so that we have
|a

(k)
` |

|ξ`−b
(k)
` |
→ 1. It remains to understand the behavior of (S(k)) ′(ξ`). Notice that, once again,

all the terms of (S(k)) ′(ξ`) but the `-th go to zero, for the same reason of above (the ai go to
zero). It remains to study

|a
(k)
` |

|ξ` − b
(k)
` |2

= |ε−1` |
|a

(k)
` |

|ξ` − b
(k)
` |
≈ 1

|ε`|
,

since we have already studied the second term in the previous case. Given that the expression
above is unbounded when ε` → 0 we automatically have the thesis and the conditioning of
the `-th root goes to 0 as k→∞.

The same analysis can be carried out for multiple roots, but the computations are more
involved. We have

a
(k)
i =

εmi p
(m)(ξi) +O(ε

m+1
i )∏

j 6=i(ξi − ξj + εi − εj)
, εj = ξj − bj.
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and we can write, recalling that for i = `, . . . , `+m− 1 all the ξi are equal to ξ,

∏
j 6=i

(ξi − ξj + εi − εj) =

`+m−1∏
j=`

(εi − εj) ·
∏

j<` or j>`+m
j 6=i

(ξ− ξj + εi − εj)

=

`+m−1∏
j=`

(εi − εj) · (p(m)(ξ) +O(ε)).

Applying a similar argument as before we obtain

ai
ξ− bi

=
εm−1
i∏l+m−1

j=`,j6=i (b
(k)
i − b

(k)
j )

+O(ε). (1.7)

Notice that if |b
(k)
i − b

(k)
j | ∼ |ξ− b

(k)
i | = |εi| then the above quantity goes (in modulus) to 1.

Since we know that the ratio of the twos is uniformly bounded, we have that also the limit of
Equation (1.7) is bounded. We can now conclude by noting that (S(k)) ′(ξ) is unbounded by
following the same steps of the simple root case. This completes the proof.

Remark 1.3.15. In the case of multiple roots, the requirement on the quantities b(k)i , stated
in part (ii) of Theorem 1.3.14 is rather strong. Nevertheless, this is not a problem since the
iterative method that we use (namely Ehrlich–Aberth) lead to approximations that have this
property, and so Theorem 1.3.14 can also be applied in practice.

Now we are aware of how good choices for the nodes bi look like: we need to choose
them as good approximations to the roots of p(x). Unfortunately, this happens to be exactly
what we would like to compute, so this information does not seem to be useful. We show that
this is not the case and that we can exploit this information to create an efficient rootfinding
algorithm for polynomials. We propose the following high level scheme:

Sketch of the approximation algorithm:

(i) We first get some rough approximation to the roots. Several strategies are available for
this purpose, but we rely on tropical roots that are presented in Section 1.4.

(ii) We compute a secular equation equivalent to the polynomial p(x) using these approxima-
tions as nodes.

(iii) We use some functional iteration scheme to approximate the roots. We choose Ehrlich–
Aberth implicitly applied on the polynomial p(x) for this purpose. More details will
follow in Section 1.5.

(iv) We use the computed approximations as new nodes, and we go back to 2. We continue
to do this until we reach the desired accuracy.

The various steps of the algorithm deserve to be analyzed carefully. We do this in the
following sections. We first introduce the concept of tropical roots in order to provide the
results used to implement part (i) of the above scheme and then give a complete description
of the algorithm for the approximation of polynomial roots.

Before going on, though, we shall make an important remark.
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Remark 1.3.16. The steps highlighted in the sketch of the algorithm show that only the evalu-
ation of the polynomial is necessary in order to implement the strategy. In fact, Equation (1.5)
provides a formula to compute the weights of the secular equation that only uses evaluation
of p(x) at the points bi. This makes it very easy to generalize the above procedure to general
classes of polynomials as soon as a stable evaluation procedure is available.

1.4 tropical roots

In this section we review some of the results on tropical roots, a tool that can be used to give
estimates on the moduli of roots of scalar polynomials and eigenvalues of matrices as well.
The use of strategies based on tropical algebra for this estimation has been investigated by
Bini, Gaubert, Noferini, Sharify, Tisseur, et al. in the papers [59, 19, 82] and also in the PhD
thesis [85]. The results that we present are also strictly connected with the Newton polygon
based analysis of Bini carried out in [12].

The main idea behind these strategies is the following: suppose that we are given a “classi-
cal” polynomial p(x) that we want to solve. We construct a so-called tropical polynomial tp(x)
that is much easier to solve and we use the information about its roots to locate the roots of
p(x).

1.4.1 Localization of the roots

We start by giving the formal definitions of the objects that we need to study.

Definition 1.4.1. The tropical max-plus semiring T (tropical semiring from now on) is the set
R∪ {−∞} with the operations ⊕, ⊗ defined as

a⊕ b := max(a,b), a⊗ b := a+ b,

where the + is the usual operation on the field R and we set −∞+ a =∞.

Remark 1.4.2. The 0 and 1 elements of the ring are −∞ and 0, respectively. In fact, it is very
easy to check that

• a⊕−∞ = max(a,−∞) = a.

• a⊗ 0 = a+ 0 = a.

We can define the set of polynomials with coefficients in the (semi)ring T as the set T [x] of
polynomials with coefficients in T , as usual. We have tp(x) ∈ T [x] if

tp(x) = an ⊗ x⊗n ⊕ . . .⊕ a1 ⊗ x⊕ a0, x⊗i := x⊗ . . .⊗ x multiplied i times.

Note that expanding the definition of the operations on the ring T yields

tp(x) = max
i=0,...,n

(ai + ix)

so tp(x) can be considered as a piecewise linear function given as the pointwise maximum of
n linear functions. Taking this into account we can give the following definition
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Figure 1.2: Plot of the function associated with the tropical polynomial defined by tp(x) =

x⊗7 ⊕ 2x⊗6 ⊕ 3x⊗4 ⊕ x⊗3 ⊕ 2x⊗2. The points mark the tropical roots of the polynomial.

Definition 1.4.3. The tropical roots of the tropical polynomial tp(x) defined as above are the
points where the maximum of the linear functions is attained at least twice. The multiplicity of
each roots is equal to the number of linear functions attaining the maximum value minus one.

More intuitively, when looking at the plot of the function associated with the tropical poly-
nomial the roots are the non differentiable points, i.e., the “spikes” of the graph as shown in
Figure 1.2.

Remark 1.4.4. It might be questioned why these points are called tropical roots, since it is not
true that tp(ri) = 0 where r1, . . . , r` are the tropical roots. Nevertheless, recall that since ri are
the points where the slope of the function changes, it holds that

tp(x) = (x⊕ r1)m1 ⊗ . . . ... . . .⊗ (x⊕ r`)m`

where ri are the tropical roots and mi their multiplicities. This can be seen as a kind of
fundamental theorem of tropical algebra that justifies the choice of the name tropical roots for
these objects.

Remark 1.4.5. It is worth noting that the above definitions and comments could be given in an
alternative framework by defining the max-times tropical semiring as R+, the set of positive real
numbers and defining the operations as

a⊕ b := max(a,b), a⊗ b := a · b.

The max-plus and max-times semirings are isomomorphic through the exponential map. In
fact, it is easy to see that the function x 7→ ex maps R∪ {−∞} into R+ and that the operations
defined above are preserved, since ex is an increasing function (thus preserving the maximum)
and ea+b = eaeb.

1.4.2 Computing the tropical roots

We have given the formal definition of the tropical roots, but as of now we do not have a
method for computing them. Fortunately this task is much easier than computing the roots
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of a scalar polynomial. In fact, we can compute the tropical roots of a degree n tropical
polynomial in O(n) flops. To achieve this result, we need to introduce the Newton polygon.

i

ai

1 2 3 4 5 6 7 8

1

2

3

4

Figure 1.3: Newton polygon of the tropical polynomial tp(x) = x⊗7 ⊕ 2x⊗6 ⊕ 3x⊗4 ⊕ x⊗3 ⊕
2x⊗2. The boundary of the upper convex hull is marked with the blue line. The opposite of
the slopes of the linear pieces are the tropical roots and the distance on the x axis between the
relative endpoints is their multiplicity.

Definition 1.4.6 (Newton polygon). The Newton polygon associated with a tropical polynomial
tp(x) is the upper convex hull of the points (i,ai) where ai are the coefficients of tp(x) of
degree i.

The opposites of the slopes of the linear pieces of the Newton polygon are the roots of
the tropical polynomial, while their width correspond to their multiplicity. An example of the
Newton polygon is depicted in Figure 1.3. This is the Newton polygon relative to the tropical
polynomial of Figure 1.2. In this example the polynomial tp(x) = x⊗7 ⊕ 2x⊗6 ⊕ 3x⊗4 ⊕ x⊗3 ⊕
2x⊗2 is considered. It can be seen that only some points are vertices of the upper convex hull,
namely (0, 0), (2, 2), (4, 3), (6, 2) and (7, 1). Measuring the slopes of the linear pieces and taking
the opposites yields the tropical roots −1,−12 , 12 , 1. Their multiplicities are, respectively, 2, 2, 2
and 1.

The computation of these roots can be carried out in O(n) flops by using an algorithm for
the computation of the convex hull of a planar set like the Graham scan of [63]. This algorithm
generally runs in O(n logn) flops but since in this case we have the points already sorted by
the x coordinate we can obtain the result in only O(n) steps.

The main point of interest, for us, is to derive information on the roots of scalar polyno-
mials from the roots of the associated tropical polynomials. More precisely, we first present a
criterion for root localization based on an application of the Rouché theorem and then we show
how the use of tropical roots can make the application of the criterion feasible in practice.

We consider, until the end of the chapter, a polynomial p(x) =
∑n
i=0 pix

i with roots
ξ1, . . . , ξn counted with multiplicities (so it might happen that ξi = ξj) and

tp(x) :=

n⊕
i=0

log(|pi|)x⊗i
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the associated tropical polynomial obtained with the convention that log(0) = −∞.
Here is the main result that we make use of, that can be found in [68, Theorem 4.10b].

Theorem 1.4.7 (Rouché). Let f(z) and g(z) be two holomorphic functions defined on an open connected
set A ⊆ C. Let Γ be a simple closed path contained in A. If |f(z)| > |g(z)| on Γ then f and f+ g have
the same number of zeros inside Γ .

The above theorem can be directly applied to obtain bounds on the location of the roots of
a scalar polynomial. In fact, we can note that, for every k = 0, . . . ,n, the polynomial

sk(x) = |p0|+ . . .+ |pk−1|x
k − |pk|x

k + |pk+1|x
k+1 + . . .+ xn|pn|

has either two or one change of signs in its (real) coefficients. The latter happens only when
k ∈ {0,n}. This means that for k = 0,n the polynomial can have only one positive root, while
in the other cases it can have at most 2 positive real roots. These facts can be used to obtain
the following result, proved in [12].

Lemma 1.4.8. Let sk(x) be the polynomials defined above. We have the following

(i) For k = 0 or k = n the polynomials s0(x) and sn(x) have exactly one positive real root. We call
these two roots ru0 and rln, respectively. Moreover, we set rl0 = 0 and run =∞.

(ii) For 0 < k < n the polynomial sk(x) has either two or no positive real roots. If it has two roots we
call them rlk < r

u
k .

(iii) For every k such that the polynomial sk(x) has at least one positive real root the annulus {rlk <

|z| < ruk } contains no roots of p(x). Moreover, the ball B(0, rlk) contains exactly k roots of p(x).

This directly leads to the following consequence:

Corollary 1.4.9. Let rlki and ruki be the roots of the polynomials ski(x) for the values of ki where they
have at least one positive real root. We set rl0 = 0 and run =∞. Then the annuli

Aki := {ruki 6 |z| 6 rlki+1 } ⊆ C

contain exactly ki+1 − ki roots of p(x).

The following theorem, whose proof can be found in [12, 85], shows the connection between
tropical roots and Corollary 1.4.9. Notice that the proof in [12] does not rely on the formalism
of tropical roots, since they had not been yet introduced at the time.

Theorem 1.4.10. The tropical roots r1, . . . , r` of the tropical polynomial tp(x) associated with p(x)
are such that the circles centered in 0 and of radius eri are contained in the annuli Aki for some ki.
Moreover, the sum of the multiplicities of the tropical roots contained in each annulus is equal to the
number of roots of p(x) in it.

The main consequence of Theorem 1.4.10 is that, instead of computing explicitly the values
rlki and ruki , that would require the solution of a polynomial, we can obtain some radii that are
guaranteed to be contained inside the interesting annuli Aki . We can then use the multiplicities
of the tropical roots to determine how many roots are contained in those annuli. An example
of this kind of approximations is reported in Figure 1.4.
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Rouché Theorem
Tropical roots
Roots of p(x)

Figure 1.4: An example of the kind of bounds obtained by the application of Corollary 1.4.9
and by the computation of the tropical roots of the associated tropical polynomial.

Remark 1.4.11. Notice that we have considered as radii the values eri where ri are the tropical
roots of tp(x), that has been defined as max-plus tropical polynomial by taking the logarithm of
the moduli of the original polynomial p(x). This shows that we could have instead considered
the max-times tropical polynomial defined using the moduli of the coefficients. Its tropical
roots represent the estimates for the moduli of the roots that we are looking for. The two
approaches are equivalent, but we have to shift to max-plus polynomials in any case in order
to use the Newton polygon.

The tropical roots provide the cheap and effective strategy that we need for choosing the
initial approximations in the outlined strategy for the algorithm sketched on page 15.

1.5 a multiprecision algorithm

The aim of this section is to combine all the pieces introduced in the previous ones in order to
build a fast and effective algorithm for the computation of the roots of scalar polynomials. It
is our interest to build an algorithm with the following features:

• The algorithm should be a “black-box”, so that we can adapt it to any kind of polynomial
(and not just the ones defined through their coefficients in the monomial basis) without
much effort, ideally by just providing the necessary tools to evaluate it and its derivative
at a point.

• It should approximate the roots of the polynomial to any desired precision and guarantee
the digits that it computes.

• The algorithm should exploit the information obtained on the approximated components
to speed up the convergence on the other ones. We want to achieve this with a kind of
implicit deflation, in order to avoid introducing numerical errors often present in explicit
deflation strategies (see [15] for a motivation around this choice).

The algorithm developed in this section is called secsolve (from secular equation solver).
It is currently part of the MPSolve suite, that was developed by Bini and Fiorentino in the



1.5 a multiprecision algorithm 21

90s [15], and has been recently updated with the implementation of the new algorithm. The
original version of MPSolve has been one of the fastest rootfinders available for a long time.
Recently Fortune proposed the eigensolve algorithm [53] that is faster than MPSolve on some
sets of polynomials. We show here that our new approach is able to be faster than both the
original MPSolve and eigensolve on most test cases. This claim is validated by the numerical
experiments of Section 1.7.

Here we elaborate the initial proposal of the algorithm of page 15. We follow these steps
which are also reported in the pseudocode of Algorithm 2.

(i) Choose a set of starting points x1, . . . , xn that are likely to be good approximations for
the roots. Several strategies can be used and we rely on the tropical roots presented in
Section 1.4.

(ii) Compute the weights of a secular equation S(x) = 0 equivalent to the polynomial equa-
tion p(x) = 0. We choose bi = xi as nodes.

(iii) Apply the Ehrlich–Aberth iteration on p(x) implicitly represented as −S(x)Π(x). This
allows to exploit the good conditioning properties of S(x) when the bi are good approx-
imations of the roots. We continue to iterate until the approximations enter the root
neighborhood for the secular equation relative to a small multiple of the current unit
roundoff (chosen in a way that allows to guarantee that computations that we carry out
in floating point).

(iv) Check if the approximations obtained are accurate enough using the bounds given by
Gerschgorin’s discs and Newton inclusions. If this is the case, we exit, otherwise we go
back to (ii).

Algorithm 2 secsolve algorithm for the approximation of the roots of a polynomial. Here
| · |, log(·) and < are applied component-wise to vectors. A vector is said to be true if all the
components are true.

1: function secsolve(p, threshold)
2: tp← TropicalPolynomial(log(|p|))
3: [r,m]← TropicalRoots(tp)

4: x← ComputeApproximations(r,m)

5: while not approximated do
6: b← x

7: S← ComputeWeights(p,b)
8: x← ImplicitEhrlichAberth(S, x)
9: r← ComputeInclusionRadii(p, x)

10: approximated← r < |x| · threshold
11: end while
12: end function

The roles of the functions in Algorithm 2 are rather clear by their name. Nevertheless,
we do not have discussed yet how to implicitly apply the Ehrlich–Aberth iteration and how to
compute a set of inclusion radii for the current approximations. These two topics are described
in the next sections.
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1.5.1 Applying the implicit Ehrlich–Aberth iteration

In this section we show how it is possible to apply the Ehrlich–Aberth iteration to a polynomial
knowing only a secular function equivalent to it. Recall that, in view of Definition 1.3.2, a
secular function S(x) is said to be equivalent to a polynomial p(x) if and only if

−S(x)Π(x) = p(x), S(x) =

n∑
i=1

ai
x− bi

− 1, Π(x) =

n∏
i=1

(x− bi).

Recall that, in view of Remark 1.1.2, in order to evaluate the Ehrlich–Aberth correction at a
certain point x ∈ C it is sufficient to evaluate the Newton correction p(x)

p ′(x) .
We have {

p(x) = −S(x)Π(x)

p ′(x) = −S ′(x)Π(x) − S(x)Π ′(x)
.

Since Π ′(x) = Π(x)
∑n
i=1

1
x−bi

we can conclude that

p(x)

p ′(x)
=

S(x)

S ′(x) +
∑n
i=1

1
x−bi

=

∑n
i=1

ai
x−bi

− 1∑n
i=1

1
x−bi

−
∑n
i=1

ai
(x−bi)2

.

The above can be evaluated with 4n+ 2 additions and subtractions, n+ 1 inversions and 2n+ 1

multiplications.

Remark 1.5.1. We stress that the evaluation of p(x)
p ′(x) does not require to know anything about

p(x), since it relies on the coefficients of S(x). In particular, since S(x) is constructed starting
only from evaluations of p(x) (see Formula 1.5) being able to explicitly evaluate p ′(x) is not
relevant at all in our setting. This could be an advantage in some cases where we have a stable
procedure for the evaluation but not for the computation of the Newton correction.

1.5.2 Partial regeneration of secular equations

In some cases it might happen that we have already approximated some of the roots of the
polynomial to the desired precision, while some others are missing. Assume, for simplicity,
that the first ` components have been approximated while the others are not. In those cases
we would like to have that b1, . . . ,b` for the new secular function are equal to the old ones.

Recalling, by Equation (1.5), that

ai =
p(bi)∏

j 6=i(bi − bj)
, i = 1, . . . ,n

we can write an “improved” formula for ai when i 6 `. We call âi the weights of the updated
secular function and ai the old ones. The same notation is used for the nodes bi. Recalling
that bi = b̂i when i 6 ` we have

âi =
p(b̂i)∏

j 6=i(b̂i − b̂j)
=

p(bi)∏
j6`
j6=i

(bi − bj) ·
∏
j>`
j6=i

(bi − b̂j)
= ai

∏
j>`
j6=i

bi − bj

bi − b̂j
, i 6 `.
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This implies that the new weights âi can be computed from the old ones by a simple update
formula that costs O(n− `) flops, that is, it is equal to the number of changed approximations.
Since in general the computation of each weight costs O(n) flops plus the evaluation of the
polynomial (that is usually O(n)), we have that the regeneration cost for the secular equation
goes down from O(n2) to O(n · (n− `)), because we have to compute (n− `) weights at a cost
O(n) and ` at a cost O(n− `).

1.5.3 Stopping criterion and inclusion bounds

In order to construct a working algorithm for the approximation of polynomials roots we still
need to introduce some other tools.

First of all, we need to devise an efficient stopping criterion that allows to obtain as accurate
as possible approximations for each secular equation. This way we can rely on regeneration
only when no further improvement is possible, without wasting computational time.

Recalling the secular and root neighborhoods defined in Definition 1.3.7 and 1.3.8 we have
that if the approximations x1, . . . , xn are included in RNε(S(x)) for ε ∼ u then each of the ap-
proximation is a root of a slightly perturbed secular equation. In particular, from our numerical
viewpoint, we are not able to distinguish these approximations from the correct solutions of the
secular equation. When this situation is reached, no further improvement can be obtained iter-
ating in floating point with a unit roundoff equal to u. Exploiting Lemma 1.3.13 we use this con-
dition as a stopping condition. More precisely, we implement the following stopping criterion:
if an approximation x is included in the floating point root neighborhood ˜RNu(1+κn)(S(x))
then we stop the iteration on that component, since we have x ∈ RNu(1+2κn)(S(x)) (ignoring
second order terms) and so it is a root of a slightly perturbed secular equation. If this is not
the case, x 6∈ ˜RNu(S(x)). Proposition 1.3.12 guarantees that, in this case, the evaluation of S(x)
still contains some valuable information (the relative error is smaller than 1) and so we can
further improve the approximation.

When all the approximations enter the root neighborhood the floating point iteration cannot
improve the approximations and so we need some new information in order to proceed. For
this reason we employ multiprecision floating point arithmetic in order to compute a new
equivalent secular equation according to Definition 1.3.2 and Lemma 1.3.1 by setting bi :=

xi. Since the current approximations have improved from the old ones, we have that the
conditioning of the new secular equation will be smaller. Thus, the components of the root
neighborhoods relative to each root (that by definition can be estimated as u ·κi(S(x)) where κi
is the conditioning of the i-th root) will be shrinked versions of the original ones. We continue
to iterate this process until the approximations obtained are satisfying.

A natural question is what is the desirable degree of approximation that we want to reach.
When can we stop? The answer can be given by the following theorem, which is a rephrased
version of [86, Theorem 2.4].

Theorem 1.5.2. Let αi be a root of the polynomial p(x) =
∏n
i=1(x−αi) and x a point in the complex

plane. If

|αi − x| 6
1

3(n− 1)
|αj − x|, j 6= i,

then the Newton method starting from x is quadratically convergent to αi.

In view of this result we want to find a practical way to detect when we encounter such a
situation for some index i. We show two possible methods to obtain this result.
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The first result uses Gerschgorin’s theorem and the construction of the secular linearization
of Corollary 1.3.4. Before stating it, we report Gerschgorin’s theorem for completeness.

Theorem 1.5.3 (Gerschgorin). Let A be an n×n complex matrix. We denote its elements as aij, and
we define the discs Bi as

Bi :=

z ∈ C | |z− aii| 6
∑
j6=i

|aij|

 , i = 1, . . . ,n.

Then the union of the discs Bi contains the eigenvalues of A and every connected component of this
union made of k discs contain exactly k eigenvalues counted with multiplicity.

Theorem 1.5.4. Let p(x) be a scalar monic polynomial, and xi for i = 1, . . . ,n a set of n pairwise
distinct approximations. Then the roots of the polynomial are included in the union of the discs Bi
defined by

Bi =

{
z ∈ C | |z− xi| 6 n

∣∣∣∣∣ p(xi)∏
j6=i(xi − xj)

∣∣∣∣∣
}

.

Moreover, each connected component of the union contain a number of roots equal to the number of discs
included in the connected component (counted with multiplicity).

Proof. The result is obtained by applying Gerschgorin’s theorem to the linearization for p(x)
obtained from Corollary 1.3.4 with bi := xi.

We report another result that can be used to bound the roots of the polynomial based on a
set of approximations. The following can be found on [68].

Theorem 1.5.5. Let wi be the i-th coefficient of the Taylor expansion of the polynomial p(x) in x̄, i.e.
the i-th coefficient of the shifted polynomial p(x− x̄). If we define

β(x) = min
16m6n

[(
n

m

) ∣∣∣∣ w0wm
∣∣∣∣]1/m

then the ball of center x̄ and radius β(x̄) contains at least one root of p(x).

The above theorem induces a family of inclusion results by just changing the value of m.
For example, m = 1 yields the following

Corollary 1.5.6. Let p(x) be a polynomial of degree n. Then the set
{
z | |z− x̄| 6 n ·

∣∣∣ p(x̄)p ′(x̄)

∣∣∣} always
contains a root of the polynomial.

Proof. Apply Theorem 1.5.5 with m = 1.

We are particularly interested in the case when the approximations x1, . . . , xn are such that
the discs induced by Corollary 1.5.6 or by Theorem 1.5.4 allow to prove the hypothesis of
Theorem 1.5.2. In particular, this happens when the discs induced by any of the two theorems
with radius enlarged by a factor of 3n have empty intersection with the others. We call this
condition the Newton isolation condition. Whenever this happens on an approximation xi we
are sure that the Newton method is quadratically convergent starting from that approximation,
and so we can rely on it if other digits of the approximated root are needed.
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1.6 solving mandelbrot polynomials

In this section we show an example of how it is possible to adapt the algorithm developed in
the previous section in order to approximate the roots of a polynomial belonging to a particular
class.

In particular, we consider the class of Mandelbrot polynomials, defined by recurrence on
d ∈N by the following relations: {

p0(z) = 1

pd+1(z) = zp
2
d + 1

. (1.8)

The Mandelbrot polynomial pd(z) has degree 2d − 1 and its roots are periodic points of the
Mandelbrot set of order d. A representation of the roots for d = 10 (so that the associated
polynomial has degree 1023) are reported in Figure 1.5.
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Figure 1.5: Roots of the Mandelbrot polynomial of order d = 10. The polynomial has degree
2d − 1 = 1023.

The problem of solving these polynomials has been attacked in the past by others. Mandel-
brot polynomials have been used as a difficult test case by the first version of MPSolve (see [15])
and also in the software eigensolve, proposed by Steven Fortune in [53]. Recently the prob-
lem of approximating the roots of very high degree Mandelbrot polynomials has been tackled
by Corless and Lawrence in [31]. Their approach is based on using sparse linearizations for
these polynomials and then solving the eigenvalue problem on a large cluster. They have been
able to find the roots of p20(x) in about the equivalent of 31 years of sequential computational
time.

Another recent work by Schleicher and Stoll analyzes possible choices for starting points
so that the Newton’s method converges to all the roots of Mandelbrot polynomials. A preprint
of their work is available in [84] at the time of writing.
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The method presented here is faster than any other implementation available (at least to
our knowledge), as reported in the next Section 1.6.2, where we have compared our algorithm
with the software that is available for testing.

1.6.1 Evaluating the Mandelbrot polynomials

A possible approach to compute the roots of the polynomial is to explicitly compute the co-
efficients of the polynomial in the monomial basis and then use the general solver to obtain
approximations to the roots. While this is possible, and in fact these kinds of polynomials are
included in the test suite for the MPSolve package, the integer coefficients of the Mandelbrot
polynomials become very large as the degree increases, and so it is not very practical if one
wants to reach very high degrees.

For this reason we consider the idea of an implicit solver that only reads the integer d and
solves the polynomial by just knowing the recurrence relation of its definition.

Remark 1.6.1. It can be noticed that the recurrence relation is enough to evaluate the poly-
nomial at a point in the complex plane. In fact, the use of the recurrence relation allows to
evaluate the polynomial with only d ≈ logn operations that is much cheaper than the Horner
method. Moreover, the evaluation through the recurrence relation turns out to be much more
stable since the (very large) coefficients would need to be truncated in order to be represented
in floating point before executing the Horner scheme. Given the bad conditioning of the Man-
delbrot polynomials this would lead to very large errors in the evaluation. This is actually the
reason that makes them a very good test-cases for general polynomial solvers.

We propose to use the procedure reported in Algorithm 3 in order to evaluate the polyno-
mial pd(x) at a certain point in the complex plane. Notice that the function is also used to
retrieve a bound on the evaluation error. To do this we use the following result.

Lemma 1.6.2. Let pd(x) be the Mandelbrot polynomial of order d that has degree 2d − 1. If pd(x) is
evaluated at a point x ∈ C by means of the recurrent relations of Equation (1.8) then

fl(pd(x)) =
(
xfl(pd−1(x))2 · (1+ ε1) + 1

)
(1+ ε2)

with |ε1| 6 1+ 4
√
2

1−2u and |ε2| 6 u up to second order factors in u. In particular, the floating point
error ed := fl(pd(x)) − pd(x) can be recursively bounded using the formulas{

|e0| = 0

|ed+1| 6
(|ε1||x||ed−1|+1)(1+|ε2|)+|ε2|fl(pd(x))

1−|ε2|

Proof. According to [69] we know that for every complex number z and w

fl(z+w) = (z+w)(1+ ε+), |ε+| 6 u

fl(z ·w) = zw(1+ ε∗), |ε∗| 6
2
√
2

1− 2u

where u is the current unit roundoff. Applying these bounds to the floating point multiplica-
tion and addition in the recursive relation yields the first statement of the thesis.
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The recursive formula to bound the error can be obtained by noting that

ed(x) = |fl(pd(x)) − pd(x)|

= |(xfl(pd−1(x))2 · (1+ ε1) + 1)(1+ ε2) − pd(x)|
= |(ε1xed−1(x) + 1)(1+ ε2) + ε2pd(x)|

= |(ε1xed−1(x) + 1)(1+ ε2) + ε2 fl(pd(x)) + ε2ed(x)|.

Taking the last term to the left-hand side and dividing by (1− ε2) gives the thesis.

Algorithm 3 Function that evaluates the Mandelbrot polynomial pd(z) at a certain point in the
complex plane. The function takes as input the positive integer d and the point x ∈ C and
returns a tuple containing the result of the evaluation and a bound for the floating point error.

1: function EvaluateMandelbrot(d, x)
2: u← UnitRoundoff()
3: v← 2∗

√
2

1−2∗u
4: if d == 0 then
5: return (1, 0)
6: else
7: (p, e)← EvaluateMandelbrot(d− 1, x)
8: p← x ∗ p2 + 1
9: e← ((u ∗ |x| ∗ e+ 1) ∗ (1+ v) + v ∗ p)/(1− v)

10: return (p, e)
11: end if
12: end function

The evaluation of the polynomial, as seen in Section 1.5, is sufficient in order to implement
the approximation algorithm based on MPSolve. Nevertheless, in order to make the algorithm
even faster, we can also implement the evaluation of the Newton’s correction pd(x)/p

′
d(x).

This can be used when Newton isolation is guaranteed in order to refine the approximations
using Newton’s iterations.

We notice that a recurrence relation can be used also to evaluate the derivative of pd(x), in
fact we have {

p ′0(x) = 0

p ′d+1(x) = pd(x)(2p
′
d(x) + pd(x))

(1.9)

This relation admits an error analysis very similar to the one given for the evaluation of
pd(x), and allows to evaluate the Newton correction in O(d) floating point operations. Algo-
rithm 3 can be easily modified to compute the Newton correction together with the evaluation
of pd(x) at a point.

These algorithms have been implemented in the MPSolve package which provides an exe-
cutable file called mandelbrot-solver that allows to efficiently approximate the roots of Man-
delbrot polynomials.

The above approach has been further refined using the following remark.

Remark 1.6.3. The roots of the Mandelbrot polynomials are placed on the Mandelbrot fractal.
For this reasons, the roots of the polynomial pd(x) can be used as good starting approximations
for the roots of the polynomial pd+1(x).
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Degree Standard MPSolve mandelbrot-solver

511 0.87 0.18

1023 5.27 0.57

2047 38.82 1.56

4095 319.57 4.45

8191 2936.32 13.85

16383 * 53.96

32767 * 193.35

65535 * 824.39

Table 1.1: Timings for the approximation of the roots of the Mandelbrot polynomials for degree
between 511 and 65535. The timings of the standard MPSolve package and of the custom
mandelbrot-solver have been reported. The timings are expressed in seconds.

Based on the above remark, we chose to implement mandelbrot-solver in a recursive
way so that to solve pd(x) it first solves pd−1(x) and then uses the obtained approximations
as starting points by just taking two copies of each approximation and perturbing them by
multiplying by (1+ ε) and (1− ε), respectively, with |ε| chosen as a small multiple of the unit
roundoff.

1.6.2 Numerical experiments

Here we report the results of some numerical experiments that provide evidence of the effec-
tiveness of the algorithm. We have tested the standard version of MPSolve using the coefficients
of the Mandelbrot polynomial computed in the monomial basis.

Here the timings reported are for the Newton isolation of the roots, that is, the algorithms
stops as soon as it founds isolated inclusion discs for the approximations that guarantee
quadratic convergence of the Newton method from the start. Given the bad conditioning of
the roots and the fact that they are clustered on the border of the Mandelbrot set, this happens
when the approximation have a large amount of digits already correct, typically very near to
the number of digits representable on a modern computer.

The tests have been run with multithreading enabled, so all the cores of the system have
been used in the experiments. The computer that ran the tests is a dual Xeon server with the
two CPUs running at 3.33 GHz. The results are reported in Table 1.1. It is easy to see from the
table that not only mandelbrot-solver is much faster than the standard approach of solving
the polynomial expressed through its coefficients, but also has a lower asymptotic complexity.
In fact, we have verified experimentally that MPSolve has a quadratic complexity in the degree
when considering “comparable” polynomials (see [15]). Since the coefficients of Mandelbrot
polynomials are growing very large at a fast pace it is soon impossible to represent them in
floating point. Moreover, the conditioning of the polynomials also increases very fast. In this
case our recursive approach, that provides very good approximations using the roots of the
lower level polynomial, helps to accelerate the algorithm. In particular our implementation of
mandelbrot-solver has a cost that, experimentally, is less than quadratic in the degree.

The effectiveness of the strategy allowed to reach very high degrees. The algorithm has
been run on a dual Xeon server for about a month and has been able to solve the polynomial
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p22(x) that has degree 222 − 1 = 4.194.303. Some of the images obtained by plotting the roots
given by the software are available at the website hosting the code for MPSolve: http://numpi.
dm.unipi.it/mpsolve/. The roots of the polynomial p21(x) are reported in Figure 1.6.

Figure 1.6: Roots of the Mandelbrot polynomial of degree 221 − 1.

1.7 numerical experiments

In this section we report the results of some numerical experiments run to validate the secsolve
algorithm for the case of general polynomials where the features of each class of polynomial
that is tested here are reported. The timings that we show here are slightly better than the one
of [20] due to recent improvement in the code and the optimization of some procedures. Since
the algorithm gives guaranteed results we do not measure the accuracy of the computed roots
(that needs to have at least the required quantity of correct digits) but instead we measure the
timings of different software. We compare the following implementations and algorithms:

• Our algorithm (called secsolve), based on the diagonal plus rank one companion form
and using several representations of the polynomial in different secular basis.

• The old version of MPSolve, implemented by Bini and Fiorentino in [15].

• The eigensolve algorithm by Steven Fortune [53]. This algorithm was originally com-
pared with MPSolve in the paper by Fortune and so it is directly comparable since they
share the same set of test polynomials.

In [15] MPSolve 2.2 is benchmarked against other common software packages such as
Pari, Mathematica and Maple. We do not have included them in the comparison since, as
already shown in [15], they tend to be several orders of magnitude slower than MPSolve and

http://numpi.dm.unipi.it/mpsolve/
http://numpi.dm.unipi.it/mpsolve/
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eigensolve and more importantly the timings are rather unpredictable based on the degree
and conditioning only. In particular for Mathematica and Maple, being closed source software,
it is not possible to know which procedures are used.

Here we provide a brief comment on the different classes of polynomials that we have
tested. An in-depth analysis of them can be found in [83].

nroots The polynomials in this family are xn − 1. They are very well-conditioned and their
coefficients are sparse (since only two coefficients are non-zero). This can be exploited
when computing the Newton correction by using a sparse version of the Horner algo-
rithm. MPSolve 2.2 can take fully advantage of this fact, while secsolve, being forced
to work with a secular equation with with n terms different from zero, can only exploit
this in the regeneration stage. This motivates the fact that MPSolve 2.2 is usually faster
on these test cases.

orthogonal polynomials We have used orthogonal polynomials from various families
as test cases (here we report the cases of Hermite and Chebyshev). Here no particular
structure is exploited by the methods presented. We see that in all the tested cases the
secsolve algorithm is faster.

chromatic polynomials The polynomials chrma* are chromatic polynomials. They are
found in applications linked to graph colorings. Their roots are usually very ill-conditioned,
and in these cases the secsolve algorithm is very effective.

mandelbrot The Mandelbrot polynomials that we have tested are the ones for which we
have designed a custom method in Section 1.6. However, in this case we have used
them as a difficult test case and the input has been given through their coefficients in the
monomials basis.

multiple roots We have tested several families of polynomials having multiple or numeri-
cally multiple roots. In particular the spiral* polynomials have roots on a spiral, which
cluster around zero. The Kirinniss polynomials (named kir*) have 4 multiple roots in
1,−1, i and −i. Moreover, a simple root is also present nearby (at a distance of about
1e − 3). These polynomials have been designed to test the effectiveness of the cluster
detection strategies in difficult cases where a multiple root and a numerically multiple
root coexist. The Mignotte polynomials, instead, have integer coefficients and the feature
of having two roots whose distance is very close to the Mahler bound (that bounds the
minimum distance between two simple roots).

truncated exponential The polynomials named exp* are truncated Taylor series of the
exponential function.

partition polynomials Partition polynomials are a difficult test case that motivated the
initial development of secsolve. Their k-th coefficient is the number of different ways
in which k can be obtained as a sum of positive integer numbers. The roots of these
polynomials converge to a curve in the plane as the degree goes to infinity.
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MPSolve 2.2 eigensolve secsolve secsolve †

nroots800 0.11 8.37 0.18 0.08

nroots1600 0.34 57.44 0.59 0.15

chebyshev80 0.09 0.08 0.06 0.06

chebyshev160 0.97 0.69 0.23 0.12

chebyshev320 9.36 7.00 1.54 0.33

hermite80 0.05 0.06 0.05 0.05

hermite160 0.55 0.54 0.35 0.07

hermite320 5.33 5.51 1.02 0.23

chrma342 19.56 4.43 2.48 0.51

chrmad340 29.71 4.46 4.36 0.63

exp100 0.29 0.14 0.07 0.07

exp200 1.05 1.19 0.30 0.13

exp400 10.28 10.67 2.23 0.44

mand127 0.30 0.21 0.14 0.11

mand255 2.82 2.24 0.65 0.20

mand511 31.18 20.08 4.65 0.84

mand1023 456.91 229.60 37.38 5.05

mand2047 11158.72 3860.10 320.36 39.19

spiral20 (50 digits) 0.70 0.07 0.25 0.23

spiral20 (1000 digits) 0.76 0.13 0.37 0.24

mig1_200 (50 digits) 0.04 0.85 0.18 0.19

mig1_200 (1000 digits) 0.15 3.18 1.02 0.19

kir1_10 (100 digits) 0.23 0.06 0.15 0.20

kir1_10 (1000 digits) 7.23 1.50 1.84 1.30

kir1_10 (4000 digits) 55.30 77.38 13.99 8.34

partition400 0.67 4.81 0.41 0.14

partition800 5.49 36.90 2.04 0.42

partition1600 38.45 390.62 10.62 1.81

partition3200 213.34 7038.98 52.86 7.83

partition6400 1303.83 45953.33 284.52 38.55

partition12800 7845.62 - 1576.16 212.48

Table 1.2: Timings of the test runs of MPSolve 2.2, eigensolve and secsolve. The columns
marked with † refer to the tests with multithreading enabled.
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2
P O LY N O M I A L E I G E N VA L U E P R O B L E M S

2.1 linearizations and `-ifications

The aim of this chapter is to introduce the concepts of linearizations and `-ifications and to
present some tools that allow to construct such objects starting from a matrix polynomial P(x).
The ideas that we present are meant to generalize the secular basis introduced in the scalar
case in Section 1.3.

Before proceeding with the introduction of these new tools it is important to briefly recap
some basic definitions and notions about matrix polynomials and their linearizations and `-
ifications. Matrix polynomials and their linearizations are a very classical topic both in matrix
theory and in numerical analysis and have been very well analyzed in classical books like
[61] and [58]. `-ifications, on the other hand, are much more recent and have been formally
introduced and analyzed by De Terán, Dopico and Mackey in [35]. Both these concepts aim
to find simpler matrix polynomials that share the same spectral properties of a given matrix
polynomial P(x) =

∑n
i=0 Pix

i . In this section the symbols Pi will be used to denote the
coefficients of the matrix polynomial that we want to study, while the linearization (or `-
ification) will be denoted with L(x) or A(x), depending on the context.

Polynomial eigenvalue problems (in short PEPs), in their simplest version, can be formu-
lated as finding the eigenvalues λ and the eigenvectors v 6= 0 such that P(λ)v = 0. This
is a generalization of scalar polynomials and of standard and generalized eigenvalue prob-
lems. In fact, whenever the size of the matrix coefficients is 1 the problem reduces to a scalar
rootfinding problem (the only possible eigenvector being 1, since it has to be non-zero and it is
defined up to a constant factor). In the opposite case, when the matrix coefficients are bigger
but the degree is 1, we have the generalized eigenvalue problem (xA − B)v = 0 or, when the
polynomial is monic, the standard eigenvalue problem (xI − A)v = 0.

Remark 2.1.1. Our purpose is to design tools for the solution of the polynomial eigenvalue
problem that are as efficient as possible. Notice that the faster algorithms available for poly-
nomial rootfinding require O(n2 ) flops and the more efficient algorithm for standard (and
generalized) eigenvalue problems require O(m3 ) flops. For this reason, recalling that a PEP
reduces to these two problems in particular cases, we expect the complexity of these tools to
be at least O(n2m3 ). Current mainstream algorithms for these problems rely on QR and QZ
iterations on companion matrices, and usually have a complexity of O(n3m3 ). We investigate
if it is possible to lower this complexity and so we look for operations with a cost of (at most)
O(n2m3 ) flops.

2.1.1 Basic facts about matrix polynomials

Definition 2.1.2. We say that P(x) is a matrix polynomial if it is a polynomial whose coefficient
are matrices or, equivalently, a matrix whose coefficients are polynomials. If P(x) has m1 ×
m2 matrices coefficients with elements in the field F we write that P(x) ∈ Fm1×m2 [x]. Very
often we will deal with square matrix polynomials so that m1 = m2 =: m.

33
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This duality of the definition of matrix polynomials can often be useful to analyze them
under different viewpoints. Often it happens that one perspective is lacking while the other
one offers a much more accurate understanding of the underlying structure of these algebraic
objects.

As an immediate example, we can give two definitions of eigenvalues of matrix polynomi-
als. The first one is obtained by thinking of matrix polynomials as polynomials with matrix
coefficients, the latter by thinking of them as matrices with polynomial coefficients.

Before giving the definitions, we need to introduce the concept of regularity.

Definition 2.1.3. Let P(x) be a matrix polynomial. We say that P(x) is regular if it is square
and det P(x) is not identically zero. A matrix polynomial that is not regular (i.e., that is either
rectangular or such that det P(x) ≡ 0) is called singular.

We can then state the following definition.

Definition 2.1.4. A scalar λ ∈ F is said to be an eigenvalue of a regular matrix polynomial
P(x) ∈ Fn×n [x] if the matrix P(λ) is singular, i.e., if there exists a vector v 6= 0 such that
P(λ)v = 0. In this case such a vector v is called a right eigenvector of P(x) relative to the
eigenvalue λ. A left eigenvector is a vector u such that utP(λ) = 0.

We can observe that this definition has both an advantage and a disadvantage. The advan-
tage is that it directly yields a definition of what an eigenvector is, and the disadvantage is
that it does not make sense for rectangular and singular matrix polynomials.

Looking at the problem from a different perspective we can give an alternative definition,
for which we need to recall some basic algebraic tools.

Definition 2.1.5. A matrix polynomial E(x) is said to be unimodular if it is regular and det E(x)
is a nonzero constant.

Notice that the above definition implies that the matrix polynomial E(x) is invertible in
the ring of matrix polynomials, i.e., there exists another matrix polynomial F(x) such that
E(x)F(x) = I. With the definition of unimodular matrices it is possible to state the following
classical theorem.

Theorem 2.1.6 (Smith form). Let P(x) ∈ Cm×n [x] be a matrix polynomial, not necessarily regular.
Then there exist two unimodular matrices E(x) and F(x) such that

S(x) = E(x)P(x)F(x) = diag(d1 (x) , . . . , dr (x) , 0 , . . . , 0)

is a diagonal matrix polynomial such that di (x) | di+1 (x) for every i = 1 , . . . , r − 1. The number
r is the rank of the matrix polynomial P(x) and the Smith form is unique up to multiplication of the
polynomials by invertible factors.

Remark 2.1.7. The Smith form provides an alternative definition of regularity. In fact, it is
clear that a polynomial is regular if it is square and of maximum rank.

Moreover, the Smith form of a matrix polynomial allows to state the following definition.
Here and hereafter we assume that the field is algebraically closed. If this is not the case most
definitions are still valid even if the polynomials could have other non-trivial factors different
from x − λ.
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Definition 2.1.8. Let P(x) be a matrix polynomial, and S(x) its Smith form. Then the roots of
the diagonal elements of S(x) are called the eigenvalues of P(x). Moreover, whenever λ is an
eigenvalue of P(x), the diagonal elements of S(x) can be factored as di (x) = (x − λ)αi ri (x)

with ri (λ) 6= 0. The increasing sequence (α1 , . . . , αr ) is called the partial multiplicity sequence
of P at λ. The scalar polynomials di (x) are called the invariant factors of P(x), while the
factors (x − λ) are called elementary divisors.

2.1.2 Linearizations

The main topic of this section is the concept of linearizations and `-ifications. They are tools
aimed at finding equivalent representation of a matrix polynomial that are easier to solve.

A natural question that arises in this context is what we really mean by equivalence. Intu-
itively, we would like to preserve the spectral structure of the matrix polynomial but, as we
will find out, the concept can be rather vague and some care need to be taken when giving
the definitions. In fact, while it is clear that we want to preserve the eigenvalues, several other
questions might arise, some of them being quite subtle:

• Shall we maintain only the eigenvalues, or also the eigenvectors? If the latter are required,
in which sense they should be preserved? More precisely, which of their features do we
want to maintain?

• Do we need to care about infinity eigenvalues (which will be defined precisely in this
section), and do we also have to preserve multiplicities and/or Jordan chains?

A very in-depth analysis of what is meant by equivalence of matrix polynomials is carried
out in [35]. We mostly refer to this paper regarding notation and definition of equivalences.
Here we report, in a very brief way, the basic concepts that will be useful in the following, so
the reader can make sure to master all the tools needed for a complete understanding of this
section.

Definition 2.1.9 (Strict equivalence). A matrix polynomial P(x) is said to be strictly equivalent
to another matrix polynomial Q(x) if there exist two invertible constant matrices E and F such
that EP(x)F = Q(x) . In this case we write that P(x) ∼= Q(x).

Definition 2.1.10 (Unimodular equivalence). A matrix polynomial P(x) is said to be unimodu-
larly equivalent to Q(x) if there exist two unimodular matrix polynomials E(x) and F(x) such
that E(x)P(x)F(x) = Q(x). In this case we write that P(x) ∼ Q(x).

Definition 2.1.11 (Extended unimodular equivalence). A matrix polynomial P(x) is said to be
extended unimodularly equivalent to another matrix polynomial Q(x) if there exist two unimod-
ular matrices E(x) and F(x) and two positive integers r and s such that

E(x) diag(Ir , P(x))F(x) = diag(Is ,Q(x)) .

In this case we write P(x) ^ Q(x).

For the next definition we need to define the reversal of a matrix polynomial P(x).

Definition 2.1.12. The reversal of the polynomial P(x), denoted by P# (x) is the polynomial
with the coefficients in reversed order, i.e.,

P# (x) = xdeg P(x)P(x−1 ) .
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The definition of the reversal of a matrix polynomial allows to introduce infinite eigenval-
ues.

Definition 2.1.13. If P(x) is a matrix polynomial we say that ∞ is one of its eigenvalues if
0 is an eigenvalue of P# (x). Moreover, its eigenvectors relative to the infinite eigenvalue are
defined as the eigenvectors relative to 0 of P# (x).

Definition 2.1.14 (Spectral equivalence). Two matrix polynomials P(x) and Q(x) are said to be
spectrally equivalent if P(x) ^ Q(x) and P# (x) ^ Q# (x). In this case we write P(x) � Q(x).

The definitions of these equivalence relations have some immediate consequences on the
properties that are preserved. First of all, it is worth noting that the following implications are
true:

• If P(x) ∼= Q(x), then P(x) ∼ Q(x).

• If P(x) ∼= Q(x), then P(x) � Q(x).

• If P(x) � Q(x) then P(x) ^ Q(x).

• If P(x) ∼ Q(x) then P(x) ^ Q(x).

In particular, the relations ∼, ^ are weaker than ∼= and both � and ∼, respectively, so
any property that we can prove in the weaker case also holds in the stronger one. These
implications can also be represented in the graph of Figure 2.1, where there exists a path
connecting A to B if and only if A =⇒ B:

∼= ∼ ^

�

∞-preserving

size-preserving

Figure 2.1: Implications between the different equivalence relations. A path connects A to B if
and only if A =⇒ B. The relations are included in appropriate sets if they preserve the size
of the matrix polynomial or the infinite eigenstructure.

Moreover, we have highlighted the equivalence relations that preserve the size of the matrix
polynomial and the ones that don’t change the infinite eigenstructure.

As we will see, size-preserving equivalence relations are too strict for our purposes, since
our main aim is to preserve the eigenstructure but to lower the degree, and this is impossible
without increasing the dimensions. In fact, this can be easily seen in the generic case: if
the leading coefficient of a matrix polynomial P(x) of size n and degree d is invertible then
det P(x) has degree nd and so the matrix polynomial has nd different eigenvalues (counted
with multiplicity). There is no hope of finding a matrix polynomial of the same size but with
lower degree and the same number of eigenvalues.

We can turn our attention to the relations ^ and �. We have the following
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Theorem 2.1.15. Let P(x) ^ Q(x) and, in particular, suppose that

diag(Ir , P(x)) = E(x) diag(Is ,Q(x))F(x) .

Then the following statements hold:

(i) If λ is a finite eigenvalue of P(x) then λ is also an eigenvalue of Q(x) with the same partial mul-
tiplicities. Moreover, P(x) and Q(x) share the same elementary divisors with the only exception
of 1 that might appear a different number of times.

(ii) If v is a right eigenvector of P(x) relative to an eigenvalue λ then F(λ)[0 , . . . , 0 , v]t is of the
form [0 , . . . , 0 , ṽ]t where ṽ is a right eigenvector for Q(x).

(iii) The same holds for left eigenvectors, appropriately replacing F(λ) with E(λ).

Proof. Notice that, whenever T (x)A(x)U(x) = D(x) is a Smith form for A(x) then the diag-
onal matrix [

Ir
T (x)

] [
Ir

A(x)

] [
Ir

U(x)

]
=

[
Ir

D(x)

]
is a Smith form for diag(Ir , A(x)). Recalling that the form is unique we can conclude that
this is the only possibility. Note that it is immediate to prove that diag(Ir , A(x)) and A(x)

share the same elementary divisors except a finite number of additional ones on the top. More-
over, recalling that the Smith form is invariant for multiplication by unimodular matrices we
have diag(Ir , P(x))) and diag(Is ,Q(x)) must have the same Smith form. This implies, in
particular, that P(x) and Q(x) share the same elementary divisors (except for 1 that might
have different multiplicity) and so the same eigenvalues. This also implies that the partial
multiplicities must be preserved.

The second statement can be directly verified by noting that diag(Ir , P(λ))v = 0 implies
that v has the first r components equal to 0 and so the remaining part must be an eigenvector
for P(x) relative to λ. Then we conclude by diag(Is ,Q(λ))E(λ)v = 0 since F(λ) is invertible.
The same holds for the left eigenvectors.

2.1.3 Some classical examples of linearizations

With these definitions available we can define the concepts of linearizations and `-ifications.

Definition 2.1.16. A matrix polynomial L(x) is said to be an `-ification of a matrix polynomial
P(x) if P(x) ^ L(x) and deg L(x) 6 `. Whenever ` = 1 we say that L(x) is a linearization
for P(x). Moreover, if P(x) � L(x) we say that the `-ification (or the linearization) is strong.

A very classical example of linearization is the so called Frobenius linearization. It is part
of a bigger set of linearizations that are usually called companion linearizations.

We give the following (slightly informal) definition

Definition 2.1.17. We say that a linearization L(x) of P(x) is a companion linearization if its
coefficients are obtained directly from the coefficient of P(x) without any further computation.
If L(x) is monic of the form xI − A we say that A is a companion matrix for P(x).

The above definition is not completely precise, since we have not specified how the co-
efficients can or cannot be manipulated when creating the linearization. However, it is not
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very important in our setting and we just need to keep in mind that a companion lineariza-
tion is something that we can construct easily by just looking at the coefficients of the matrix
polynomial and by placing them in some order in a (usually) bigger matrix.

This concept is made more precise in [35], where templates are introduced.

Remark 2.1.18. The reader might recall that in Section 1.2 we have given the same definition
for scalar polynomials. Indeed, in that context, we have only requested that the matrix A
is obtained easily from the coefficients of the polynomial and that the eigenvalues of the two
matches. This is enough in the scalar case since there is no need to match also the eigenvectors,
given that in the scalar case there is no freedom for choosing them.

We now briefly report some classical choices for companion linearizations of a matrix poly-
nomial P(x). We have the following.

Definition 2.1.19 (First Frobenius form). We say that the matrix polynomial L(x) = xFP1 − FP0
is a Frobenius linearization of the first kind for P(x) if

L(x) = x


Pn

I
. . .

I

 −


−Pn−1 −Pn−1 · · · −P0
I

. . .

I

 .

Definition 2.1.20 (Second Frobenius form). We say that the matrix polynomial L(x) = xFP1 −

FP0 is a Frobenius linearization of the second kind for P(x) if

L(x) = x


Pn

I
. . .

I

 −


−Pn−1 I

−Pn−2
. . .

... I

−P0

 .

We recall this classical result, found both in [61] and more recently in [35], with the latter
using a notation more similar to ours.

Theorem 2.1.21. Let P(x) be a matrix polynomial. Then both the first and the second companion form
of P(x) are strong linearizations.

Proof. We do not give the proof in this work, and instead we refer to [35] for a detailed analysis.
The basic idea is that we can perform right and left multiplication by unimodular matrices until
we take the linearization L(x) in the form diag(I , P(x)). This proves that L ^ P(x). Then
it suffices to perform a similar reduction on L# (x) in order to obtain diag(I , P# (x)) and the
proof is complete.

We now recall some basic results, reported for example in [35], that will be useful in the
following. We give the statements referring to the first Frobenius form, but the analogous
statements hold also for the second Frobenius form.
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Lemma 2.1.22. Let L(x) be the first Frobenius form of a matrix polynomial P(x). Then the right
eigenvectors of L(x) relative to an eigenvalue λ are of the form

v̂ =


λn−1v
...

λv

v

 , P(λ)v = 0 .

Proof. The statement proof can be proved by direct verification, by checking that

L(λ) v̂ =


P(λ)v

0
...

0

 = 0 .

By partitioning the vector v̂ as v̂t = [vt1 . . . vtn ] and imposing that L(λ) v̂ = 0 we can see
that this is the only possibility.

A similar result can be proved for left eigenvectors. We have the following.

Lemma 2.1.23. Let L(x) be the first Frobenius form of a matrix polynomial P(x). Then the left
eigenvectors of L(x) relative to an eigenvalue λ are of the form

v̂ =


v

(λI + Ptn−1 )v

(λ2 I + λPtn−1 + P
t
n−2 )v

...

(λn−1 I + . . . + Pt1 )v

 , vtP(λ) = 0 .

Proof. Note that by partitioning v̂t =
[
vt1 . . . vtn

]
and imposing v̂tL(λ) = 0 yields the

equations {
−vt1Pn−j + v

t
j+1 = λvtj if j < n

−vt1P0 = λvtn otherwise
(2.1)

If we set v := v1 we can recursively compute vj for j > 1 by the above equations and we get
that

v̂ =


v

(λI + Ptn−1 )v

(λ2 I + λPtn−1 + P
t
n−2 )v

...

(λn−1 I + . . . + Pt1 )v


The last line of Equation (2.1) says that λvtn + vt1P0 = 0 and in our case this becomes P(λ)tv =

0, concluding the proof.

Some work have recently been carried out in order to generalize this family of linearizations.
We can distinguish the following areas of study:
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monomial companion forms The study of natural companion forms for polynomial rep-
resented in the monomial basis, but different from the Frobenius form has received much
attention recently. An example of this are the work by De Terán et al. in [34] for Fiedler
linearizations. These linearizations are a generalization of the Frobenius forms. In [52]
Fiedler notices that a Frobenius companion form can be factored in the product of matri-
ces containing only one of the coefficients of the polynomial each. Since the eigenvalues
of a matrix product do not change when reordering the elements, this can be used to
generate a family of linearizations. Some have possibly interesting properties (such as
banded structure, for example).

non-monomial basis The Frobenius linearization is, in a certain sense, the natural lin-
earization for polynomial expressed in the monomial basis. It is a natural question to ask
whether this can be generalized to more general basis, i.e., if we can naturally define some
families of linearizations for matrix polynomials of the form P(x) =

∑n
i=0 Piφi (x)

with {φ0 , . . . , φn } generating a vector spaces of polynomials. This topic has been exten-
sively studied by Corless, Amiraslani and Lancaster in [2] and [30]. In [2] they analyze
bases of polynomials with recurrent relations (such as the monomial basis and orthogo-
nal polynomial basis) and define linearizations with a strategy similar to the one reported
here in Section 1.2.

structured linearizations This category contains, in particular, the study of vector
spaces containing linearization for polynomials. This is the approach that the authors
use in [74] and is particularly effective in finding linearizations with particular structures.
The main idea that motivated this work is to find linearizations for matrix polynomials
that share the spectral symmetries available in the original matrix polynomial formula-
tion. This has the advantage of allowing the use of structured methods (such as [76])
when dealing with this kind of problems. Some examples are matrix polynomials with
symmetric or skew-symmetric coefficients or palindromic polynomials. All these struc-
tures induce different symmetries in the spectrum, and is desirable to preserve them
when solving the matrix polynomial using a linearization.

2.2 the class of secular `-ifications

In this section we introduce a new class of `-ifications and linearizations inspired by the scalar
linearizations presented in Section 1.3. Recall that, in that case, given a monic scalar poly-
nomial p(x) of degree n, we had to choose n nodes b1 , . . . , bn and compute n weights
a1 , . . . , an so that

−S(x)Π(x) = p(x) , S(x) =

n∑
i=1

ai
x − bi

− 1 , Π(x) =

n∏
i=1

(x − bi ) . (2.2)

We want to generalize the above to matrix polynomials P(x) =
∑n
i=0 Pix

i with Pi ∈ Cm×m .
Several problem will arise:

• For a scalar polynomial requiring the monicity condition is not very restrictive. In fact, if
we are interested in the roots, we can always rescale the polynomial so that pn = 1. The
same holds for matrix polynomials, but only when det Pn 6= 0. In the other cases it is
not possible to transform the matrix polynomial into a monic one. Moreover, also in the
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cases where Pn is invertible but it is not well conditioned it might not be a good idea to
invert it.

• Matrix product is not commutative so some care is needed in stating the above conditions
for matrix polynomials. Due to this we will need to make some strong assumptions on
the matrix polynomials that will take the role of x − bi in the scalar case.

2.2.1 A scalar `-ification

In order to provide our generalization we start by generalizing the linearization for scalar poly-
nomials introduced in Section 1.3. Note that the relations of Equation (2.2) can be rephrased
by setting bi (x) = x − bi , wi = −ai and

p(x) = b(x) +

n∑
i=1

wici (x) , ci (x) =

n∏
j=1
j 6=i

bi (x) , b(x) =

n∏
i=1

bi (x) . (2.3)

In this framework we can rephrase Corollary 1.3.4 by saying that the matrix polynomial

A(x) =

b1 (x) . . .

bn (x)

 +

1...
1

 [w1 . . . wn
]
=: D(x) + ewt

is a linearization for p(x). One might ask if for different choices of bi (x) 6= (x− bi ), provided
that relation (2.3) still holds, the matrix polynomial A(x) is still a linearization for p(x).

We have the following

Theorem 2.2.1. Let b1 (x) , . . . , bq (x) be pairwise coprime polynomials and w1 (x) , . . . , wq (x)
be such that the polynomial p(x) is equal to

p(x) = b(x) +

q∑
i=1

wi (x)ci (x) , ci (x) =

q∏
j=1
j 6=i

bi (x) , b(x) =

q∏
i=1

bi (x) .

Then the matrix polynomial A(x) defined by

A(x) := D(x) + ewt (x) =

b1 (x) . . .

bq (x)

 +

1...
1

 [w1 (x) . . . wq (x)
]

is a an `-ification for p(x) with degree ` = maxi=1 ,... ,q max(deg bi (x) , deg wi (x)).

Proof. We do not give a complete proof of this result, since this is a special case of Theorem 2.2.5.
Nevertheless, we show that it is immediate to prove that det A(x) = p(x). In fact, by applying
the formula for the determinant of a rank 1 update to a matrix yields

det A(x) = detD(x)(1 + wt (x)D(x)−1e) =

q∏
i=1

bi (x) · (1 +
q∑
i=1

wi (x)

bi (x)
) = p(x)

for every x that is not a root of b(x). Since the equality holds for an infinite number of values
of x and the determinant is a polynomial, we have the thesis.
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2.2.2 An `-ification for matrix polynomials

Our aim here is to generalize the construction of Theorem 2.2.1 to matrix polynomials. In
the following we will consider, as usual, a regular matrix polynomial P(x) =

∑n
i=0 Pix

i ,
not necessarily monic. In particular, we allow det Pn = 0, so that infinity eigenvalues might
appear.

For this construction we require some basic results and definitions that are presented here.

Definition 2.2.2. Let P(x), Q(x) two matrix polynomials. We say that P(x) and Q(x) are left
coprime if there exist two matrix polynomials α(x) and β(x) such that

P(x)α(x) + Q(x)β(x) = I .

The above definition coincides with the more usual one of asking that for any matrix poly-
nomial D(x) of degree at least one D−1 (x)P(x) and D−1 (x)Q(x) cannot be both polynomi-
als, that is, P(x) and Q(x) do not share any left factor.

Lemma 2.2.3. Let B1 (x) , B2 (x) ∈ Cm×m [x] be regular and such that B1 (x)B2 (x) = B2 (x)B1 (x).
Assume that B1 (x) and B2 (x) are left coprime, that is, there exist α(x) , β(x) ∈ Cm×m [x]

such that B1 (x)α(x) + B2 (x)β(x) = Im . Then the 2 × 2 block-matrix polynomial F(x) =[
α(x) B2(x)
−β(x) B1(x)

]
is unimodular.

Proof. From the decomposition[
Im 0

B1 (x) −B2 (x)

] [
α(x) B2 (x)

−β(x) B1 (x)

]
=

[
α(x) B2 (x)

Im 0

]
we have − det B2 (x) det F(x) = − det B2 (x). Since B2 (x) is regular then det F(x) = 1.

Lemma 2.2.4. Let P(x) ,Q(x) and T (x) be matrix polynomials such that P(x) and Q(x) are both
left coprime with T (x) and P(x)T (x) = T (x)P(x). Then P(x)Q(x) and T (x) are also left coprime.

Proof. We know that there exist αP (x) , βP (x) , αQ (x) , βQ (x), matrix polynomials such that

P(x)αP (x) + T (x)βP (x) = I , Q(x)αQ (x) + T (x)βQ (x) = I .

We shall prove that there exist appropriate α(x) , β(x) matrix polynomials such that P(x)Q(x)α(x) +

T (x)β(x) = I. We have

P(x)Q(x)(αQ (x)αP (x)) + T (x)(P(x)βQ (x)αP (x) + βP (x)) =

P(x)(Q(x)αQ (x) + T (x)βQ (x))αP (x) + T (x)βP (x) =

P(x)αP (x) + T (x)βP (x) = I ,

where the first equality holds since T (x)P(x) = P(x)T (x). So we can conclude that also
P(x)Q(x) and T (x) are left coprime, and a possible choice for α(x) and β(x) is:

α(x) = αQ (x)αP (x) , β(x) = P(x)βQ (x)αP (x) + βP (x) .

With the above tools and results we can state the generalization of theorem 2.2.1:
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Theorem 2.2.5. Let B1 (x) , . . . , Bq (x) be regular, pairwise left-coprime matrix polynomials such
that Bi (x)Bj (x) = Bj (x)Bi (x) and W1 (x) , . . . ,Wq (x) so that the matrix polynomial P(x) can
be decomposed as

P(x) = B(x) +

q∑
i=1

Wi (x)Ci (x) , Ci (x) =

q∏
j=1
j 6=i

Bi (x) , B(x) =

q∏
i=1

Bi (x) .

Then the matrix polynomial A(x) defined by

A(x) := D(x) + (e ⊗ Im )W (x) =

B1 (x) . . .

Bq (x)

 +

Im...
Im

 [W1 (x) . . . Wq (x)
]

is a an `-ification for P(x) with degree ` = maxi=1 ,... ,q max(deg Bi (x) , degWi (x)).

Proof. Recall that, in view of Definition 2.1.16, we need to prove that A(x) ^ P(x), i.e., that
there exists two unimodular matrix polynomials E(x) and F(x) such that E(x)A(x)F(x) =

diag(I , P(x)). We do this by providing an explicit construction for E(x) and F(x).
Let E0 be the following matrix:

E0 =


Im −Im

Im −Im
. . .

. . .

Im −Im
Im

 .

A direct inspection shows that

E0A(x) =


B1 (x) −B2 (x)

B2 (x) −B3 (x)
. . .

. . .

Bq−1 (x) −Bq (x)

W1 (x) W2 (x) · · · Wq−1 (x) Bq (x) +Wq (x)

 .

Using the fact that the polynomials Bi (x) are left co-prime, we transform the latter matrix into
block diagonal form. We start by annihilating B1 (x). Since B1 (x) , B2 (x) are left co-prime,
there exist matrix polynomials α(x), β(x) such that B1 (x)α(x) + B2 (x)β(x) = Im . For the
sake of brevity, from now on we write α , β, Wi and Bi in place of α(x) , β(x), Wi (x) and
Bi (x), respectively, dropping the variable x. Observe that the matrix

F1 (x) =

[
α B2
−β B1

]
⊕ Im(q−2) .

is unimodular in view of Lemma 2.2.3 and

E0A(x)F1 (x) =


Im

−B2β B1B2 −B3
. . .

. . .

Bq−1 −Bq
W1α −W2β W1B2 +W2B1 · · · Wm−1 Bq +Wq

 .
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Using row operations we set to zero all the elements in the first column of this matrix (by just
adding multiples of the first row to the others). That is, there exists a suitable unimodular
matrix E1 (x) such that

E1 (x)E0A(x)F1 (x) =


Im

B1B2 −B3
. . .

. . .

Bq−1 −Bq
W2B1 +W1B2 · · · Wq−1 Bq +Wq

 .

In view of Lemma 2.2.4, B1B2 is left coprime with B3 . Thus, we can recursively apply the
same process until we arrive at the final reduction step:

Eq−1 (x) . . . E1 (x)E0A(x)F1 (x) . . . Fq−1 (x) = Im(q−1) ⊕

(
q∏
i=1

Bi (x) +

q∑
i=1

Wi (x)Ci (x)

)

where the last diagonal block is exactly P(x) in view of the hypothesis of the Theorem.

Theorem 2.2.5 provides a framework to build linearizations for matrix polynomials. How-
ever, several questions might arise from its formulation:

• Is the constructed `-ification strong in the sense of Definition 2.1.16?

• How do we find the Bi (x) and the Wi (x) for the decomposition given in the hypothesis
of Theorem 2.2.5?

The next two subsections will be devoted to answer these questions.

2.2.3 Building a strong `-ification

In this section we prove that under suitable (relatively mild) conditions, the `-ification built
with Theorem 2.2.5 is strong.

We see that as soon as the basic requirements for being a strong `-ifications, that is the
invariants provided in [35], are satisfied, then the `-ification is strong.

More precisely, we have the following.

Theorem 2.2.6. Assume that the hypothesis of Theorem 2.2.5 are satisfied and that the following con-
ditions hold:

(i) All the matrix polynomials Bi (x) have the same degree d and n = dq.

(ii) For every i = 1 , . . . , q we have degWi (x) < deg Bi (x).

(iii) The matrix polynomials Bi# (x) are pairwise left coprime.

Then the `-ification A(x) of the matrix polynomial P(x) is a strong `-ification.
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Proof. Recall that, in order to prove the strength of our `-ification, we need to ensure that
A# (x) is extended unimodularly equivalent to P# (x), that is, A# (x) ^ P# (x). Note that,
since deg A(x) = d we have A# (x) = xdA(x−1 ) and so

A# (x) =

B
#
1 (x)

. . .

B#
q (x)

 + (e ⊗ Im )
[
xdW1 (x

−1 ) . . . xdWq (x
−1 )

]
.

Since we have assumed that the matrix polynomials B#
i (x) are pairwise left coprime the above

matrix polynomial satisfies the hypothesis of Theorem 2.2.5 and so we have

A# (x) ^

q∏
i=1

B#
i (x) +

q∑
i=1

xdWi (x
−1 )

∏
j 6=i

B#
j (x) .

Replacing B#
i (x) with xdB(x−1 ) yields the following

A# (x) ^ xdq
q∏
i=1

(
Bi (x

−1 ) +

q∑
i=1

Wi (x
−1 )Ci (x

−1 )

)
= xdqP(x−1 ) = P# (x)

that gives us the thesis.

2.2.4 Some practical choices of the nodes

The generality of Theorem 2.2.5 makes it difficult to figure out how these nodes Bi (x) should
be chosen. In fact, we are given some freedom for this. In this section we present a set of prac-
tical choices that are (almost) always applicable and that try to mimic the secular linearization
for scalar polynomials presented in Section 1.3.

In that context we chose the (scalar polynomial) bi (x) = x − bi . where bi are not roots of
the polynomial. Here we propose a similar pattern. Let Bi (x) = bi (x)Im where bi (x) is a
scalar polynomial. Then we have the following

Theorem 2.2.7. Let {bi (x) | i = 1 , . . . , q} be a set of monic pairwise coprime scalar polyno-
mials and Bi (x) := bi (x)Im . Then, for every monic matrix polynomial P(x) of degree n :=∑q
i=1 deg bi (x) there exist Wi (x) for i = 1 , . . . , q so that degWi (x) < deg Bi (x) and

P(x) = B(x) +

q∑
i=1

Wi (x)Ci (x)

where B(x) and Ci (x) are defined as in Theorem 2.2.5.

Proof. We can see the Theorem as an interpolation problem. In fact, since both the Bi (x)
and P(x) are monic, we have P(x) − B(x) is a polynomial of degree (at most) n − 1. Then,
recalling that the Ci (x) are multiple of the identity we have that, entry-wise,

(P(x) − B(x))s ,k =

q∑
i=1

Wi (x)s ,kci (x) .

The above shows that Wi (x)s ,k , the polynomial in position (s , k) of Wi (x) depends only on
the other polynomials in position (s , k) of Wj (x) with j 6= i. This implies that the problem
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is completely decoupled and we can simply prove that there exist scalar polynomials wi (x)
such that

q(x) =

q∑
i=1

wi (x)ci (x)

for every q(x) of degree at most n − 1. Recalling that the bi (x) are relatively prime the above
implies that

q(x) mod bi (x) ≡

 q∑
j=1

wj (x)cj (x)

 mod bi (x) ≡ wi (x)ci (x) mod bi (x) .

Since ci (x) is invertible modulo bi (x) we can write

q(x)ci (x)
−1 mod bi (x) = wi (x) mod bi (x)

so that we can choose wi (x) as the remainder of the division by bi (x) of q(x) times the in-
verse of ci (x) modulo bi (x). This yields a polynomial wi (x) of degree at most deg bi (x) − 1
so that

∑q
i=1 wi (x)ci (x) has degree at most n − 1. Moreover, we have that for every root

ξj of bi (x) q(ξj ) = wi (ξj )ci (ξj ) so q(x) and
∑q
i=1 wi (x)ci (x) coincide in at least n

points, thus they are equal. Choosing q(x) := (P(x) − B(x))s ,k and setting Wi (x)s ,k as the
computed wi (x) gives us the thesis.

Remark 2.2.8. Theorem 2.2.7 provides a practical way to compute the `-ification by means of
computations on scalar polynomials. These can be carried out in an efficient way as shown in
the next subsection 2.2.7. In the case where the bi (x) are of degree 1 of the form bi (x) =

x − bi the projection modulo bi (x) is simply an evaluation at the point bi and so we have
the following formula for the computation of Wi (that are now constants, since degWi (x) <

deg bi (x) = 1):

Wi = P(bi )ci (bi )
−1 =

P(bi )∏
j 6=i (bi − bj )

that can be efficiently evaluated using the Horner rule if the polynomial P(x) is given in the
monomial basis.

In the next theorem we discuss another choice of nodes Bi (x) that can be seen as a gener-
alization of the one of Theorem 2.2.7.

Theorem 2.2.9. Let Bi (x) be a set of monic diagonal matrix polynomials for i = 1 , . . . , q such that
for every j = 1 , . . . , n the scalar polynomials {Bi (x)j ,j | i = 1 , . . . , q} are pairwise prime. Then,
for every monic matrix polynomial P(x) of degree n :=

∑q
i=1 deg Bi (x) there exist Wi (x) for

i = 1 , . . . , q so that degWi (x) < deg Bi (x) and

P(x) = B(x) +

q∑
i=1

Wi (x)Ci (x)

where B(x) and Ci (x) are defined as in Theorem 2.2.5.

Proof. It is immediate to verify that the condition on the coprimality of the diagonal polynomi-
als yields the left (and right) coprimality of the Bi (x), so that Theorem 2.2.5 can be applied.
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Moreover, we can mimic the proof of Theorem 2.2.7 and write

(P(x) − B(x)) =

q∑
i=1

Wi (x)Ci (x) .

Since the Ci (x) are diagonal we have that for every (s , k)

(P(x) − B(x)) =

q∑
i=1

Wi (x)s ,k
∏
j 6=i

Bi (x)k ,k

This is the same kind of equation found in the proof of Theorem 2.2.7 and its solvability is
guaranteed by the primality conditions that we have imposed and the fact that P(x) − B(x)
has degree at most n − 1.

Remark 2.2.10. Note that, in general, the `-ifications provided by Theorem 2.2.5 will be dense
matrix polynomials. Nevertheless, it is possible to apply another unimodular (actually con-
stant) transformation in order to make them sparse. Sparsity is often a desirable feature since
it might make it easy to exploit the structure in evaluations and computations. Note that, if
we choose

E =


Im
−Im Im

. . .
. . .

−Im Im


we have that E · A(x) is the sum of a bidiagonal matrix polynomial and a matrix polynomial
with only the first block row different from 0:

E · A(x) =



B1 (x) +W1 (x) W2 (x) . . . Wq−1 (x) Wq (x)

−B1 (x) B2 (x)

−B2 (x)
. . .

. . . Bq−1 (x)

−Bq−1 (x) Bq (x)

 .

Since det E = 1 and E is a constant matrix we have A(x) � E · A(x).

It is worth stressing that it is not necessary to transform the matrix polynomial to a sparse
form in order to exploit its structure. The diagonal plus low rank structure of A(x) is a
particular kind of quasiseparable structure that is the topic of Chapter 3. In that chapter we
show how to perform the typical operations that are needed to solve eigenvalue problems
(such Hessenberg reduction and Hessenberg triangular reduction) efficiently on these kinds of
matrices.

2.2.5 Handling non-monic polynomials

In the previous subsection we have shown practical choices of Bi (x) that allows to build `-
ifications for monic matrix polynomials. It is clear that, since the Bi (x) that we have proposed
are monic so is also the product B(x) and given our degree constraints it is impossible to find
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Wi (x) so that P(x) = B(x) +
∑q
i=1Wi (x)Ci (x) if P(x) is not monic. Here we provide

an easy generalization of the previous approach that works for general (even with singular
leading coefficient) matrix polynomials.

Let P(x) =
∑n
i=0 Pix

i be a regular matrix polynomial, not necessarily monic, bi (x)
for i = 1 , . . . , q a set of scalar polynomials and s a parameter. Assume that the following
conditions hold:

• The polynomials bi (x) are pairwise coprime.

• For every λ eigenvalue of P(x) and for every root ξ of bi (x), i < q we have that
λbq (ξ) + s 6= 0.

• The degree of bi (x) is di and
∑q
i=1 di = n = deg P(x).

Then we can choose Bi (x) to be

Bi (x) =

{
bi (x)Im if i < q
bq (x)Pn + sIm otherwise

. (2.4)

We give here a technical Lemma that will be used to obtain the existence of the Wi (x):

Lemma 2.2.11. Let bi (x), i = 1 , . . . , q be co-prime scalar polynomials of degree d1 , . . . , dq ,
respectively, such that

∑q
i=1 di = n. If P1 (x), P2 (x) are matrix polynomials of degree at most

n − 1 then P1 (x) = P2 (x) if and only if P1 (x) − P2 (x) ≡ 0 mod bi (x), for i = 1 , . . . , q.

Proof. The implication P1 (x) − P2 (x) = 0 ⇒ P1 (x) − P2 (x) ≡ 0 mod bi (x) is trivial. Con-
versely, if P1 (x) − P2 (x) ≡ 0 mod bi (x) for every bi then the entries of P1 (x) − P2 (x) are
multiples of

∏q
i=1 bi (x) for the co-primality of the polynomials bi (x). But this implies that

P1 (x) − P2 (x) = 0 since the degree of P1 (x) − P2 (x) is at most n − 1 while
∏q
i=1 bi (x)

has degree n.

We can now state the following.

Theorem 2.2.12. Let Bi (x) be matrix polynomials chosen as in Equation (2.4) for a matrix polynomial
P(x). Then there exist Wi (x) matrix polynomials, for i = 1 , . . . , q, such that

P(x) = B(x) +

q∑
i=1

Wi (x)Ci (x)

where B(x) and Ci (x) are defined according to the notation of Theorem 2.2.5. Moreover, the formula
for the computation of the Wi (x) can be given explicitly and is the one here reported in Equation (2.5).

Proof. We have, by construction, that deg(P(x) − B(x)) < n. If we restrict to choose Wi (x)

with degWi (x) < di then the equality

P(x) − B(x) =

q∑
i=1

Wi (x)Ci (x)

holds if and only if it holds modulo bi (x) for i = 1 , . . . , q in view of Lemma 2.2.11. Projecting
the equation leads to the following formulas for the computation of Wi (x):

Wi (x) =


P(x)∏q−1

j=1 , j 6=i bj(x)
(bq (x)Pn + sIm )−1 mod bi (x) if i < q

1∏q−1
j=1 bj(x)

P(x) − sIm − s
∑q−1
j=1

Wj(x)

bj(x)
mod bq (x) otherwise

(2.5)
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Notice that the hypothesis on λbq (ξ) + s 6= 0 guarantees the invertibility of bq (x)Pn + sIm
modulo bi (x), so that the above formulas are well-defined.

An important feature of Theorem 2.2.12 is that, under mild hypothesis, the `-ification ob-
tained following the procedure is strong.

Theorem 2.2.13. Let A(x) be the secular `-ification for a polynomial P(x) built according the hypoth-
esis of Theorem 2.2.12. Assume that the degrees di are all equal to d and dq = n and that the shift
s is chosen so that λb#

q (
1
ξ ) + sξ

−q 6= 0 for every ξ root of bi (x), i < q. Then A(x) is a strong
`-ification for P(x).

Proof. According to Theorem 2.2.6 we only need to check that the reversal of the matrix poly-
nomials Bi (x) are pairwise coprime. This is trivial for the reversals of Bi (x) and Bj (x) for
i 6= j and i , j < q.

It remains to show that this holds for B#
i (x) and B#

q (x), i < q. We have B#
i (x) = b#

i (x)Im
and B#

q (x) = sxq I + b#
q (x)Pn . If V is a Jordan basis for Pn we can write

V−1B#
q (x)V =


b#
q (x)Jλ1 + sx

q I
. . .

b#
q (x)Jλk + sxq I

sxq I


In particular, for every root ξ of bi (x) with i < q the matrix V−1B#

q (
1
ξ )V is invertible, and

so B#
i (x) and B#

q (x) are left coprime. This concludes the proof.

2.2.6 Characterization of right and left eigenvectors

Usually, when solving polynomial eigenvalues problems, one is not only interested in the
eigenvalues of P(x), but also in the eigenvectors. As we have already shown in Theorem 2.1.15

the eigenvalues of P(x) and of one of its linearizations (or `-ifications) are the same. The
eigenvectors, instead, are connected with a relation involving E(λ) and F(λ), the unimodular
matrices defining the equivalence. Usually the explicit expression of E(x) and F(x) is not
available or it is not easy to handle, so an explicit characterization of the eigenvectors of the
`-ification in terms of the ones of P(x) (and the other way round) is desirable.

Providing this characterization is precisely the aim of this subsection. We suppose that
A(x) is an `-ification provided by Theorem 2.2.5, a so-called secular `-ification.

Theorem 2.2.14. Let P(x) be a matrix polynomial, A(x) its secular `-ification defined in Theorem
2.2.5, λ ∈ C such that det P(λ) = 0, and assume that det Bi (λ) 6= 0 for all i = 1 , . . . , q.
If vA = (vt1 , . . . , vtq )t ∈ Cmq is such that A(λ)vA = 0, vA 6= 0 then P(λ)v = 0 where
v = −

∏q
i=1 Bi (λ)

−1
∑q
j=1Wjvj 6= 0. Conversely, if v ∈ Cm is a nonzero vector such that

P(λ)v = 0, then the vector vA defined by vi =
∏
j 6=i Bj (λ)v, i = 1 , . . . , q is nonzero and such

that A(λ)vA = 0.

Proof. Let vA 6= 0 be such that A(λ)vA = 0, so that

Bi (λ)vi +

q∑
j=1

Wj (λ)vj = 0 , i = 1 , . . . , q . (2.6)



50 polynomial eigenvalue problems

Let v = −(
∏q
i=1 Bi (λ)

−1 )
∑q
j=1Wj (λ)vj . Combining the latter equation and (2.6) yields

vi = −Bi (λ)
−1

 q∑
j=1

Wj (λ)vj

 =

q∏
j=1 , j 6=i

Bj (λ)v . (2.7)

Observe that if v = 0 then, by definition of v, one has
∑q
j=1Wj (λ)vj = 0 so that, in view of

(2.6), we find that Bi (λ)vi = 0. Since det Bi (λ) 6= 0 this would imply that vi = 0 for any i
so that vA = 0 which contradicts the assumptions. Now we prove that P(λ)v = 0. In view of
(2.7) we have

P(λ)v =

q∏
j=1

Bj (λ)v +

q∑
i=1

Wi (λ)

q∏
j=1 , j 6=i

Bj (λ)v =

q∏
j=1

Bj (λ)v +

q∑
i=1

Wi (λ)vi .

Moreover, by definition of v we get

P(λ)v = −

q∏
j=1

Bj (λ)(

q∏
i=1

Bi (λ)
−1 )

q∑
i=1

Wi (λ)vi +

q∑
i=1

Wi (λ)vi = 0 .

Similarly, we can prove the opposite implication.

A similar result can be proven for left eigenvectors. The following theorem relates left
eigenvectors of A(x) and left eigenvectors of P(x).

Theorem 2.2.15. Let P(x) be a matrix polynomial, A(x) its secular `-ification defined in Theorem
2.2.5, λ ∈ C such that det P(λ) = 0, and assume that det Bi (λ) 6= 0. If utA = (ut1 , . . . , utq ) ∈
Cmq is such that utAA(λ) = 0, uA 6= 0, then utP(λ) = 0 where u =

∑q
i=1 ui 6= 0. Conversely,

if utP(λ) = 0 for a nonzero vector u ∈ Cm then utAA(λ) = 0, where uA is a nonzero vector defined
by uti = −utWi (λ)Bi (λ)

−1 for i = 1 , . . . , q.

Proof. If utAA(λ) = 0 then from the expression of A(x) given in Theorem 2.2.5 we have

utiBi (λ) +

 q∑
j=1

utj

Wi (λ) = 0 , i = 1 , . . . , q . (2.8)

Assume that u =
∑q
j=1 uj = 0. Then from the above expression we obtain, for any i,

utiBi (λ) = 0 that is ui = 0 for any i since det Bi (λ) 6= 0. This is in contradiction with
uA 6= 0. From (2.8) we obtain uti = −utWi (λ)Bi (λ)

−1 . Moreover, multiplying (2.8) to the
right by

∏q
j=1 , j 6=i Bj yields

0 = uti

q∏
j=1

Bj (λ) + u
tWi (λ)

q∏
j=1 , j 6=i

Bj (λ) .

Taking the sum of the above expression for i = 1 , . . . , q yields

0 =

(
q∑
i=1

uti

)
q∏
j=1

Bj (λ) + u
t
q∑
i=1

Wi (λ)

q∏
j=1 , j 6=i

Bj (λ) = utP(λ) .
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Conversely, assuming that utP(λ) = 0, from the representation

P(x) =

n∏
j=1

Bj (x) +

q∑
i=1

Wi (x)

q∏
j=1 , j 6=i

Bi (x) ,

defining uti = −utWi (λ)Bi (λ)
−1 we obtain

q∑
i=1

uti = −ut
q∑
i=1

Wi (λ)Bi (λ)
−1 = −ut (P(λ)

q∏
j=1

Bj (λ)
−1 − I) = ut

and therefore from (2.8) we deduce that utAA(λ) = 0.

The above results do not cover the case where det Bi (λ) = 0 for some i.

2.2.7 Computations in polynomial rings

As explained in Theorem 2.2.7 and Theorem 2.2.9 in order to compute a secular `-ification
it is necessary to perform operations on polynomials. Whilst for choices such as Bi (x) =

(x − bi )Im the operations turn out to be equivalent to evaluations and so they can be carried
out efficiently by means of the Horner rule, other cases with higher degree Bi (x) need to be
handled differently.

In the particular case that we have analyzed we have chosen the Bi (x) to be diagonal.
This leads to a complete decoupling of the equation for the determination of the Wi (x), and
so the problem can be reduced to a scalar one. In this case, one just needs to solve the
problem of computing the inverse of a scalar polynomial modulo another one, that is, given
two polynomials s(x) and u(x) we need to find t(x) such that t(x)s(x) = 1 mod u(x). In
the following we suppose that deg s(x) , deg t(x) < deg u(x). This is not restrictive since
these two polynomials are only defined uniquely in the quotient ring F[x]/(u(x)) and so they
can always be replaced with the remainder of the division by u(x). We propose the following
interpolating strategy for the computation of the coefficients of t(x):

• We evaluate s(x) at n points in the complex plane, where n = deg u(x). These points
are chosen to be the roots of u(x).

• We compute the inverses of the evaluations of s(x). These must be equal to the evalua-
tions of t(x) since there must exist a polynomial v(x) such that s(x)t(x) + u(x)v(x) =
1 and so evaluating in a root of u(x) gives us s(ξ)t(ξ) = 1.

• We recover the coefficients of t(x) by interpolation on these nodes. Note that the inter-
polation points are enough for the task since deg t(x) < n.

Remark 2.2.16. If the scalar polynomials have high degree some issues might arise due to
bad conditioning of the interpolation problem. In these cases it might be a good idea to
choose the nodes Bi (x) (when they are a scalar polynomial times the identity matrix) so that
their eigenvalues are near to the roots of the unity (properly scaled). This will lead to an
interpolation problem near to a discrete Fourier transform, thus removing any problem of
numerical conditioning. Note that, if bi (x) = xd − 1 then the algorithm for FFT can be used
for the computation of the Wi (x), making the cost of the computation of O(m2d log d) flops.
Moreover, this approach can be easily generalized to the case of bi (x) = xd − α for α 6= 1.
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The general case, where the polynomials Bi (x) are not diagonal, could be more involved,
since the problem cannot be reduced to a scalar one.

In general, we have to solve the equation

P(x) − B(x) =

q∑
i=1

Wi (x)Ci (x) .

where the coefficients of the Wi (x) are the unknowns.

2.2.8 Correlation with the Frobenius linearization

In this section we show that, in a certain sense, our secular `-ification is a generalization of the
classical Frobenius linearization. We show that, for an appropriate choice of the nodes Bi (x),
we obtain a linearization that is unitarily similar to the standard Frobenius forms. In particular,
the conditioning of the eigenvalue problem is the same. One might wonder if “smarter” choice
of nodes could lead to better conditioned eigenvalue problems. This is in fact the case, and is
the topic of the next Section 2.3.

Let P(x) =
∑n
i=0 Pix

i be a monic m × m matrix polynomial of degree n and ζn a
primitive n-th root of the unity. Consider the choice Bi (x) = (x − ζin )Im that leads to the
choice of Wi according to Remark 2.2.8

Wi = P(ζin ) ·
∏
j 6=i

1

ζin − ζjn
.

We can observe that if we define q(x) = xn − 1 then q(x) =
∏n
j=1 (x − ζ

j
n ) so that∏

j 6=i (ζ
i
n − ζjn ) = q ′ (ζin ) = nζ−in .

Consider now Ωn the unitary Fourier matrix defined by (Ωn )i ,j =
ζ
ij
n√
n

. We have Ω∗Ω =

I and

(Ω∗ ⊗ Im )


B1 (x) . . .

Bn (x)

 +

Im...
Im

 [W1 . . . Wn
] (Ωn ⊗ Im ) = F(x)

where

F(x) = xIm − C ⊗ Im +


P0 + Im
P1
...

Pn−1

 (etn ⊗ Im ) = xIm −


0 −P0

Im
...

. . .
...

Im −Pn−1


is (one of) the classical Frobenius linearizations. Since Ωn is unitary it does not alter the
conditioning of the eigenvalue problem, and so the `-ification, which in this particular case is
a linearization, is neither worse nor better than the usual choice (regarding the conditioning).

2.3 the use of tropical roots for peps

The aim of this section is to generalize the results that we have given for scalar polynomials in
Section 1.4 to the case of matrix polynomials.
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We want to answer the following question: given a matrix polynomial P(x) =
∑n
i=0 Pix

i

is it possible to derive simple and cheap bounds on its eigenvalues using tropical algebra? We
review the main results of [19, 77, 82], where this problem is analyzed.

We have the following result reported in Theorem 2.1 of [19]:

Theorem 2.3.1 (Pellet). P(x) =
∑n
i=0 Pix

i ∈ Cm×m [x] be a regular matrix polynomial. Then,
for every k such that det Pk 6= 0 we have

• If 0 < k < n and Pk is invertible then the scalar polynomial equation

qk (x) = xk −

n∑
i=1
i 6=k

‖P−1
k Pi‖xi = 0

has either zero or two positive real solutions rlk 6 ruk .

• In the latter case, the annulus {z ∈ C | rlk < |z | < ruk } contains no eigenvalues of P(x).
Moreover, the disc of center 0 and radius rlk contains mk eigenvalues of P(x).

• If k = 0 then the equation has only one positive real solution ru0 and the matrix polynomial has
no eigenvalues of modulus smaller than ru0 .

• If k = n then the equation has only one positive real solution rln and the matrix polynomial has
no eigenvalues bigger than rln in modulus.

Note that the above theorem gives bounds for the locations of the eigenvalues that are very
similar to the bounds obtained for the root of the polynomials given by Corollary 1.4.9. In fact,
we can state a similar result also in this case.

Corollary 2.3.2. Let rlki and ruki be the roots of the polynomial equation of Theorem 2.3.1 for the
values of ki where they have at least one positive real root. We set rl0 = 0 and run = ∞. Then the
annuli

Aki := {ruki 6 |z | 6 rlki+1 } ⊆ C

contain exactly m(ki+1 − ki ) eigenvalues of P(x).

Proof. It is possible to show that ruki 6 rlki+1 (see [19] for the complete proof). Then looking
at the complementaries of the annuli defined in Theorem 2.3.1 gives us the thesis.

As in the scalar case we can use the Newton polygon and the tropical roots to compute
some radii inside these annuli. We have the following result, proven in [19].

Theorem 2.3.3. Let P(x) be a matrix polynomial of degree n with coefficients of order m × m. If ki
is an index such that the Pellet polynomial of Theorem 2.3.1 has two positive real roots rlki 6 ruki then
uki 6 rlki 6 ruki 6 vki where

uki := max
j<ki

‖P−1
ki
Pj‖

1
ki−j , vki := min

j<ki
‖P−1
ki
Pj‖

1
ki−j .

Moreover, the same holds for the only available lower (resp. upper) bound whenever P0 (resp. Pn)
is invertible. In particular we have that the following relation holds in every case in which they are
computable:

ru0 6 v0 := min
j>0
‖P−1
0 Pj‖−

1
j , rln > u0 := max

j<n
‖P−1
n Pj‖

1
n−j .
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Remark 2.3.4. In this formulation the connection with tropical roots might not be apparent
at first sight. However, if we take the logarithm of the values uki and vki we note that the
maximums are taken on the slopes of the Newton polygon and so these values are tropical
roots of the tropical polynomial

tpki (x) :=

n⊕
i=0

log‖P−1
ki
Pi‖ .

A noteworthy difference with the scalar case is that here we are considering n different tropical
polynomials and we only take a pair of roots from each of them. This is related to the fact that,
in the generic matrix case, ‖A‖−1 6= ‖A‖−1 and ‖AB‖ 6= ‖A‖‖B‖.

The above remark shows that considering the usual tropical polynomial

tp(x) :=

n⊕
i=0

log‖Pi‖x⊗i (2.9)

might not be possible in the matrix polynomial case. However, when the coefficients of the
polynomials are well-conditioned this formulation can be used again. Theorem 2.7 of [82]
justifies this claim by providing bounds to the annuli that contain the roots in this case. The
theorem is rather technical and making the bounds explicit requires some work, so we refer to
the original paper for the details.

The theory of Pellet bounds to the eigenvalues of matrix polynomials have received also
other recent contributions such as the work by Melman [77, 78]. In particular, Theorem 3.3
of [77] provides an alternative formulation to the one that we have given in Theorem 2.3.1 by
defining a replacement for qk (x) by

q̃k (x) = ‖P−1
k ‖

−1xk −
∑
j 6=k
‖Pj‖xj .

The roots of these polynomials provide alternative r̃lk 6 r̃uk . Moreover, in the proof of the
Pellet bound we are interested in identifying the regions with no eigenvalues, that are identi-
fied by complex numbers with modulus contained in the real interval where qk (x) > 0. Since
‖P−1
k Pj‖ 6 ‖P−1

k ‖‖Pj‖ it is immediate that ‖P−1
k ‖q̃k (x) 6 qk (x), so that {x ∈ R | q̃k (x) >

0} ⊆ {x ∈ R | qk (x) > 0}. In particular, the bounds obtained from Theorem 2.3.1 are stricter
than the one of [77]. However, the q̃k (x) are cheaper to compute (since they require O(n)

norms instead of O(n2 )) and so they can be a good compromise.
In [82] the authors analyze the three strategies that we have presented (Theorem 2.3.1,

Theorem 3.3 of [77] and their own strategy based on the polynomial tp(x) of Equation (2.9))
and prove that the bounds obtained from the tropical polynomial of Equation (2.9) are looser
than the one of Melman in [77].

Concluding, we have provided three different bounds for the location of the eigenvalues.
The bounds are of decreasing quality but also of decreasing cost for their computation, which
justify their use in practice.

As we show in Section 2.4 the tropical roots of [82] are already “good enough” for most
cases. However, in that context we show also a case (the orr_sommerfeld problem) in which
using Pellet’s Theorem is more effective, and where the tropical roots only provide a partial
picture of the eigenvalue distribution.
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Remark 2.3.5. In the scalar polynomial case we excluded the possibility of explicitly computing
the roots of the polynomial sk (x) of Lemma 1.4.8 that are the analogous of the qk (x) in the
matrix case. In fact, it would not have been wise to solve n polynomials just to get some good
approximations for the roots of another one (even if we only need the positive real roots of the
first n polynomials, so we might use some ad-hoc technique such as bisection plus refinement).

In the matrix polynomial case, instead, this technique might be worth using since the cost
of the solution of a polynomial eigenvalue problem of degree n in Cm×m [x] is expected to
be at least O(n2m3 ) (see Remark 2.1.1). In view of this fact, the cost of the solution of the n
scalar polynomials might be negligible, especially when the degree n is not big compared to
the size of the matrices.

2.4 numerical experiments

Our aim in this section is to provide numerical evidence that what we have proved for the
scalar case holds also in the matrix case. In particular, we have seen that the secular lineariza-
tion constructed for scalar polynomial p(x) is such that if the nodes bi are chosen as good
approximations of the polynomial roots then the conditioning of the eigenvalue problem is
small.

In the matrix case we can make similar choices with the secular `-ification. Here we will an-
alyze the simpler case where ` = 1 and the matrix polynomial is monic. We can immediately
spot a difference with the scalar case: now we have mn eigenvalues (counted with multiplici-
ties and with the infinity ones) and only n nodes to choose, so it is generally impossible to fit
the nodes to the eigenvalues. However, we can obtain a similar result trying to fit the nodes
to the moduli of groups of eigenvalues. To this end, the tropical roots are a very good way
to choose the nodes, since they are suitable to detect cluster of eigenvalues of similar moduli
[19, 59].

We report some examples taken from [21]. We first show some random polynomials with
coefficients with unbalanced norms (some very large, and some very small). These are good
examples in our setting since tropical roots work very well in detecting the moduli of different
blocks of eigenvalues that often appear in these cases.

Then, we show some real world example (or at least more realistic) taken from the NLEVP
collection [8, 9, 10]. We analyze the Orr-Sommerfeld problem and the planar waveguide one,
since they are degree 4 PEPs. This allows us to obtain more information from tropical roots (4
tropical roots) with respect to lower degree polynomials.

All the experiments have been run in MATLAB R2011b (7.13.0.564) on a Linux PC.

2.4.1 Measuring the conditioning of the eigenvalue problem

In order to judge the quality of our results we need to evaluate the conditioning of the eigenval-
ues of the linearizations that we have built. We have used the MATLAB function condeig for
this. This function measures the conditioning of each eigenvalue by the well-known formula

κi =
‖vi‖‖wi‖
〈vi , wi 〉

. (2.10)

where vi and wi are the right and left eigenvectors relative to the eigenvalues λi , respectively
[91].
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2.4.2 A first example: polynomials with unbalanced norms

We have generated polynomials with unbalanced coefficient norms using the MATLAB code
of Algorithm 4. In the example we have reported a matrix polynomial of degree 5 and size
64 × 64.

Algorithm 4 MATLAB code that generates a random matrix polynomial with unbalanced
coefficient norms.

1 n = 5 ; m = 6 4 ;
2 P = { } ;
3 f o r i = 1 : n
4 P { i } = exp (12 ∗ randn ) ∗ randn (m) ;
5 end
6 P { n+1} = eye (m) ;

We have then applied three different strategies for the computation of a linearization:

(i) We have computed a classical Frobenius linearization placing the block coefficients of the
polynomial in the usual way.

(ii) We have computed a secular linearization using Theorem 2.2.5 by choosing the values bi
as the mean of blocks of 64 eigenvalues of P(x). More precisely, we have ordered the
eigenvalues by modulus and then we have taken the mean of each block vector of size 64.
We have then obtained 5 increasing estimates for the moduli of the eigenvalues of P(x).

(iii) We have used the tropical roots as the nodes bi .

In the last two cases we have sometimes changed the sign of the nodes, so to have some bi
in the positive half plane and some in the negative one. We have done this in order to spread
them as much as possible and trying to be near to the actual eigenvalues.

In Figure 2.2 are reported the conditioning of the eigenvalues of 4 such random problems.
The plots are reported by relating the conditioning (on the y axis) and the moduli of the eigen-
values (on the x axis). Recall that a classical Frobenius linearization is equivalent (regarding
the conditioning) to a secular one with nodes chosen as the roots of the unity. For this reason,
it might be natural to expect it to be very well-conditioned on eigenvalues of moduli around
1, while the secular linearizations might be better on the others. In fact, it can be spotted in
Figure 2.2 on the rightmost pictures that the eigenvalues of moduli 1 are well-conditioned in
all the examples.

It is also interesting to note that the secular linearizations manage to be well-conditioned
on all the clusters of eigenvalues. Moreover, the tropical roots estimates of the moduli are just
as good as the block mean computed a-posteriori. This seems to confirm that they can be used
to obtain good starting approximations for the nodes bi .

2.4.3 Some examples from the NLEVP collection

Here we show some other examples taken from the NLEVP collection that have been analyzed
in [21]. These examples might be more challenging for our framework since, in general, we do
not expect the eigenvalues to come in blocks with similar modulus. However, it can be seen
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Figure 2.2: Conditioning of the eigenvalues of different linearizations for some matrix polyno-
mials with random coefficients having unbalanced norms.

that many problems have eigenvalues on different scales that cause difficulties, and this kind
of implicit scaling provided by the secular linearization coupled with the tropical roots can be
helpful.

As a first example we consider the problem orr_sommerfeld. Using the tropical roots we
can find some values inside the unique annulus that is identified by Theorem 1.4.10. In this
example the values obtained only give a partial picture of the eigenvalue distribution. The
Pellet theorem gives about 1.65e-4 and 5.34 as lower and upper bound to the moduli of
the eigenvalues, but the tropical roots are rather small and near to the lower bound. More
precisely, the tropical roots are 1.4e-3 and 1.7e-4 with multiplicities 3 and 1, respectively.

This leads to a secular linearization that is well-conditioned for the smaller eigenvalues but
with a higher conditioning on the eigenvalues of bigger modulus as can be seen in Figure 2.3
on the left (the eigenvalues are sorted in non-increasing order with respect to their modulus).
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Figure 2.3: On the left we report the conditioning of the Frobenius and of the secular lineariza-
tion with the choices of bi as mean of subsets of eigenvalues with close moduli and as the
estimates given by the tropical roots. On the right the tropical roots are coupled with estimates
given by the Pellet theorem.

It can be seen, though, that coupling the tropical roots with the results from Theorem 1.4.10

and altering the bi by adding a value slightly smaller than the upper bound (in this example
we have chosen 5 but the result is not very sensitive to this choice) leads to a much better
result that is reported in Figure 2.3 on the right. In the right figure we have used the vector
of the nodes bi defined by b = [ 1.7e-4, 1.4e-3, -1.4e-3, 5 ]. In this case coupling the
Pellet theorem is helpful and is in fact a relatively cheap procedure, since it only require the
solution of a scalar polynomial of degree 4 and the computation of some norms. This seems
to justify that there exists a link between the quality of the approximations obtained through
the tropical roots and the conditioning properties of the secular linearization.

We analyzed also the planar_waveguide example problem from the NLEVP collection.
The results are shown in Figure 2.4. This problem is a PEP of degree 4 with two tropical
roots approximately equal to 127 .9 and 1 .24. Again, it can be seen that for the eigenvalues
of smaller modulus (that are near the tropical root 1 .24) the Frobenius linearization and the
secular one behave in the same way, whilst for the bigger ones the secular linearization has
some advantage in the conditioning. This may be justified by the fact that the Frobenius
linearization is similar to a secular linearization on the roots of the unity.

Since in this case the information given by the tropical roots is more accurate, the secular
linearization built without altering them already has good conditioning properties. Moreover,
the results obtained with the tropical roots and with the block mean of the eigenvalues are
approximately the same.

These two examples might suggest that the tropical roots can not be trusted as a “universal
solution”, but it might be worth to couple them with other analysis, such as the bounds
obtained by Theorem 1.4.10. In practice, some hand-tuning of the parameters might be needed
to obtain good linearizations, but automatic tuning seems to work well enough to give an
advantage over the classical Frobenius linearization.
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Figure 2.4: Conditioning of the eigenvalues for three different linearizations on the
planar_waveguide problem.

As a final example, it is natural to wonder if computing the secular linearization in floating
point actually gives any advantage over solving the classical Frobenius form. In fact, even
if the new linearization is better conditioned, the transformation from the polynomial to the
secular linearization might be bad conditioned in general, since the global conditioning of the
problem is an intrinsic feature that we cannot avoid. However, an advantage here is that we
are limiting the effect of the bad conditioning to the computation of A(x) that only requires
the evaluation of P(x) at a point. We know that the Horner scheme to be a stable algorithm,
and it is also very simple to analyze so we can derive precise bounds on the error that we
make.

In particular, the Horner scheme is relatively cheap, since it requires only O(nm2 ) flops
and we need to carry out O(n) evaluations. For this reason the cost of computing A(x)

is O(n2m2 ) flops and we can possibly use multiprecision for this step to overcome these
difficulties (assuming that the coefficients are know precisely).

We report a last example, where we have tried to find the eigenvalues of a matrix polyno-
mial defined by integer coefficients using only standard floating point arithmetic and by using
polyeig, the Frobenius and our secular linearization (using the tropical roots as bi) coupled
with the QZ method. We have chosen the polynomial P(x) = P11x

11 + P9x
9 + P2x

2 + P0
where

P11 =


1 1 1 1

1 1 1

1 1

1

 , P9 = 108


3 1

1 3 1

1 3 1

1 3

 , P2 = 108Pt11 , P0 =


1

2

3

4


Computing the tropical roots yields good estimates of the blocks of eigenvalues of the matrix
polynomial. We obtain the tropical roots 1 .2664 · 104 , 0 .9347 and 1 .1786 · 10−4 with multi-
plicities 2, 7 and 2, respectively. To have a trusted result to compare with we have computed
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Figure 2.5: The accuracy of the computed eigenvalues using polyeig, the Frobenius lineariza-
tion and the secular linearization with the bi obtained through the computation of the tropical
roots.

the eigenvalues with higher precision and we have compared them with the results obtained
by our two approaches. We stress that in this case the secular linearization has been computed
with standard floating point arithmetic. As shown in Figure 2.5 we have achieved much better
accuracy in the secular case with respect to polyeig. The secular linearization has achieved a
relative error of the order of the machine precision on all the eigenvalues except the smaller
block (with modulus about 10−4). In that case the relative error is about 10−12 but the abso-
lute error is, again, of the order of the machine precision. Moreover, polyeig fails to detect the
eigenvalues with larger modulus, marking them as infinite eigenvalues.

2.5 another kind of secular linearizations

In this section we introduce a new kind of linearization that can be seen as a generalization
of the secular `-ifications introduced in Section 2.2 when ` = 1. The construction that we
report here does not provide a framework to generate `-ifications but solves another issue that
is undesired with the secular linearizations previously introduced: while in most cases we
have been able to experimentally prove that the numerical conditioning can be low, we can
not guarantee that this will always be the case (given good choices for the nodes). This is
essentially related to the fact that we can choose a little number of parameters (only n, the
degree of the polynomial) with respect to the number of eigenvalues that we have to compute.

Here we provide an alternative framework for building linearizations that uses estimates
for eigenvalues and eigenvectors in order to build linearizations as well-conditioned as desired.
This is done in the same spirit of the results obtained for scalar polynomials in Section 1.3.
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We start this analysis by extending the observations of Section 2.2.8, where we have shown
the connection of secular linearizations with the Frobenius linearization.

For simplicity, we start by analyzing the case of a monic matrix polynomial P(x) =∑n
i=0 Pix

i and we extend the results to non-monic matrix polynomials later.

2.5.1 Linearizations for monic matrix polynomials

In this section we consider two matrix polynomials at the same time. We already introduced
the polynomial P(x), that is, the matrix polynomial that we want to linearize and of which
we would like to find the eigenstructure. Throughout this section we assume that P(x) is
monic. At the same time we consider another monic polynomial Q(x) that has semisimple
eigenvalues, and we suppose to have built it artificially. In fact, as we will see, this polynomial
can be seen as a technical tool for the construction but it will not be needed to know it explicitly.

We introduce the following notation: we denote by xFP1 − FP0 the Frobenius linearization
for the matrix polynomial P(x) so that we have

xFP1 − FP0 = x


Pn

I
. . .

I

 −


−Pn−1 −Pn−2 . . . −P0
I

. . .

I

 .

Clearly the same construction can be done for the matrix polynomial Q(x), so we also have
a linearization xFQ1 − FQ0 that we know to be diagonalizable (thanks to the hypothesis on the
semisimpleness of the eigenvalues).

In particular we know that if we call V the matrix whose columns are the eigenvectors of
the (monic) polynomial xFQ1 − FQ0 then

V−1 (xFQ1 − FQ0 )V = xI − D , D =

λ1 . . .

λmn

 .

We observe that the numerical conditioning of the eigenvalue problem related to the matrix
polynomial xI −D is 1, since a basis for the eigenvectors are the columns of the identity matrix.
In this sense the change of basis induced by V is a good choice for this problem.

We now assume that the eigenvalues λ and the right eigenvectors vi := Vei are good
approximations to the eigenvalues and eigenvectors of the matrix FP0 . Can we still say that the
change of basis V is a good choice for the solution of the matrix polynomial? As we will see,
the answer is yes. In particular, if Q(x) is a nearby polynomial of P(x) then, by continuity, we
have

V−1 (xFP1 − FP0 )V = xI − D + E

where E is small. Moreover, xI − D + E is a linearization of P(x). The purpose of this section
is to show that these claims hold and also to provide a method to compute such a linearization
without the need of explicitly building and inverting V .

We have the following lemma that summarizes the previous remarks.
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Lemma 2.5.1. Let P(x), Q(x) be two monic matrix polynomials, and assume that Q(x) has only
finite, simple and pairwise different eigenvalues. Let then VQ and DQ be the matrices with the eigen-
vectors and the eigenvalues of Q(x), respectively, and xI − FP0 be a linearization for P(x). Then the
pencil

A(x) = xI −


VQD

n−1
Q
...

VQDQ
VQ


−1

FP0


VQD

n−1
Q
...

VQDQ
VQ


is a linearization for P(x) that can be decomposed as the sum of a diagonal matrix polynomial plus a
rank m constant matrix. We call this linearization the secular linearization for P(x) associated with
Q(x).

Proof. Let V̂Q be the nm × nm invertible matrix defined by

V̂Q =


VQD

n−1
Q
...

VQDQ
VQ

 .

The invertibility of V̂Q is guaranteed by the fact that we have required the eigenvalues of Q(x)

to be semisimple [61]. Recall that, if we call FQ0 the companion matrix for Q(x) and FP0 the
companion matrix for P(x), we have

FP0 − FQ0 =


Qn−1 − Pn−1 . . . Q0 − P0

0 . . . 0
...

...

0 . . . 0

 = (e1 ⊗ Im )
[
Qn−1 − Pn−1 . . . Q0 − P0

]
.

In particular we can note that FP0 − F
Q
0 has rank (at most) m. Moreover, we know that

V̂−1
Q F

Q
0 V̂Q = DQ = diag(λ1 , . . . , λnm ) and so we have

V̂−1
Q (xI − FP0 )V̂Q = xI − V̂−1

Q F
Q
0 V̂Q − V̂−1

Q (FP0 − FQ0 )V̂Q (2.11)

= xI − DQ − V̂−1
Q (e1 ⊗ Im )

[
Qn−1 − Pn−1 . . . Q0 − P0

]
V̂Q

(2.12)

that clearly has the required diagonal plus low rank (and constant) structure.

Before getting to our characterization of the structure of the low rank term we need some
technical results. We prove the following also in the general case of a non-monic matrix poly-
nomial.



2.5 another kind of secular linearizations 63

Lemma 2.5.2. Let Q(x) be a matrix polynomial with only finite and semisimple eigenvalues. Sup-
pose that λ1 , . . . , λnm are its eigenvalues and vi , uti the corresponding right and left eigenvectors,
respectively. Then if DQ = diag(λ1 , . . . , λnm ) and V̂Q , ŴQ are the matrices defined as

V̂Q =


VQD

n−1
Q
...

VQDQ
VQ

 , VQ =

 v1 . . . vnm

 , ŴQ = F
Q
1 V̂Q

the inverse Ŵ−1
Q has the form

Ŵ−1
Q =

[
UtQ DQU

t
QQn + UtQQn−1 · · · Dn−1

Q UtQQn + . . . + UtQQ1

]
where UQ is a matrix containing the left eigenvectors of Q(x), i.e.,

UtQ =

 ut1
...

utnm

 , utiQ(λi ) = 0 , ∀i = 1 , . . . , nm .

Proof. Consider a diagonalizable pencil xA − B so that there exist W and V such that

W−1 (xA − B)V = xI − D .

The right and left eigenvectors of the pencil on the right-hand side are the vectors of the
canonical basis ei , for i = 1 , . . . ,mn. We automatically have that the right eigenvectors of
xA − B are vi := Vei and the left ones are wi := etiW

−1 . When A is invertible we have
that W = AV . Since Q(x) has no infinite eigenvalues we have that Qn is invertible and so is
diag(Qn , I , . . . , I) that is the leading coefficient of the Frobenius pencil xFQ1 − FQ0 . In view
of Lemma 2.1.23 and Lemma 2.1.22 we conclude that the eigenvector matrices are of the form

V̂Q =


VQD

n−1
Q
...

VQDQ
VQ

 , VQ =

 v1 . . . vnm


and

Ŵ−1
Q =

[
UtQ DQU

t
QQn + UtQQn−1 · · · Dn−1

Q UtQQn + . . . + UtQQ1

]
with ŴQ = diag(Qn , I , . . . , I)V̂Q as requested.

We now want to characterize the structure of the constant coefficient of this linearization
A(x). We have the following

Theorem 2.5.3. Let A(x) be the secular linearization of Lemma 2.5.1 for a monic polynomial P(x).
Then A(x) has the form

A(x) = xI + UW t
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where U is a nm × m matrix whose rows are the left eigenvectors of Q(x) and W is a nm × m
matrix such that the columns of W t are of the form P(λi )vi where λi is an eigenvalue of Q(x) and
vi is a right eigenvector of Q(x). In particular, if we set R := UW t we have

R = (rij ) , rij = utiP(λj )vj .

where ui and vj are left and right eigenvectors corresponding to λi and λj , respectively, normalized so
that utiQ

′ (λi )vi = 1.

Proof. Notice that we can write

A(x) = Ŵ−1
Q (xFP1 − FP0 )V̂Q = Ŵ−1

Q (xFQ1 − FQ0 +)V̂Q + Ŵ−1
Q (FQ0 − FP0 )V̂Q

= xI − DQ + Ŵ−1
Q

Pn−1 − Qn−1 . . . P0 − Q0

VD

n−1

...

V


= xI − DQ + Ŵ−1

Q (e1 ⊗ Im )

(
n−1∑
i=0

PiVD
i −

n−1∑
i=0

QiVD
i

)

= xI − DQ + Ŵ−1
Q (e1 ⊗ Im )

n∑
i=0

PiVD
i .

where the last step is obtained by adding VDn to both sums (since Q(x) and P(x) share
the same leading coefficient equal to I) and recalling that, by definition,

∑n
i=0 QiVD

i = 0.
Since Ŵ−1

Q is multiplied by e1 ⊗ Im we only need its first block column that in view of
Lemma 2.1.23 is equal to the left eigenvectors of Q(x) organized in rows.

We then note that Ŵ−1
Q V̂Q = I since they diagonalize the pencil Ŵ−1

Q (xFQ1 − FQ0 )V̂Q =

xI − DQ . This implies that, for each i,

eti Ŵ
−1
Q V̂Qei = 1 ⇐⇒


ui

(λi I + Q
t
n−1 )ui

(λ2i I + λiQ
t
n−1 + Q

t
n−2 )ui

...

(λn−1
i I + . . . + Qt1 )ui



t 
λn−1
i vi
...

λvi
vi

 = 1 ⇐⇒ utiQ
′ (λi )vi = 1 .

This completes the proof.

2.5.2 Properties of the linearization

We have some direct consequences of the construction above. The first natural consequence is
that we can prove a matrix version of Theorem 1.3.14 that states that the conditioning of the
secular linearization for scalar polynomials goes to zero as the nodes go to the roots. We have
the following

Theorem 2.5.4. Let Ak (x) be the secular linearization for a monic matrix polynomial P(x) with
only semisimple and finite eigenvalues relative to a matrix polynomial Qk (x) for k ∈ N. Then if
Qk (x) → P(x) as k → ∞ the conditioning of the eigenvalue problem associated with Ak (x) goes to
1.
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Proof. The conditioning of the eigenvalue problem of the secular linearization xI − DQ as-
sociated with Q(x) where DQ contains the eigenvalues of Q(x) is clearly 1, since both the
eigenvector matrices are the identity. Since all the operations involved in constructing Ak (x)
are continuous functions of Qk (x) and its spectral data and Qk (x) → P(x) we have

lim
k→∞ κiAk (x) = κi (xI − DQ ) = 1

for every i, since the spectral data (both the eigenvectors and the eigenvalues) are at least
locally continuous [71]. This concludes the proof.

The above theorem implicitly states another interesting result. Since Ak (x) = xI − DQ +

Rk and Rk → 0 as k → ∞ we have that if we know good approximations for eigenvalues and
eigenvectors of P(x) we can probably compute a linearization Ak (x) such that Rk is small
in norm. This makes it very advantageous to apply Gerschgorin’s theorem to obtain bounds
on the eigenvalues of P(x). The version of the Gerschgorin’s theorem used here is the one of
Theorem 1.5.3. See [27] for a comprehensive analysis of this tool.

Remark 2.5.5. Since the eigenvalues of A and At are the same Theorem 1.5.3 can be equiv-
alently stated summing on rows or columns of the matrix A. In the following we will freely
swap between the two options.

With this tool we can give the following result that relies on the eigenvalues of the lineariza-
tion Ak (x). Theorem 2.5.4 guarantees that the following result gives good bounds for k → ∞,
since the radii of the inclusion discs tend to 0.

Theorem 2.5.6. Let P(x) be a monic matrix polynomial and Q(x) a monic nearby polynomial with
the usual eigenvalue and eigenvector matrices of the companion form xF

Q
1 − FQ0 equal to ŴQ , DQ

and V̂Q . We then have that if DQ = diag(λ1 , . . . , λnm ) the eigenvalues of P(x) are contained in
the union of the discs

S :=

mn⋃
i=1

Bi , Bi :=

z ∈ C | |z − λi | 6 ‖P(λi )vi‖ ·
n∑
j=1

‖utj ‖


where uj and Vi are left and right eigenvectors of Q(x) normalized according to Theorem 2.5.3.
Moreover, every connected component of the union made up of k discs contain exactly k eigenvalues
(counted with multiplicity).

Proof. The proof is a straightforward application of Gerschgorin’s Theorem 1.5.3 to the lin-
earization Ak (x) built according to Theorem 2.5.3. We note that such a linearization can be
written in the form

Ak (x) = xI − DQ + Rk , Rk = U
[
P(λ1 )v1 . . . P(λmn )vmn

]
where U is the matrix with the left eigenvectors uti of Q(x) as rows and vi are the right
eigenvectors. The statements follows by applying Gerschgorin’s Theorem and noting that
diagonal elements are of the form utiP(λi )vi − λi and offdiagonal elements of column i are
of the form utj P(λi )vi . This yields the inclusion discs

Bi :=

z ∈ C | |z + utiP(λi )vi − λi | 6
∑
j 6=i

|utj P(λi )vi |
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We can bound the radius and recenter the discs, finding a set of bigger inclusion discs, by
writing

Bi ⊆

z ∈ C | |z − λi | 6 ‖P(λi )vi‖ ·
n∑
j=1

‖utj ‖


which gives the thesis.

We show here that this framework actually provides a generalization of the construction of
Theorem 2.2.5. In fact, we have the following.

Theorem 2.5.7. Let A(x) be the secular linearization for a monic matrix polynomial P(x) relative to
the matrix polynomial Q(x) =

∏n
j=1 (x − bj )Im . Then

A(x) = xI −

b1 Im . . .

bn Im

 +

Im...
Im

 [W1 . . . Wn

]
, Wj =

P(bj )∏
i 6=j (bi − bj )

that is, the secular linearization for P(x) relative to the nodes b1 , . . . , bn .

Proof. It is evident that the eigenvalues of Q(x) are semisimple and their left eigenvectors are
eti so they are exactly the rows of the matrix (e ⊗ Im ), that is, the left factor of the outer
product defining the low rank term of A(x). Each column of the right term, in view of
Theorem 2.5.3 is equal to P(λi )vi but since if we look at one of the blocks Wj the vectors
vi are just the columns of the identity scaled so that utiQ

′ (λi )vi = 1 and λi = bj we have
Wj = αjP(bj ) where αj is 1

etjQ
′(bj)ej

. This implies that αj = 1∏
i 6=j(bi−bj)

, which gives the

thesis.

2.5.3 Handling the non-monic case

In this section we show how to extend the previous results when the polynomial P(x) is non-
monic. In particular, some care is needed when the leading coefficient Pn is not invertible and
so infinity eigenvalues appear.

To better represent this scenario we modify the univariate polynomial P(x) =
∑n
i=0 Pix

i

and we consider the bivariate homogeneous polynomial

Ph (x , y) =
n∑
i=0

Pix
iyn−i .

Here Ph (x , y) can be thought as a polynomial on the projective space P1 (C), so that we can
evaluate it also at the infinity. In particular, we have

P(x) = P(x , 1) , P(∞) := P(0 , 1) .

We can define what eigenvalues and eigenvectors are for a homogeneous bivariate polyno-
mial. We do so by requiring that they coincide with the classical notion of eigenvalues and
eigenvectors whenever we consider the dehomogenized polynomial Ph (x , 1) = P(x).
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Definition 2.5.8. We say that the projective point (λ , µ) ∈ P1 (C) is an eigenvalue for Ph (x , y)
if the matrix Ph (λ , µ) is singular. Moreover, we say that a vector v is a right eigenvector
corresponding to (λ , µ) if Ph (λ , µ)v = 0. In the same way we say that u is a left eigenvector if
utPh (λ , µ) = 0.

We can also define the concept of linearization and of equivalences of matrix polynomials
in this context. We have the following.

Definition 2.5.9. We say that two homogeneous bivariate matrix polynomials Ph (x , y) and
Qh (x , y) are unimodularly equivalent if, for every eigenvalue (λ , µ) of Ph (x , y), there exist
a neighborhood P1 (C) ⊇ U ∈ (λ , µ) and two unimodular analytic functions E(x , y) and
F(x , y) defined on U such that

E(x , y)Ph (x , y)F(x , y) = Qh (x , y) .

In this case we write Ph (x , y) ∼ Qh (x , y).

As in the univariate case, we can also define the extended unimodular equivalence.

Definition 2.5.10. We say that two homogeneous bivariante matrix polynomials Ph (x , y) and
Qh (x , y) are extended unimodularly equivalent if there exist r and s such that diag(Ir , Ph ) is
unimodularly equivalent to diag(Is ,Qh ). In this case we write Ph � Qh .

The reader might wonder why we are using the symbol of spectral equivalence here and
not the one that we have used for extended unimodular equivalence in the univariate case.
This fact is motivated by the following.

Theorem 2.5.11. Let Ph (x , y) � Qh (x , y) be two extended unimodularly equivalent homogeneous
bivariate matrix polynomials. Then the univariate polynomials P(x) = Ph (x , 1) and Q(x) =

Qh (x , 1) are spectrally equivalent. Moreover, the converse is also true: if P(x) and Q(x) are spec-
trally equivalent matrix polynomials then their homogeneous version Ph (x , y) := ydeg PP(xy−1 )

and Qh (x , y) := ydegQQ(xy−1 ) are extended unimodularly equivalent.

Before proving the Theorem, we report the following result that can be found in [2].

Theorem 2.5.12. If, for any eigenvalue λ of P(x) and Q(x), there exist a neighborhood of Uλ 3 λ
and two invertible analytic functions E(x) and F(x) defined on it such that P(x) = E(x)Q(x)F(x)

then P(x) and Q(x) are unimodularly equivalent.

We are now ready to give the proof of Theorem 2.5.11

Proof of Theorem 2.5.11. We assume that r = s = 0. If this is not the case it is sufficient
to replace Ph (x , y) with diag(Ir , Ph (x , y)) and Qh (x , y) with diag(Is ,Qh (x , y)). We
first prove that if Ph (x , y) � Qh (x , y) then P(x) � Q(x). We know that for every fi-
nite eigenvalue of Ph (x , y) there exist two unimodular analytic matrix functions such that
E(x , 1)Ph (x , 1)F(x , 1) = Qh (x , 1) holds locally and this implies that E(x)P(x)F(x) = Q(x)

in the same neighborhood. We make use of Theorem 2.5.12 and conclude that P(x) ∼ Q(x).
Notice now that P# (x) = Ph (1 , x) and Q# (x) = Qh (1 , x). Since the same argument of above
can be applied verbatim we have P# (x) ∼ Q# (x). This implies that P(x) � Q(x), proving
the first statement. For the other direction we assume that Ph (1 , x) = P# (x) ∼ Q# (x) =
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Qh (1 , x) and Ph (x , 1) = P(x) ∼ Q(x) = Qh (x , 1) so that there exist unimodular matrices
E1 (x) , F1 (x) , E2 (x) , F2 (x) such that

E1 (x)P
h (x , 1)F1 (x) = Qh (x , 1) , E2 (x)P

h (1 , x)F2 (x) = Qh (1 , x) .

Let (x , y) be an eigenvalue of Ph (x , y) and assume that x 6= 0. Then we can rewrite (x , y) =
(1 , y/x). In particular we have

E2

( y
x

)
Ph
(
1 ,
y

x

)
F2

( y
x

)
= Qh

(
1 ,
y

x

)
Since E2 (x) and F2 (x) are invertible everywhere the same holds for their evaluation in y

x in
a neighborhood of (x , y) such that x does not assume the value 0. Since this holds for every
eigenvalue (x , y) and the same can be done when y 6= 0 by considering E1 (x) and F1 (x), we
have the thesis.

Definition 2.5.13. We say that a bivariate homogeneous polynomial Lh (x , y) is a linearization
for Ph (x , y) if Lh (x , y) � Ph (x , y).

Clearly if Lh (x , y) is a linearization for a matrix polynomial Ph (x , y) then L(x) = Lh (x , 1)
is a strong linearization for P(x) = Ph (x , 1). The converse is also true, so a strong lineariza-
tion can be homogenized to become a homogeneous bivariate linearization.

The previous result implies, in particular, that the Frobenius linearization for a matrix
polynomial, being a strong linearization, is also a homogeneous linearization for Ph (x , y).
We denote xFP1 − yFP0 the linear Frobenius pencil associated with Ph (x , y), as in the previous
section.

We prove here a bivariate version of the diagonalization for pencils.

Theorem 2.5.14. Let xA − yB a homogeneous bivariate regular pencil with semisimple eigenvalues.
Then there exist two invertible matrices W and V such that

W−1 (xA − yB)V = xDy − yDx

where Dy and Dx are diagonal matrices such that the pairs (xi , yi ) with their diagonal elements
contain the eigenvalues of xA − yB. Moreover, the columns of V and the rows of W−1 contain the
right and left eigenvectors of the pencil.

Proof. This proof is a generalization of the classical statement for eigenvalues of matrices, that
we report here for completeness. First of all, we show that two eigenspaces V1 an V21 corre-
sponding to two different eigenvalues (x1,y1) and (x2,y2) are necessarily independent, i.e., we
can not find two nonzero vectors γ1 and γ2 such that V1γ1 = V2γ2. Assume, by contradiction,
that this is the case. Since we know that

x1AV1 = y1BV1, x2AV2 = y2BV2

we can right multiply by γ1 and γ2 and we obtain x1At = y1Bt and x2At = y2Bt where we
have set t = V1γ1 = V2γ2. We know that either At 6= 0 or Bt 6= 0, otherwise the pencil would
not be regular. We assume that At 6= 0. Moreover, one of y1 and y2 must not be zero, since

1 Here we identify an eigenspace corresponding to an eigenvalue (x,y) with a matrix containing the vectors of one of
its basis stacked as columns. We have, in particular, that xAV = yBV .
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the eigenvalues are different. Here we assume that y2 6= 0, but in the other case it is sufficient
to swap the indices. We have

x1At = y1Bt =
y1
y2
y2Bt =

x2y1
y2

At

so that x1y2 = x2y1 that implies (x1,y1) = (x2,y2) (in the projective sense) which leads
to a contradiction. This proves that eigenspaces correspondent to different eigenvalues are
independent. If the eigenvalues are semisimple the sum of the dimensions of the eigenspaces
is equal to n, giving the first part of the thesis. We can then build the matrix W by noting that
if xAv = yBv we can define

Wei :=
Av

y
=
Bv

x
.

While it might happen that x or y are zero, they cannot be zero at the same time and so at least
one of the above is well-defined. Moreover, we can use once again the regularity of the pencil
to claim that Wei 6= 0. With this definition we have

AV =WDy, BV =WDx.

Assume now, by contradiction, that there exists a vector γ 6= 0 such that Wγ = 0. Since the
pencil is regular we can find α and β such that αDx − βDy is invertible and (α,β) is not an
eigenvalue of the pencil. We can then write γ̂ := (αDy −βDx)

−1γ so that

(αA−βB)Vγ̂ =W(αDy −βDx)γ̂ =Wγ = 0

which is a contradiction since (α,β) is not in the spectrum of xA − yB. As a last step, we
have already verified that V contains the eigenvectors as columns, and we can see that W−1

contains the eigenvectors as rows by noting that the left eigenvectors of xDy − yDx are eti and
so from

W−1(xA− yB)V = xDy − yDx

we derive that the left eigenvectors of xA−B are etiW
−1. This completes the proof.

We can now characterize the structure of the eigenvectors of the bivariate Frobenius pencil
xFP1 − yFP0 .

Theorem 2.5.15. Let L(x) = xFP1 − yFP0 be the homogeneous Frobenius linearization associated with
the polynomial Ph(x,y), so that

xFP1 − yFP0 = x


Pn

I
. . .

I

− y


−Pn−1 −Pn−2 . . . −P0
I

. . .

I

 .

The right eigenvectors of L(x) are given by

v̂i =


xn−1i vi
xn−2i yivi

...

yn−1i vi
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where vi is a right eigenvector of P(x) corresponding to (xi,yi) and the left ones can be equivalently
written as

ûi =


ui

(xiyiP
t
n + Ptn−1)ui

...

(( xiyi )
n−1Ptn + . . .+ xi

yi
Pt1)ui

 =


ui

−((yixi )
n−1Pt0 + . . .+

yi
xi
Ptn−2)ui

...

−yixi P
t
0ui


where vi is such that utiP

h(xi,yi) = 0. Moreover, the first form is defined whenever yi 6= 0 and the
latter when xi 6= 0.

Proof. We start to analyze the structure of the right eigenvectors. We have that if v̂ is a right
eigenvector for xFP1 − yFP0 then we can partition it in blocks of size m as v̂t =

[
vt1 · · · vtn

]
.

The condition (xFP1 − yFP0 )v̂ = 0 can be rephrased as the system{
xPnv1 + y

∑n−1
j=0 Pjvn−j = 0

xvj + yPn−jv1 − xvj−1 = 0 for j = 2, . . . ,n
.

It is easy to see that vj = x
n−j
i y

j−1
i v where v is a right eigenvector for Ph(xi,yi) is the unique

possible solution (up to scalar multiplication). We can state similar conditions for the left
eigenvector û. Partitioning ût = [ut1 · · ·u

t
n], we can write

ut1(xPn + yPn−1) = yu
t
2

utjx+ yu
t
1Pn−j = yu

t
j+1 for j = 2, . . . ,n− 1

xutn = −yut1P0

.

We set u1 := u and then we can follow two different paths of back-substitution. Either we
assume that y 6= 0 and we start to compute the elements from u2 to un or we assume that
x 6= 0 so that we have utn = −yxu

tP0 and we can compute the other elements from un−1 to u2.
We obtain the following representations for û:

û =


u

(xyP
t
n + Ptn−1)u

...(
(xy )

n−1Ptn + . . .+ x
yP
t
1

)
u

 =


u

−
((y
x

)n−1
Pt0 + . . .+

y
xP
t
n−2

)
u

...

−yxP
t
0u


where u has to be a left eigenvector of Ph(x,y). Writing this for an eigenvalue (xi,yi) and its
corresponding eigenvector yields the thesis.

We can now generalize the results obtained in Theorem 2.5.3 in order to be able to compute
the secular linearization of P(x) relative to Q(x) also in the non-monic case.

Definition 2.5.16. We say that a matrix polynomial A(x) is a secular linearization relative to Q(x)

for the matrix polynomial P(x) if the homogeneous matrix polynomial Qh(x,y) is semisimple
and V , Dx, Dy and W are such that W−1(xFQ1 − yFQ0 )V = xDy − yDx with Dx and Dy
diagonal matrices,

Ah(x,y) =W−1(xFP1 − yFP0 )V = xDy − yDx + yR.

and A(x) = Ah(x, 1).
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Lemma 2.5.17. Let A(x) be the secular linearization of Definition 2.5.16 for a matrix polynomial P(x).
Then A(x) has the form

A(x) = xDy −Dx +UW
t

where U is a nm×m matrix whose rows are the left eigenvectors of Qh(x,y) and W is a nm×m
matrix such that the columns of Wt are of the form Ph(xi,yi)vi where (xi,yi) is an eigenvalue of
Qh(x,y) and vi is a right eigenvector of Qh(x,y). In particular, if we set R := UWt we have

R = (rij), rij =
utiP

h(xj,yj)vj
utj

∂
∂xQ

h(x,y)vj
= −

xj

yj

utiP
h(xj,yj)vj

utj
∂
∂yQ

h(x,y)vj
.

where ui and vj are left and right eigenvectors relative to (xi,yi) and (xj,yj), respectively, and yj 6= 0.
Moreover, an explicit formula is available when yj = 0 and is here reported in Equation (2.14)

Proof. We prove the lemma by following steps similar to the one of Theorem 2.5.3. We have

Ah(x,y) = Ŵ−1
Q (xFP1 − yFP0 )V̂Q

where Ŵ and V̂ are the usual matrices built following the procedure of Theorem 2.5.14. We
can rewrite the above as

Ah(x,y) = Ŵ−1
Q (xFQ1 − yFQ0 )V̂Q + Ŵ−1

Q (yFQ0 − yFP0 )V̂Q = xDy − yDy + yR

where R has rank at most m. We can compute the elements of R by writing

Rij = e
t
iŴ

−1
Q

Qn−1 − Pn−1 . . . Q0 − P0
 V̂Qej

The characterization of right and left eigenvectors given in Theorem 2.5.15 tell us that, when-
ever yj 6= 0 we can write

Rij = u
t
i

(∑
k<n

Pkx
k
j y
n−k−1
j −Qkx

k
j y
n−k−1
k

)
vj = u

t
i

1

yj
Ph(xj,yj)vj (2.13)

where uti and vj are left and right eigenvectors of Ph(x,y) relative (xj,yj) and the missing term
of degree n has been added on both sides. We know that, by construction, these eigenvectors
have to be normalized so that both the conditions

utjF
Q
1 vj = yj, utjF

Q
0 vj = xj

are satisfied. Expanding these conditions using the two different representations for uj we get
that

1

yj

∂

∂x
utjP

h(xj,yj)vj = 1, −
1

xj

∂

∂y
utjP

h(xj,yj)vj = 1

which are computable in the cases where yj 6= 0 and xj 6= 0, respectively. Enforcing these
conditions by scaling the right eigenvector leads to the following formulas for the element in
position (i, j) of R:

Rij =
utiP

h(xj,yj)vj
∂
∂xu

t
jQ
h(xj,yj)vj

= −
xj

yj

utiP
h(xj,yj)vj

∂
∂yu

t
jQ
h(xj,yj)vj

.
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Unfortunately none of the above formulas are usable int the case where yj = 0. We can make
an explicit computation for that particular case relying on the first part of Equation (2.13) and
we obtain

Rij =
utixj

(
∂
∂yQ

h(xj,yj) − ∂
∂yP

h(xj,yj)
)
vj

utj
∂
∂yQ

h(xj,yj)vj
, if yj = 0. (2.14)

Remark 2.5.18. Notice that these formulas for the computation of Rij can be rephrased in
terms of P(x) and P#(x), and they end up being more readable. In particular, we have

Ph(xj,yj) = P(λj) = P#(
1

λj
), λj =

xj

yj

whenever we can yj 6= 0 or xj 6= 0, respectively. In particular, we can choose to evaluate a
polynomial at a point that is always included inside the unit circle, thus improving the Horner
evaluation by possibly avoiding overflows.



3
Q U A S I S E PA R A B L E M AT R I C E S

3.1 general framework and definitions

Exploiting the structure of matrices to speed up computations has been a recurring theme
in numerical analysis. Many papers address modified algorithms that are able to exploit the
structures of particular problems. In many cases these structures arise in the form of sparse
matrices, i.e., with many entries equal to zero, and often the non-zero elements are arranged
near the diagonal, so that the resulting matrices are banded. A classical example of this
structure are tridiagonal matrices. A matrix T is said to be tridiagonal if its elements tij are
zero whenever |i− j| > 1. In general, when a matrix A is such that |i− j| > k =⇒ aij = 0 we
say that it is of bandwidth k.

Several algorithms are available for tridiagonal and, more generally, banded matrices in the
literature. The popular numerical library LAPACK also has a particular format for efficient
storage of banded matrices [4].

Recently there has been much interest on a more general kind of structure, the so-called
quasiseparable structure. See for example [47], [49], [50], [89], [90] and [26]. Intuitively, qua-
siseparable matrices are a generalization of banded matrices where the property of being 0 has
been replaced with the one of being low-rank.

3.1.1 Defining quasiseparable structures

We give here the formal definitions needed to make the above concept more precise and also
to avoid ambiguities. In fact, as often happens when developing a new theory, similar naming
are used for different things by different authors. In this work we mostly adhere to the naming
scheme used in [89] and [90].

Definition 3.1.1. Given a matrix A we define its lower and upper quasiseparability ranks as the
numbers

lr(A) := max
i=1,...,n−1

A[i+ 1 : n, 1 : i], ur(A) := max
i=1,...,n−1

A[1 : i, i+ 1 : n],

respectively.

The idea of this definition is that whenever we select a lower (resp. upper) offdiagonal
submatrix from the matrix A its rank must be bounded by lr(A) (resp. ur(A)). Figure 3.1
reports a graphical description of the structure.

In the following we often use the notation QS ranks to refer to these two numbers, the
lower and upper quasiseparability rank of a matrix A.

Definition 3.1.2. A matrix A is said to be lower-quasiseparable (resp. upper-quasiseparable) of rank
k if every submatrix contained in the strictly lower (resp. upper) triangular part of A has
rank at most k, that is, if lr(A) 6 k (resp. ur(A) 6 k). If A is kl-lower quasiseparable and
ku-upper quasiseparable we say that A is (kl,ku)-quasiseparable. If k = kl = ku we say that A
is k-quasiseparable.

73
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Figure 3.1: Graphics description of the quasiseparable structure. Here in the picture the lower
quasiseparability structure is displayed.

Remark 3.1.3. Notice that if a matrix is (kl,ku)-quasiseparable then it is also (jl, ju)-quasiseparable
for any jl > kl and ju > ku.

In the following we will mostly deal with the case where the underlying field is C. For
this reason, we denote with QSHnk the set of n× n Hermitian k-quasiseparable matrices with
entries in C. We will sometimes omit the superscript n and simply write QSHk when the
dimension is clear from the context. In general, we say that A is quasiseparable if it is (kl,ku)-
quasiseparable for some nontrivial kl,ku.

Remark 3.1.4. It is clear from the definition that banded matrices with bandwidth k are also
quasiseparable matrices of rank k. In fact, every off diagonal matrix has at most a corner with
non-zero elements and so no more than k rows (and columns) different from zero. On the
other hand, while it is immediate to design a method to store and operate on banded matrices
efficiently, the same is not true for quasiseparable matrices. Even representing them in an
efficient and numerically stable way is a non-trivial issue.

Before introducing the different techniques available in the literature for the representation
of quasiseparable matrices we shall point out some of the features that they have. Here we
also provide a sketch of proof. Many more details can be found in [89].

Theorem 3.1.5. LetA be a (kl,ku)-quasiseparable matrix and B a (jl, ju)-quasiseparable matrix. Then
the following statements are true:

(i) If A is invertible then also A−1 is quasiseparable of ranks (kl,ku).

(ii) A+B is a (kl + jl,ku + ju)-quasiseparable matrix.

(iii) AB is a (kl + jl,ku + ju)-quasiseparable matrix.

Proof. The property (i) is a direct consequence of the Nullity Theorem [65], that states that the
nullity of any off-diagonal block in A−1 is the same of the one of the same block in A (and so
also the ranks coincide).

The proof of (ii) is also immediate since every off-diagonal submatrix of the sum is the
sum of the relative submatrices of A and B. The same argument can also be applied to AB by
performing the block multiplication of the two matrices.
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3.1.2 The relations with linearizations

We are interested in this kind of structures because it can be found in the coefficients of most
linearizations of matrix polynomials. Consider for example the Frobenius linearization for a
matrix polynomial P(x) =

∑d
i=0 Pix

i:

P(x) � x


Pd

Im
. . .

Im

−


−Pd−1 −Pd−2 . . . −P0
Im

. . .

Im

 .

Every offdiagonal submatrix of both coefficients has the rank bounded by m. It is important to
highlight that the structure in these matrices depends on the degree d of the polynomial. The
higher the degree (with respect to the size of the coefficients) the higher the structure available.
As an example, if the degree is d and the size m = 1, we have the linearization of a scalar
polynomial and the quasiseparability rank is 1. If the degree is d = 1 the linearization coincide
with the polynomial and so no structure is present (at least in general).

Another example of quasiseparable linearizations (and `-ifications) is given by the secular
linearization of Theorem 2.2.5. When ` = 1 and so A(x) is a linearization it has the form of a
(block) diagonal matrix pencil plus a low rank matrix, and so it is quasiseparable with rank at
most 2m, where m is the size of the blocks. In the even more particular case where the Bi(x)
are monic and diagonal we have that A(x) = xI+D− L with L of rank at most m. This implies
that A := D− L is m-quasiseparable.

We recall that the usual first step for eigenvalue approximation algorithms is the Hessen-
berg reduction (or the Hessenberg triangular reduction in case of pencils). This is due to many
interesting properties that characterize this structure.

• The Hessenberg structure is preserved under QR iterations (and the Hessenberg-triangular
is maintained under QZ). This is interesting because it reduces the cost of an iteration
from O(n3) to O(n2), lowering the total cost of the method.

• Evaluating the characteristic polynomial of a matrix in Hessenberg form is cheaper than
for a full matrix. This is interesting when trying to develop an approximation algorithm
using functional iterations such as the secsolve algorithm implemented in MPSolve and
introduced in Section 1.5 [22].

3.1.3 Some useful notation

In the following we will make often use of the MATLAB notation, that is of operators inherited
by the commands of MATLAB. More precisely, we will sometimes write A[i1 : i2, j1 : j2] to
mean the submatrix of A obtained by taking the rows with indices from i1 to i2 and the
columns with indices from j1 to j2.

In a similar way we define the operators tril(·, ·) and triu(·, ·), coherently with the cor-
responding MATLAB functions, such that L = tril(A,k), U = triu(A,k) where A = (ai,j),
L = (`i,j), U = (ui,j) and

`i,j =

{
ai,j if i > j− k
0 otherwise

ui,j =

{
ai,j if i 6 j− k
0 otherwise

.
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3.2 representation of quasiseparable matrices

In this section we briefly survey some possible representations of quasiseparable matrices. In
the following we will consistently use k as the rank of the quasiseparable matrices that we
want to represent and n as the number of rows and columns. We require the representations
to have the following features:

• Use a small amount of storage. Typically, our request is to use only O(nk), but we will
also show a representation that uses O(nk logn).

• Allow for fast operations on the compressed forms. As an example, we want to be able
to compute the product Av, where A is quasiseparable, in less than O(n2). Typically this
cost will be O(nk).

• Being able to obtain a quasiseparable representation of the sum and product of quasisep-
arable matrices.

As we will see, different representation will address the above points with various degrees
of success. Each one has its own advantages. In this work we present the following three
representations:

(i) The quasiseparable representation introduced by Eidelman and Gohberg. A survey of
the available literature for this representation can be found in the books by Eidelman et
al. [49, 50]. We will call this kind of representations generator based representations.

(ii) The so-called Hierarchical representation or H-matrices introduced by Hackbush [66]
and widely used in the context of PDEs (such as [6] and [7]). As we will see this kind
of representation has an additional logn factor cost in many operations (that can be
removed by relying on H2-matrices in some cases [67]) but also has many advantages
such as being able to provide adaptive representation without the need of knowing the
quasiseparable rank a priori.

(iii) The quasiseparable representation for 1-quasiseparable matrices of Van Barel et al. an-
alyzed in [89] and [90] and its generalization to k-quasiseparable matrices that can be
found for example in [88, 40]. We will call these kinds of representations Givens–Vector
representations. Several papers on this topic are available in the literature by Van Barel
and DelVaux including several results on the conservation of rank structures [36, 38, 37,
44, 39, 42, 43].

3.2.1 Generators based representation

Generators based representation are a natural extensions of the representation of low-rank
matrices as outer products. If A is a matrix of rank k then there exist two n× k matrices U and
V such that A = UV∗. Recalling this fact one might be tempted to represent quasiseparable
matrices as

A = D+ tril(UlV∗l ,−1) + triu(UuV∗u, 1), Ul,Vl,Uu,Vu ∈ Cn×k. (3.1)
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Unfortunately, this is not always possible. We can say that, whenever A has such a representa-
tion then it is quasiseparable of order k but the converse is not true. A simple counterexample
is given by tridiagonal matrices (or banded matrices for any order larger than 1): If we have

T =


a1 b1

c1
. . .

. . .

. . .
. . . bn−1
cn−1 an

 , bi, ci 6= 0

then every submatrix in the lower (resp. upper) triangular part has at most 1 element different
from zero, and so it has rank (at most) 1. Moreover, each of these submatrices can be repre-
sented as an outer product of two vectors, but we cannot find two vectors u and v such that
tril(T ,−1) = tril(uv∗,−1). In fact, since bi 6= 0 6= ci we have ui 6= 0 6= vi (otherwise we will
have zero elements on the row or column with index i). This implies that the lower part of T
is dense, with no zero elements, that is not true.

Even when this is not the case it might not be a good idea to write quasiseparable matrices
with a representation like (3.1) for numerical reasons. Consider the following example, where
we have an “almost” diagonal matrix

T̃ =


1 ε . . . εn−1

ε
. . .

. . .
...

...
. . .

. . . ε

εn−1 . . . ε 1


with some ε small. This matrix is quasiseparable and it does have a representation like the one
of Equation (3.1). The vectors ul, vl, uu, vu can be written explicitly as

ul = uu =


ε

ε2

...

εn−1

 , vl = vu =


1

ε−1

...

ε−n+2

 .

We note that when ε is near 0, even if the norm of T̃ is small (approximately 1), the norm
of the vectors vl and vu is not and goes like ε−n. This might create some problems for the
conditioning of the representation. In fact we can show that a small relative perturbation to vl
or vu can create a much larger perturbation in the original matrix T̃ . As an example, consider
the vector γe1, and suppose that we alter vl by setting v̂l = vl + ε

−n+2γe1. Since the norm
of vl is at least ε−n+2 this perturbation is relatively of the order of γ. If we reconstruct the
matrix T̃ by replacing vl with v̂l we obtain that the subdiagonal element in position (2, 1) is
now ε(1+ ε−n+2γ) ≈ γε−n+3 so we find a perturbation on the elements of T̃ of the order
O(ε−(n−3)). This means that the error has grown exponentially in n, thus making the use of
this representation not very well suited to this kind of matrices.

Given this introductory example, we want to find a strategy to solve the problem. A
possible idea, that is the basis of the generators based representation, is to improve the repre-
sentation of Equation (3.1) by adding another term that takes care of the relations between the
entries of the matrix.
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For simplicity we handle the case of symmetric or Hermitian matrices where we only have
the need to represent one triangular part.

Definition 3.2.1. A generators quasiseseparable representation of a symmetric k-quasiseparable
matrix A is a sequence (D,U,V , cj) where

• D is a diagonal matrix equal to the diagonal of A.

• U and V are matrices of size n× k.

• cj is a sequence of k× k matrices for j = 2, . . . ,n− 1.

and each strictly subdiagonal element of A is equal to

aij = uici−1 . . . cj+1vj, ui := e
t
iU, vtj := e

t
jV .

Notice that if we choose cj = I for every j we obtain a representation of the kind of
Equation (3.1) so this representation is more general than the previous one. In particular, we
can prove that every quasiseparable matrix has a representation of this kind (see [49]).

A very in-depth analysis of these tools can be found in [49, 50]. We refer to these publica-
tions for the details.

3.2.2 Tracking the rank structure: the t(·) operator

Even if the proposed representation for quasiseparable matrices in the form of Equation (3.1) is
often undesirable from the numerical point of view, it is sometimes useful from the theoretical
perspective. In fact, it will be widely used in order to prove rank properties of the partially
reduced matrix when computing the Hessenberg form of a matrix A in Section 3.3.

For this reason, we introduce the operator t(·) that eases the use of this kind of representa-
tions for Hermitian matrices.

Definition 3.2.2. The symmetrizing operator t(·) is defined on the set of n×nmatrices as follows:

t(A) = tril(A,−1) + triu(A∗, 1), ∀A ∈ Cn×n.

Lemma 3.2.3. The operator t(·) enjoys the following properties:

(i) For any matrix A the matrix t(A) has a zero diagonal.

(ii) For any matrix A the matrix t(A) is Hermitian. Moreover, if A is already a Hermitian matrix
then t(A) = A−D where D is the diagonal of A.

(iii) The operator t(·) is linear on R, that is, for any matrices A and B with the same size we have
t(A+B) = t(A) + t(B) and for any scalar λ ∈ R we have t(λA) = λt(A).

(iv) Diagonal congruence can be taken in and out from the operator, that is, for any diagonal matrix D
we have t(DAD∗) = Dt(A)D∗.

(v) For any block matrix with square diagonal blocks we have

t

([
A1,1 A1,2
A2,1 A2,2

])
=

[
t(A1,1) A∗2,1
A2,1 t(A2,2)

]
.
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Proof. We will prove only (iv), since all the other properties can be easily proved from the
definition. If D is diagonal we have that right and left multiplication of A are simply a scaling
of the columns and rows by some factor. For this reason we have

tril(DA,−1) = D · tril(A,−1), tril(AD∗,−1) = tril(A,−1) ·D∗.

This, in particular, implies that Dt(A)D∗ and t(DAD∗) have the same strictly lower triangular
part. Since also the diagonal of Dt(A)D∗ is equal to 0 we have that these two matrices coincide
in the whole lower triangular part. Being both of them Hermitian, we have the thesis.

3.2.3 Hierarchically quasiseparable matrices

We introduce another way of representing quasiseparable matrices based on a simple idea: if
we split a quasiseparable matrix in 4 blocks

A =

[
A1,1 A1,2
A2,1 A2,2

]
so that the A1,1 and A2,2 are square we obtain 4 matrices. Two of them are still quasiseparable
(the diagonal blocks), the others are low-rank. We have already observed that it is always
possible to represent low rank matrices as outer products UV∗ so we can do this for A2,1 and
A1,2. Then we can re-apply this procedure recursively on the diagonal blocks A1,1 and A2,2.

This idea has been exploited in [66] to construct hierarchical representations of quasisepa-
rable matrices. The recursive subdivision can be arbitrary and tailored to the specific problem.
In our case, where we have general quasiseparable matrices, we choose to divide the matrices
into two (almost) equal parts. A pictorial example of the subdivision process is reported in
Figure 3.2.

Figure 3.2: Hierarchical subdivision of a matrix used to construct the H-matrix representation.
Each gray block in the figures has low rank, while the white blocks are recursively represented
using the hierarchical strategy up to an appropriate base case.

In the language of H-matrices the low-rank blocks of Figure 3.2 are called admissible blocks.
This name is used to mean the blocks that can be represented without the need of further
subdivision.

Notice that, if we subdivide a sufficient number of times, the diagonal blocks will become
“low-rank”, in the sense of rank less than the quasiseparability k, since at some point they will
be smaller than k. This guarantees that the recursion can be stopped.

Every H-matrix can be represented as a set of admissible blocks and two trees, called row
and column cluster, respectively, whose nodes are set of indices such that:
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• The root of the tree is the set of indices of the matrix {1, . . . ,n}.

• The children of each node are again set of indices that form a partition of the indices of
their father.

These trees are called H-trees. Given two H-trees I and J we can build a block H-tree I× J that
is composed by the nodes {(i, j) | i ∈ I, j ∈ J, depth(i) = depth(j)}. The set of sons of the vertex
(i, j) is given by the cartesian product of the sons of i and the sons of j.

An important concept in the framework of H-matrices is the admissibility condition. We
can associate a map a : I× J −→ {0, 1} to the block H-tree I× J that takes the value 1 only on a
subset of blocks. We call these blocks the admissible blocks of the representation.

These blocks correspond to the blocks of the matrix that are explicitly representable, either
as a low rank or a full matrix.

In our setting we decided to use the same subdivision for the row indices and the column
indices (as depicted in Figure 3.2) but, in general, different choices can be made. Moreover,
we say that a block is admissible if and only if its row and column indices i and j are disjoint
or if the size of the matrix is smaller than a given threshold. Figure 3.2 reports the admissible
blocks of the first kind in gray.

Remark 3.2.4. This representation of quasiseparable matrices has a larger storage requirements
than the generator based representation and the Givens–Vector ones (that will be presented in
the next subsection). In fact, the representation of low rank admissible blocks at each level
accounts for an O(nk) storage but we need to go log2 n levels deep, so the total storage need
is about O(nk log2 n). As we will see, this also reflects on computational costs. However, a
variant of H-matrices called H2-matrices are available [67] and introduce some relationships
between the admissible blocks so that the storage can be made again O(nk). In this work we
will use H-matrices because, being simpler, they allow a clearer exposition of the techniques
used. Notice, however, that the ideas using H-matrices can be reformulated in the new context
of H2-matrices.

The main feature of this representation is the ability to perform matrix operations and
compute hierarchical representation of the results without knowing the quasiseparable rank a
priori. We refer to [26] for the details and we simply give a short example that shows how this
can be done.

Consider two H-matrices A and B, and suppose that they have both quasiseparable rank
k. We know by the property of quasiseparable matrices that the sum A+ B will have QS rank
(at most) 2k. Here we show how to obtain a representation of A+ B as an H-matrix. In order
to perform the operation we need A and B to share the same subdivision, i.e., the same row
and column cluster. For simplicity we will assume that the chosen is cluster is the binary
subdivision cluster, where each set of indices is divided in the first and second half (rounded
to the nearest integer). This is exactly the subdivision represented in Figure 3.2.

At the top level we have that A and B are divided in four submatrices. The diagonal blocks
will be recursively subdivided, while the offdiagonal ones are low rank, so they admit a repre-
sentation of the formUV∗. LetUAV∗A andUBV∗B be two low rank blocks in corresponding posi-
tion of A and B. The corresponding block of A+B will be UAV∗A+UBV

∗
B = [UAUB] · [VAVB]∗

that provides a direct formula for the admissible blocks of the result. This approach can be ap-
plied recursively on the diagonal blocks and allows to obtain a quasiseparable representation
of order 2k of A+B.
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A reasonable question might be: what if A + B is not only 2k-quasiseparable but also j-
quasiseparable for some j < 2k? Can we detect when this happens? The answer is yes, and
this is in fact one of the most interesting features of this framework in our context.

Remark 3.2.5. If the resulting matrix A+B is j-quasiseparable then any admissible block of its
representation has at least one of the two factors computed in the above way of rank j.

This suggests an algorithm for this compression step:

• We compute the quasiseparable representation in H-matrix form of A+ B with QS rank
equal to 2k.

• We compute a QR factorization of each factor of the formQR = [UAVA] and PS = [VAVB].
So then we have

[UAUB] · [VAVB]∗ = QRS∗P∗.

• We compute a SVD factorization of RS∗ (that is a 2k× 2k matrix) and we rewrite RS∗ =
ŨṼ∗ by removing the columns and rows of the basis given by the SVD corresponding to
zero singular values (or to singular values under a certain threshold, depending on the
user’s choice).

• We construct the updated factors for the representation of the admissible block as

[UAUB] · [VAVB]∗ = QŨ(PṼ)∗.

The above algorithm has a cost that is cubic in k but only linear in n, since it only requires
a QR factorization of n× k matrices, that costs O(nk2), and an SVD of a k× k matrix that costs
O(k3). This makes it very effective when the quasiseparability rank is not large.

Moreover, we can notice that the procedure can be adapted to work in an approximate way:
we can choose to approximate the k× k matrix RS∗ with an optimal low rank approximation
given by the SVD. Given that Q and P are orthogonal, this will be also an optimal approxi-
mation (in the 2-norm sense) for [UAUB] · [VAVB]∗. This allows to find a representation of an
H-matrix that approximates A+Bwith a nearby quasiseparable matrix obtained by truncating
small singular values. The truncation epsilon can be chosen arbitrarily and adaptively based
on the needs of the user, and this makes the strategy very flexible.

Remark 3.2.6. We have written the compression strategy only for the summation case, but the
same can be applied almost verbatim also for the multiplication (by performing block multi-
plication) and for the inversion. We refer to [26] for an in-depth analysis of these algorithms.

Remark 3.2.7. One of the advantages of the H-matrices and H2-matrices framework is that
there exists a very well-written implementation of these data structures, called HLib [25]. An
open source clone (written by the same author) of this is also available on Github under the
name of H2Lib [24].

3.2.4 Handling Givens rotations

In this subsection we present some preliminary tools before introducing the third kind of
representation, called Givens–Vector representation. They have been introduced by Mastronardi,
Van Barel, Vandebril et al. for 1-quasiseparable matrices and are analyzed in [89] and [90].
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As the name suggests, these representations are based on the use of Givens rotations. To
be more precise, it is not strictly necessary to consider Givens rotations: any construction
that provides 2× 2 orthogonal matrices that allow to put zeros in specific places can be used.
However, in order to keep the exposition simple, we only refer to Givens rotations.

Given a vector v = (vi) ∈ C2, denote by G = G(v1, v2) a 2× 2 orthogonal matrix

G =

[
c s

−s c

]
, c ∈ R, |s|2 + c2 = 1,

such that Gv = αe1, where |α| = ‖v‖2. Typically, when dealing with bigger matrices, we
compute Givens rotations acting only on two consecutive rows, i.e., we consider matrices of
the form Gi = Ii−1 ⊕G⊕ In−i−1. We call also these matrices Givens rotations, in the sense
that Gi acts on a matrix A as a rotation applied to the components i and i+ 1 of each column
(or on each row, depending if we are left or right multiplying).

Definition 3.2.8. A tuple G = (Gi)i∈I where Gi are Givens rotations and (I,6) is some or-
dered index set is said a sequence of Givens rotations. We write SnG to mean the set of Givens
sequences built by n× n Givens rotations. We also define

∏
i∈IGi the product in increasing

order while
∏
i∈rev(I)Gi denotes the product in decreasing order with respect to the order

defined on I. The following operations on G are introduced:

• Gv :=
∏
i∈rev(I)Giv, for v ∈ Cn;

• G∗v :=
∏
i∈IG

∗
iv for v ∈ Cn;

• for J ⊆ I, with the induced order, we call G[J] :=
(
Gj
)
j∈J the slice of G on the indices J;

• for Givens sequences G = (Gi)i∈I, G
′ =

(
G ′j

)
j∈J

, we define the product GG ′ to be the
sequence

GG ′ := (Ei)i∈ItJ , Ei =

{
Gi if i ∈ I
G ′i if i ∈ J

where t is the disjoint union operator and where the order on I t J is induced by the
ones on I and J and by the agreement that Gi < G ′j for every i ∈ I, j ∈ J.

The above definitions of the product between a sequence and a vector trivially extend to prod-
ucts between sequences and matrices. For instance we set GA :=

∏
i∈rev(I)GiA.

The sequences of rotations are the basic tool that we use to define Givens Vector repre-
sentations (in short GV in the following). The definition given above is fairly general and, in
our construction, we are interested only in some particular choices for the index sets I. In
the cases where the index sets have this particular structure that we require, we give some
more specific definitions. We begin by introducing the necessary tools for the representation
of 1-quasiseparable matrices and then we extend them to k-quasiseparable matrices for k > 1.

Definition 3.2.9. We say that G is a 1-sequence of Givens rotations if G = (G2, . . . ,Gn−1).

When G is not only a sequence, but also a 1-sequence, we can write the actions of G and G∗

on a vector v in a much more explicit way.

• Gv := Gn−1 . . . G2v, for v ∈ Cn;
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• G∗v := G∗2 . . . G
∗
n−1v, for v ∈ Cn;

• G[i : j] := (Gi, . . . ,Gj), for 2 6 i < j 6 n− 1, is a slice of G from i to j.

Here and in the following we often use the notation i : j to mean the ordered set of integers
from i to j, i.e., formally,

i : j := (I,6), I = {i, i+ 1, . . . , j− 1, j}

where 6 is the usual order on the integers. We also introduce the following notations:

• G[: j] := G[2 : j], i.e., the subsequence of G with the elements up to the index j.

• G[i :] := G[i : n− 1], i.e., the subsequence of G with the elements with an index bigger or
equal of i.

In the [88] and some other recent papers such as [5] a nice pictorial notation is used to
denote these sequences of rotations. We use it here to make some of the following proofs
much more understandable, even if we stick with the formal version of the sequences to verify
our claims.

In these works the authors use the symbol to denote a rotation Gi. The index i is
determined graphically by the vertical alignment of rotations. As a concrete example, consider
the following pictorial representation of the action Gv for a sequence of rotations with n = 6:

G = (G2, . . . ,Gn−1) = , Gv =



v1
v2
v3
v4
v5
v6

 . (3.2)

Here Gv represents the product Gn−1 . . . G2v and the vertical and horizontal alignments of the
symbol clarify both the order of the multiplications and the indices where they act.

The 1-sequences are a valid tool to describe quasiseparable matrices of QS rank 1. By
joining k 1-sequences we obtain a tool that is useful to parametrize quasiseparable matrices of
QS rank k. In order to formally define these objects we will need two indices (intuitively, one
to index the vertical alignment of the rotation and the other to index the k-sequence that we
have joined together). For this, we introduce the following definition.

Definition 3.2.10. The standard Givens sequence order on the set N2 is the ordering 6G defined
by

(i1, j1) 6G (i2, j2) ⇐⇒ j1 > j2 or (j1 = j2 and i1 6 i2) .

With this order on N2 we can precisely define the concept of k-sequences of Givens rota-
tion.

Definition 3.2.11. A sequence of Givens rotation G = (Gi,j)(i,j)∈I is a k-sequence if I = {(i, j) ∈
N2 | i = 2, . . . ,n− 1, j = 1, . . . , min(i − 1,k)} with the order induced by 6G. With a slight
abuse of notation we define the sequence G[i1 : i2] := (Gi,j)(i,j)∈I ′ , I ′ = {(i, j) ∈ N2 | i =

i1, . . . , min(i2 + k,n− 1), j = max(1, i− i2 + 1), . . . , min(k, i− i1 + 1), 2 6 i1 < i2 6 n− 1} to
be a slice of G from i1 to i2, where the ordering in I ′ is induced by the ordering 6G valid on
the parent set.
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The definition above might seem a little bit involved but, once again, the pictorial represen-
tation of the rotations can help to grasp the concept in a more immediate way.

Recall that, intuitively, k-sequences are just k 1-sequences glued together, each with one
rotation less than the previous one. For example, for n = 6 and k = 2 we have G =

(G3,2,G4,2,G5,2,G2,1,G3,1,G4,1,G5,1) that is represented by

G = . (3.3)

Note that for every i1 6 i2 < i3, the slices of G can be factored in the following form:

G[i1 : i3] = G[i2 + 1 : i3]G[i1 : i2], G∗[i1 : i3] = G∗[i1 : i2]G
∗[i2 + 1 : i3],

where, for notational simplicity, we set G∗[i1 : i2] = (G[i1 : i2])
∗. This property is called slicing

of rotations.
Note that the order 6G is chosen so that Gv coincides with the product of the rotations by

v in the order induced by the above pictorial representation.

Remark 3.2.12. In principle we now have two conflicting definitions for 1-sequences, since
both Definition 3.2.9 and Definition 3.2.11 with k = 1 can be used. Nevertheless, while they
define two formally different objects, we can show that they are isomorphic. In fact, the set
of rotations do have the same cardinality and the index sets are I = {2, . . . ,n− 1} in the first
case and I = {(2, 1), . . . , (n− 1, 1)} in the second one. These two sets are clearly isomorphic as
ordered sets, and so the ambiguity can be removed.

Remark 3.2.13. It is worth noting that the choice of an ordering that induces the correct order
in the multiplications is not unique. In particular, 6G is only one of the possible choices. In
fact, while in general the matrix product is not commutative, the product of Givens rotations
is often commutative. More precisely, whenever two rotations act on different set of indices or
exactly on the same two indices applying them in every order leads to the same result. This is
a very important property from the computational point of view, and will be exploited in the
update of Givens–Vector representations.

It is worth highlighting that the operation of slicing a k-sequence is equivalent to removing
the heads and tails from the sequences themselves. For example the slice of G defined by
G[3 : n− 2] is obtained by taking only the bold rotations in the following picture, where n = 7,
which correspond to G4,2,G5,2,G3,1,G4,1.

G = .

As highlighted by Remark 3.2.13 Givens rotation often commute. The only case when this
does not happen is when we multiply GiGi+1 or GiGi−1, that is, when the two rotations act
on consecutive indices.
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Nevertheless, also in this case we can prove the following lemma, which guarantees that it
is still possible to swap rotations if the operation is coupled with an appropriate update.

Lemma 3.2.14 (Turnover). Let G be a 1-sequence of Givens rotations and Fi a Givens rotation acting
on the rows i and i+ 1. Then there exists another sequence Ĝ and a Givens rotation F̂i−1 acting on the
rows i− 1 and i such that

GFi = F̂i−1Ĝ.

Moreover, Ĝ differs from G only in the rotations acting on the rows with indices (i− 1, i) and (i, i+ 1).

Proof. A complete proof of this result can be found in [89]. Here we report only a pictorial
representation of this fact, that helps to understand what is happening.

=
ˆ ˆ

ˆ

On the left-hand side of the equation we have G and Fi, that is the rightmost rotation. We can
move Fi to the left of G by updating it and updating also the “nearby” rotations as reported in
the picture in the right-hand side of the equation.

The above result can be extended to k-sequences of rotations for k > 1.

Corollary 3.2.15. Let G be a k-sequence of Givens rotations and Fi a Givens rotation acting on the
rows i and i+ 1. Then there exists another k-sequence Ĝ and a Givens rotation F̂i−k acting on the rows
i− k and i− k+ 1 such that

GFi = F̂i−kĜ,

where F̂i−k = I if i− k 6 0. Moreover, Ĝ differs from G only in the rotations of indices (i− j+ 1, j)
and (i− j, j) for j = 1, . . . ,k.

Again, a pictorial representation of this fact can be useful to figure out the interplay of the
rotations. Below, we report the case where i > k+ 1.

=

ˆ ˆ
ˆ ˆ

ˆ

It is natural to determine what is the cost of such operations, called turnovers. In fact, they
will be often used in the reduction algorithm and so we need to bound their flops count in
order to state a bound for the total cost of the reduction algorithm.

As previously said, a turnover on a k-sequence is nothing more than k turnovers on 1-
sequences one after the other. So we only need to worry about the cost of a single turnover on
a 1-sequence.

In that case we have that only a constant number of rotations needs to be updated (more
precisely, only 3 of them) and the cost of computing them is equivalent to the computation of
a QR factorization of a 3× 3 matrix. This implies that the cost of this operation is O(1) and
that the cost of a turnover on a k-sequence is O(k).
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3.2.5 Givens–Vector representations

We now have all the required tools and notations needed to introduce the concept of Givens–
Vector representations, in short GV. In this section we restrict our attention to the case of
Hermitian matrices, since they are simpler to handle and they are sufficient for our case. For
this reason the following definitions only consider this special case. However, it is very easy
to extend these definitions to the more general case by simply adding additional terms to
represent the lower and upper part of the matrix separately.

Definition 3.2.16. A Givens Vector (GV) representation of rank k for a Hermitian k-quasiseparable
matrix A is a triple (G,W,D) where G is a k-sequence of Givens rotations, W ∈ Ck×(n−1) and
D is a diagonal n×n matrix such that

• D is the diagonal of A;

• for every i = 1, . . . ,n− 1 the subdiagonal elements of the i-th column of A are equal to
the last n− i elements of G[i+ 1 :]wi, where we define

wi :=

 0i
Wei
0n−k−i

 if i < n− k, wi :=

[
0i

(Wei)[1 : n− i]

]
otherwise

where 0j is the 0 vector of length j if j > 0, and is the empty vector otherwise. That is,
tril(A,−1)ei = G[i+ 1 :]wi.

If the triple (G,W,D) is a GV representation of the matrix A we write A = GV(G,W,D).

We refer to [88, 40] for a detailed analysis of the properties of this representation. We recall
here only the following facts:

• If A is k-quasiseparable then there exists a k-sequence G, a matrix W ∈ Ck×(n−1) and a
diagonal matrix D such that A = GV(G,W,D).

• If A = GV(G,W,D) for some k-sequence G, W ∈ Ck×(n−1) and D diagonal, then A is at
most k-quasiseparable.

Remark 3.2.17. Definition 3.2.16 parametrizes the structure of the matrix A by using the
columns of W as compressed representation for the lower triangular part of the columns of
A and the rotations are needed to parametrize the relation between different columns and to
propagate the values in W. However, the same kind of representation can be used to represent
the rows of A by storing a (n− 1)× k matrix W and sequences of rotations acting from the
right. The two frameworks are completely equivalent and in [89] a O(n) algorithm to swap
between the two definitions is given for the case of 1-quasiseparable matrices.

The matrix W is called the weight matrix. For this reason these representations are some-
times called Givens–Weight representations. For the sake of clarity in this thesis we will con-
sistently use only the term Givens–Vector representation.

Intuitively, the k-sequence G represents the column span of the submatrices in the lower
part of A, while the columns of W are related to the norm of the columns. In fact, one can
note that for every column of tril(A,−1) we have ‖tril(A,−1)ej‖ = ‖Wej‖. This can be proved
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by noting that the strictly lower triangular part of the j-th column of A is obtained by the j-th
column of W by multiplication for unitary matrices, that do not alter its norm.

We introduce some results that will help to further characterize these features of G and W.
More precisely, the following lemma allows to check if, given a certain k-sequence G, there
exists a GV representation for a matrix A with that k-sequence in it.

Lemma 3.2.18. Let A be a Hermitian matrix and G a k-sequence of Givens rotations. Then B = G∗A
is lower banded with bandwidth of k, i.e., bi,j = 0 for i− j > k, if and only if the matrix A admits a
representation of the form GV(G,W,D) for some W ∈ Ck×n and D real diagonal.

Proof. We first suppose that A = GV(G,W,D). Recall that, by definition of GV representation,
tril(A,−1)ei = G[i+ 1 :]wi for i = 1, . . . ,n− 1. This implies that

G∗ tril(A,−1)ei = G∗G[i+ 1 :]wi = G∗[: i]G∗[i+ 1 :]G[i+ 1 :]wi = G∗[: i]wi.

We also have
G∗ triu(A)ei = G∗[: i]G∗[i+ 1 :] triu(A)ei = G∗[: i] triu(A)ei,

since G∗[i+ 1 :] is acting on rows that are null. So by decomposing A = tril(A,−1) + triu(A)
we have

G∗Aei = G∗ triu(A)ei + G∗ tril(A,−1)ei = G∗[: i](triu(A)ei +wi).

Now observe that the rotations inside G∗[: i] only act on the first i + k rows. This implies
that, since both wi and triu(A)ei have all the components with index strictly bigger than i+ k
equal to zero, the same must hold for G∗[: i](wi + triu(A)ei), and this completes the proof.
The converse is also true. In fact, if G∗A is lower banded with bandwidth k we can build W
by setting Wei = (G∗[i+ 1 :]Aei) [i+ 1 : i+ k] and D equal to the diagonal of A. Then the
equation A = GV(G,W,D) can be verified by direct inspection.

We have said that the k-sequence G is related with the column span of the strictly lower
submatrices of A. For this reason we say that a k-sequence G spans U ∈ Cn×k if there exists
Z ∈ Ck×k such that G∗U =

[
Z
0

]
. This definition is further motivated by the following.

Lemma 3.2.19. If G spans U ∈ Cn×k then, for every V ∈ Cn×k, W ∈ Ck×(n−1) and D diagonal,
the matrix A1 = UV∗ + GV(G,W,D) is lower k-quasiseparable and A2 = t(UV∗) + GV(G,W,D) is
k-quasiseparable. In particular, both G∗A1 and G∗A2 are lower banded with bandwidth k.

Proof. For the first part of the lemma it suffices to observe that G∗A1 is lower banded with
bandwidth k. This follows directly by noting that A = GV(G,W,D) +UV∗. Since G∗UV∗ =[
Z
0

]
V∗ and G∗GV(G,W,D) is lower banded by Lemma 3.2.18, we conclude that also G∗A1 is

lower banded with bandwidth k. Since the strictly lower part of A2 coincides with the one of
A1 we find that also A2 is lower k-quasiseparable. Given that A2 is Hermitian, we conclude
that A2 is also upper k-quasiseparable. To see that also G∗A2 is lower banded we can write

G∗A2 = G∗(A1 − triu(UV∗) + triu(VU∗, 1)) = G∗A1 + G∗R,

where R is upper triangular. Since G∗, represented as a matrix, is the product of k upper
Hessenberg matrices, it is lower banded with bandwidth k. This implies that also G∗R is lower
banded with bandwidth k and so the same must hold also for G∗A2.
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Remark 3.2.20. The above lemma shows how the Givens rotations in a GV representation of
a matrix in QSHk are sufficient to determine the column span of the submatrices contained in
the lower triangular part. These matrices give the same information obtained by knowing the
matrix U in the D+ t(UV∗) representation.

Remark 3.2.21. Note that the action of a sequence of Givens rotations G on vectors and ma-
trices can be represented in matrix form. More precisely, it is possible to define the following
operator M

M : SnG −→ Cn×n

G 7−→ M(G) := GI
.

We have then that Gv = M(G)v. Notice, in particular, that M(G) is always a unitary matrix.

We have the following theorem that characterizes the structure of the matrices obtained by
applying the operator M on k-sequences.

Theorem 3.2.22. If G is a k-sequence then the matrix M := M(G) is such that its elements mij are
equal to 0 if j > i+ k. In particular, if G is a 1-sequence then M is in lower Hessenberg form and in the
general case the matrix M can be factorized as the product of k unitary lower Hessenberg matrices.

Proof. We prove that, for a 1 sequence, we have that M(G) is a lower Hessenberg matrix. For
this we need to prove that etiGej = 0 whenever j > i+ 1. Notice that, if j > i+ 1 we have

etiGej = e
t
iG[i+ 1 : n− 1]G[2 : i]ej = e

t
iG[i+ 1 : n− 1]ej = 0

since G[2 : i]ej = ej in view of the fact that it does act only on the first i+ 1 < j components. On
the other hand G[i+ 1 : n− 1] does not alter the component of index i, that is 0 in ej and so we
have the thesis. The result on k-sequences can be obtained by recalling that each k-sequence
can be seen as a composition of k 1-sequences.

Given the above result, one may be curious to know if all the unitary lower Hessenberg
matrices are obtained as M(H), i.e., if the map M is surjective. The next theorem shows that
this is almost the case.

Theorem 3.2.23. Let H be a unitary lower Hessenberg matrix such that det(H) = 1. Then H can be
written as M(G) with G being a 1-sequence.

Proof. We prove the result by induction. If n = 1 then H is simply a scalar of module 1, and
asking that the determinant is 1 implies thatH = 1. We have then thatH can be written as M(∅),
since 1-sequences are made of no rotations when n = 1. Assume now that the result holds
for n× n unitary lower Hessenberg matrices and assume H ∈ C(n+1)×(n+1). We compute a
rotation G acting on the rows (n,n+ 1) such that

GH =


0

Ĥ
...

0

0 . . . 0 1

 .

This is always possible since we can compute a rotation G acting on the last two rows that
sets the element in position (n,n+ 1) of H to zero. Notice that for a unitary matrix P we have
Pen = en ⇐⇒ P−1en = en ⇐⇒ P∗en = en ⇐⇒ e∗nP = e∗n and so since the last column
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of GH is equal to en its last row must be etn. Noting that det Ĥ = 1 (thanks to detG = 1) we
have, by induction, that Ĥ can be written as a product of rotations Ĥ = Ĝn−1 . . . Ĝ2, so

GH = Gn−1 . . . G2, Gi := Ĝi ⊕ 1,

and setting Gn = G−1 and G = {Gn, . . . ,G2} gives us the thesis.

3.3 hessenberg reduction

The main purpose of this section is to develop a Hessenberg reduction algorithm that allows
to exploit the quasiseparable structure that we have proven to be present in the linearizations
introduced in Section 2.2. Hessenberg reduction is the usual preliminary reduction step of
algorithms for eigenvalue computation of classical eigenvalues problems. For this reason we
are interested in the case where the secular linearizations are monic, and we only have to deal
with the constant coefficient.

In those cases, the zero degree coefficient of the matrix polynomial can be expressed as
A = D+UV∗, and so it is a very special kind of quasiseparable matrix.

Algorithms for the Hessenberg reduction of quasiseparable matrices are available in the
literature, see for example [48] and [56, 41]. These works handle the more general problem of
Hessenberg reduction for a generic quasiseparable matrix. Only the minimal assumptions that
guarantee that the quasiseparable structure is still available in the Hessenberg matrix H are
considered. Nevertheless, the cost of these algorithms is in general O(n2kα) with α > 1. In
[48] the value of α is exactly 3, while in [56] it depends on some choices in the implementation
and so it is not fixed, but it is in general α > 1. In [41] the optimal complexity O(n2k) for
the reduction is guaranteed in the case of Hermitian matrices, and it is also discussed how
to generalize the approach to a Hermitian quasiseparable matrix plus a low rank correction
(which is even more general than our assumption of real diagonal plus low rank). However,
the numerical experiments are focused on Hermitian matrices (instead of diagonal plus low
rank) and we could not perform a direct comparison of the two approaches.

In this section we develop an algorithm with a reduction cost of O(n2k), so we choose to
have α = 1. To obtain this result we will show that a certain structure of the starting matrix
is preserved during the steps of Hessenberg reduction, and so exactly the same algorithm
usually carried out for this process can be executed by using an appropriate parametrization
of this structure that yields the gain in the asymptotic complexity. Notice that in this case the
complexity is asymptotically lower independently of k, since having k 6 n implies n2k 6 n3,
the cost of the standard Hessenberg reduction. Clearly since this analysis omits constants it
might be that the full Hessenberg reduction is faster if k ≈ n.

3.3.1 Rank structure preservation and rank-symmetric matrices

In this section we show how to use the representations introduced in the previous Section 3.2
in order to reduce a k-quasiseparable matrix A to upper Hessenberg form.

As previously said, we only consider matrices of the form A = D+UV∗ where D is real
and diagonal and U and V are n× k matrices. This matrix clearly does have a quasiseparable
structure (since any offdiagonal matrix has rank bounded by k) but it is not true that every
quasiseparable matrix is of this form.



90 quasiseparable matrices

The reason for which we consider only these matrices is given by the following definition
and lemma.

Definition 3.3.1. We say that a set S ⊆ Cn×n is rank symmetric if for every A ∈ S we have
lr(A) = ur(A), i.e., the lower QS rank of A is equal to the upper one. Moreover, we say that S
is unitary invariant if QSQ∗ ⊆ S for any unitary matrix Q.

Here we report two important examples of these kinds of sets.

• The set of Hermitian matrices is rank symmetric and unitary invariant. In fact, it is
immediate that for any Hermitian matrix A we have lr(A) = ur(A) and we also have that
if A is Hermitian then QAQ∗ is Hermitian for any unitary matrix Q.

• The set of unitary matrices is rank symmetric and unitary invariant. The unitary invari-
ance is obvious, while the rank symmetry property is less trivial, but is a direct conse-
quence of the Nullity Theorem (see [65]), which states that the nullity of the offdiagonal
blocks is the same of the corresponding block in the inverse. This, coupled with the fact
that Q−1 = Q∗ leads to the thesis.

Lemma 3.3.2. Let A = S+UV∗ be the sum of a matrix S contained in a rank symmetric and unitary
invariant set S and a rank k one. If H = QAQ∗ is one of its upper Hessenberg form obtained with the
conjugation by a unitary matrix Q then H is (1, 2k+ 1)-quasiseparable.

Proof. We can rewrite H as

H = QAQ∗ = QSQ∗ + (QU)(QV)∗.

Since QSQ∗ ∈ S by hypothesis we have lr(QSQ∗) 6 lr((QU)(QV)∗) + lr(H) = k + 1. Since
ur(QSQ∗) = lr(QSQ∗) we have ur(H) 6 ur(QSQ∗)+k 6 2k+1which concludes the proof.

Given that real diagonal matrices are a very particular case of Hermitian matrices, we have
that the coefficients of the linearizations of Section 2.2 are in the hypothesis of the above lemma
if the nodes Bi(x) are chosen to be real.

The Hessenberg reduction is a very well-understood algorithm in numerical analysis. We
analyze what happens to the quasiseparable structure during the execution of the algorithm.
Lemma 3.3.2 guarantees that the final matrix H has a quasiseparable structure independently
by the procedure chosen, but what about the intermediate steps?

The more widespread implementation of the Hessenberg reduction for general matrices
relies on Householder reflections. In order to be able to fully exploit our Givens–Vector repre-
sentation we instead rely on Givens rotations.

Algorithm 5 Reduction to Hessenberg form by means of Givens rotations
1: for j = 1, . . . ,n− 2 do
2: for i = n, . . . , j+ 2 do
3: G← givens(A[i− 1, j],A[i, j])
4: A[i− 1 : i, :]← G ·A[i− 1 : i, :]
5: A[:, i− 1 : i]← A[:, i− 1 : i] ·G∗
6: end for
7: end for
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The general algorithm is rather simple and is formulated in Algorithm 5. It requires the
computation of O(n2) Givens rotations. The first n− 2 rotations are used to set the elements
in the first column to zero from the last row to the third one. Then the procedure is repeated
on the second column, where only n− 3 rotations are needed, and so forth.

We call Q1 the product of the first n − 2 rotations such that Q1AQ∗1e1 = α1e1 + β1e2
for some α1,β1. By induction we define Qi the product of the n− i− 1 rotations such that
QiQi−1 . . . QiAQ

∗
1 . . . Q

∗
i−1Q

∗
iei has all the elements with row index larger than j+ 1 equal to

zero for every column of index j 6 i.
We are interested in studying the structure of Aj := Qj . . . Q1AQ

∗
1 . . . Q

∗
j , that is the par-

tially reduced matrix

Aj = Qj . . . Q1(S+UV
∗)Q∗1 . . . Q

∗
j =



a
(j)
1,1 . . . a

(j)
1,j × . . . ×

a
(j)
2,1

. . .
...

...

. . . a
(j)
j,j × . . . ×

a
(j)
j+1,j ? . . . ?

...
...

? . . . ?


. (3.4)

3.3.2 Some technical tools

The aim of this section is to characterize the structure of the partially reduced matrices obtained
at each step of the Hessenberg reduction. As we will see, this will allow to directly give
strict bounds for the lower and upper quasiseparability ranks during the procedure. The next
lemmas and theorems will provide the necessary tools needed for the result.

Property (iv) of Lemma 3.2.3 is interesting for our purpose. It is natural to ask what
happens when we compute R = t(SAS∗) − St(A)S∗ where S is not diagonal. In principle we
have R 6= 0, but we want to better characterize its structure. In our case we will have S = Qj,
a matrix version of a sequence of Givens rotations. By looking at the Algorithm 5 we see that
Qj is of the form M(G)∗ where G is a 1-sequence of Givens rotations. For this reason, in view
of Theorem 3.2.22 we have that Qj is upper Hessenberg. This motivates the next results, that
characterize the structure of R when S is upper Hessenberg.

Lemma 3.3.3. Let Z ∈ Ck×k and set S = Z⊕ In−k where n > k. Then for any A ∈ Cn×n it holds
that

t(SAS∗) − St(A)S∗ =W ⊕ 0n−k,

for some W ∈ Ck×k where 0n−k is the null matrix of size n− k. Similarly, for S = In−k ⊕Z it holds
that t(SAS∗) − St(A)S∗ = 0n−k ⊕W ′, for some W ′ ∈ Ck×k. The same properties hold if In−k is
replaced by a diagonal matrix Dn−k.

Proof. Concerning the first part, partition A as A =
[
A1,1 A1,2
A2,1 A2,2

]
where A1,1 ∈ Ck×k, so that

SAS∗ =
[
ZA1,1Z

∗ ZA1,2
A2,1Z

∗ A2,2

]
. In view of (v) of Lemma 3.2.3 we have

t(SAS∗) =

[
t(ZA1,1Z

∗) ZA∗2,1
A2,1Z

∗ t(A2,2)

]
. (3.5)
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On the other hand,

St(A)S∗ = S

[
t(A1,1) A∗2,1
A2,1 t(A2,2)

]
S∗ =

[
Zt(A1,1)Z

∗ ZA∗2,1
A2,1Z

∗ t(A2,2)

]
. (3.6)

So that, from (3.5) and (3.6) we get t(SAS∗) − St(A)S∗ = W ⊕ 0n−k, with W = t(ZA1,1Z
∗) −

Zt(A1,1)Z
∗. The second part can be proved similarly. Moreover, if In−k is replaced by

the diagonal matrix Dn−k the same properties hold since for a diagonal matrix D one has
t(DAD∗) −Dt(A)D∗ = 0 in view of Property (iv) of Lemma 3.2.3.

Lemma 3.3.3 characterizes the residual R when the conjugation matrix S only acts on a
subset of rows. The lemma guarantees that the residual is different from zero only in the
components where the conjugation matrix S is not diagonal. This allows to apply one Givens
rotation at a time.

We now state another lemma that shows how composition of conjugation acts on the resid-
ual matrix.

Lemma 3.3.4. Let S = (Z⊕ In−2)(1⊕ Ŝ) where Z ∈ C2×2, Ŝ ∈ C(n−1)×(n−1). Then for any
matrix A partitioned as A =

[
a1,1 u

∗

v Â

]
∈ Cn×n, where Â ∈ C(n−1)×(n−1) it holds that

t(SAS∗) − St(A)S∗ =W ⊕ 0n−2 + (Z⊕ In−2)(0⊕ (t(ŜÂŜ∗) − Ŝt(Â)Ŝ∗))(Z∗ ⊕ In−2).

for some W ∈ C2×2.

Proof. Set B = (1⊕ Ŝ)A(1⊕ Ŝ∗) then by Lemma 3.3.3

t(SAS∗) = t((Z⊕ In−2)B(Z∗ ⊕ In−2) =W ⊕ 0n−2 + (Z⊕ In−2)t(B)(Z∗ ⊕ In−2).

On the other hand

St(A)S∗ = (Z⊕ In−2)(1⊕ Ŝ)t(A)(1⊕ Ŝ∗)(Z∗ ⊕ In−2).

Thus
t(SAS∗) − St(A)S∗ =W ⊕ 0n−2 + (Z⊕ In−2)E(Z∗ ⊕ In−2),

where E = t(B) − (1⊕ Ŝ)t(A)(1⊕ Ŝ). Now, since B = (1⊕ Ŝ)A(1⊕ Ŝ∗), in view of Property (v)
of Lemma 3.2.3 we have

B =

[
a1,1 u∗Ŝ∗

Ŝv ŜÂŜ∗

]
, t(B) =

[
0 v∗Ŝ∗

Ŝv t(ŜÂŜ∗)

]
.

A similar analysis shows that

(1⊕ Ŝ)t(A)(1⊕ Ŝ∗) =
[
0 v∗Ŝ∗

Ŝv Ŝt(Â)Ŝ∗

]
.

Thus we get

t(SAS∗) − St(A)S∗ =W ⊕ 0n−2 + (Z⊕ In−2)(0⊕ (t(ŜÂŜ∗) − St(Â)Ŝ∗))(Z∗ ⊕ In−2).
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We want to combine the above lemmas in order to obtain a result usable in the case S =

M(G), that is the one interesting for us. To be more precise, when carrying out the Hessenberg
reduction process, we have that, at the step j, Qj =: S is a product of n− j− 1 rotations, so that
we have Qj = Gj+1 . . . Gn−1. This motivates the following.

Theorem 3.3.5. Let A ∈ Cn×n and S = Gh . . . Gk for some indices 1 6 h 6 k 6 n− 1. Let ci
and si be the parameters defining the rotations Gi and assume that si 6= 0 for i = h, . . . ,k. Then the
residual matrix Rn := t(SAS∗) − St(A)S∗ is of the form Rn = D+ t(ab∗) where D is diagonal and a
and b are vectors. More precisely we have

ai = di = 0 if i < h or i > k+ 1, bi =


sh · · · sk if i = h
ci−1si · · · sk for h < i < k+ 1
0 otherwise

.

In particular, if h > 1 then Rne1 = 0.

Proof. The matrix S has the form Ih−1 ⊕ Zk−h+2 ⊕ In−k−1 where Zk−h+2 is a unitary Hes-
senberg matrix of size k−h+ 2. In view of Lemma 3.3.3, we can write Rn = 0h−1⊕Rk−h+2⊕
0n−k−1 and this immediately proves the last statement of the Theorem. Moreover, it follows
that ai = bi = di = 0 for i = 1, . . . ,h− 1 and for i = k+ 2, . . . ,n so that it is sufficient to
prove the claim for Rk−h+2. Equivalently, we may assume that h = 1 and k = n− 1 so that
si 6= 0 for i = 1, . . . ,n− 1. We prove that Rn ∈ QSHn1 by induction on n. For n = 2 it holds
that R2 =

[
0 α
α 0

]
. This way one can choose a2 = α/s1 and b1 = s1. For the inductive step,

let n > 1 and observe that S can be factorized as S = (Z⊕ In−2)(1⊕ Ŝ) for Z = [ c s
−s c ], and

Ŝ ∈ C(n−1)×(n−1), where for notational simplicity we set s = s1, c = c1. Applying Lemma
3.3.4 yields

Rn =W ⊕ 0n−2 + (Z⊕ In−2)(0⊕ Rn−1)(Z∗ ⊕ In−2)

for

W = t(Z
[
a1,1 a1,2
a2,1 a2,2

]
Z∗) −Zt(

[
a1,1 a1,2
a2,1 a2,2

]
)Z∗ =

=
[

−c(sa2,1+sa2,1) −s(ca1,1+sa1,2−ca2,2−sa2,1)

−s(ca1,1+sa1,2−ca2,2−sa2,1) c(sa2,1+(sa2,1))

]
,

where Rn−1 = t(ŜÂŜ∗) − Ŝt(Â)Ŝ∗ and Â is the trailing principal submatrix of A of size n− 1.
A direct inspection shows that

Rn =W ⊕ 0n−2 +
[

|s|2eT1Rn−1e1 seT1Rn−1D̃

sD̃Rn−1e1 DRn−1D

]
, D̃ = c⊕ In−2. (3.7)

From the inductive assumption we may write that Rn−1 = diag(d̂) + t(âb̂∗) for â, b̂, d̂ ∈ Cn−1,
where b̂1 = s2 · · · sn−1 6= 0, b̂i = cisi+1 · · · sn−1. So that (3.7) turns into

Rn =


w1,1 w1,2
w2,1 w2,2

+



|s|2d̂1 ∗ ∗ · · · . . . ∗
d̂1cs c2d̂1 ∗ . . . . . . ∗

â2b̂1s â2b̂1c d̂2
. . .

. . .
...

...
... â3b̂2 d̂3

. . .
...

...
...

...
. . .

. . . ∗
ân−1b̂1s ân−1b̂1c ân−1b̂2 . . . ân−1b̂n−2 d̂n−1


,
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where the upper triangular part, denoted with ∗, is determined by symmetry. Thus, it follows
that Rn = diag(d) + t(ab∗) where d1 = |s1|

2d̂1 +w1,1, d2 = c21d̂1 +w2,2, di = d̂i−1, for
i = 3, . . . ,n; moreover

a2 =
1

b̂1
(csd̂1 +w2,1),

ai = âi−1, for i = 3, . . . ,n,

b1 = s1b̂1, b2 = c1b̂1,

bi = b̂i−1, for i = 3, . . . ,n− 1,

where the condition si 6= 0 implies that b1 6= 0. This completes the proof.

The statement of Theorem 3.3.5 shows that the vector b in the representation of the residual
Rn does not depend at all on the matrix A. This allows to prove the next Corollary.

Corollary 3.3.6. Let A and S be two matrices in the hypothesis of Theorem 3.3.5, so that S is unitary
and S = Gh . . . Gk is a product of Givens rotations. Then for any real diagonal matrix D the residual
matrix

R̃ = t(SAS∗) − S(D+ t(A))S∗

is 1-quasiseparable and admits a representation of the form R̃ = D̃+ t(ab∗).

Proof. We can write

R̃ = t(SAS∗) − St(A)S∗ − SDS∗ = D1 + t(a1b
∗) − SDS∗

in view of Theorem 3.3.5. We have then that SDS∗ = SDS∗ − St(D)S∗ = D2 + t(a2b
∗) since

t(D) = 0 and b is exactly the same vector as above, given that b only depends on S. Joining
these two relations together yields

R̃ = D1 + t(a1b
∗) −D2 − t(a2b

∗) = D1 −D2 + t((a1 − a2)b
∗)

that is in the sought form.

We can now give an alternative representation of the matrix Rn that will allow to retrieve
its Givens–Vector representation used for the reduction algorithm.

Theorem 3.3.7. Under the assumptions of Theorem 3.3.5 the i-th row of the matrix Rn = t(SAS∗) −
S(D+ t(A))S∗ has the form

eTi R = [0, . . . , 0, vi,di,w∗i ]G
∗
i−2G

∗
i−3 · · ·G

∗
1 (3.8)

where, vi,di ∈ C, wi ∈ Cn−i and di = ri,i.

Proof. Let us write S = Q1Q2 where Q1 = G1 · · ·Gi−2, Q2 = Gi−1 · · ·Gn−1, so that (3.8) can
be rewritten as eTi RQ1 = [0, . . . , 0, vi,di,w∗i ]. This way, it is enough to show that the i-th row
of RQ1 has the first i− 2 entries equal to zero. In view of Lemma 3.3.3 we have

R ′ := t(Q2AQ
∗
2) −Q2(D+ t(A))Q∗2 = 0i−2 ⊕ R̂ ∈ QSHn1 .

Whence
Q2(D+ t(A))Q∗2 = t(Q2AQ

∗
2) − 0i−2 ⊕ R̂. (3.9)
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Moreover, by definition of R we have

RQ1 = t(Q1Q2AQ
∗
2Q
∗
1)Q1 −Q1Q2(D+ t(A))Q∗2.

Setting B = Q2AQ
∗
2 and combining the above equation with (3.9) yields

RQ1 = t(Q1BQ
∗
1)Q1 −Q1t(B) +Q1(0i−2 ⊕ R̂).

Now, since Q1(0i−2 ⊕ R̂) has the first i − 2 columns equal to zero, it is sufficient to prove
that the ith row of t(Q1BQ∗1)Q1 −Q1t(B) has the first i − 2 components zero. To this re-
gard, observe that Q1 = Q̃1 ⊕ In−i+1, where Q̃1 ∈ C(i−1)×(i−1), so that partitioning B

as
[
B1,1 B1,2
B2,1 B2,2

]
, where B1,1 ∈ C(i−1)×(i−1), by applying again Lemma 3.3.3 we find that

t(Q1BQ
∗
1) −Q1t(B)Q

∗
1 = Wi−1 ⊕ 0n−i+1 for some Wi−1 ∈ C(i−1)×(i−1). This implies that

t(Q1BQ
∗
1)Q1−Q1t(B) has the last (n− i+ 1) rows equal to zero. This completes the proof.

3.3.3 Carrying out the algorithm

We are now ready to understand what happens during the steps of the reduction algorithm
reported in Algorithm 5.

To do this we need to ensure that the matrices Qj, that can be written as Qj = M(Gj) are
such that the rotations in Gj are different from the identity for indices bigger than j + 1, in
order to satisfy the hypothesis of Theorem 3.3.5. In practice we show that, even if this is not
true, we can reduce to a smaller case where the hypothesis are satisfied, and then reconstruct
the desired structure by embedding the result in larger matrices.

To this end, we need the following lemma that guarantees that the sequences of Givens
rotations do not have “holes”.

Lemma 3.3.8. Let v ∈ Cn, v 6= 0 and consider Givens rotations G1, . . . ,Gn−1 constructed in such
a way that (Gi . . . Gn−1)v = (w(i)∗, 0, . . . , 0)∗, where w(i) ∈ Ci, for i = 1, . . . ,n − 1. If there
exists h such that Gh = I then one can choose Gi = I for every i > h, that is, (G1 · · ·Gh−1)v =

(w
(1)∗
1 , 0, . . . , 0)∗.

Proof. Since Gi · · ·Gn−1 is a unitary matrix which acts in the last n− i+ 1 components of v,
the 2-norm of v[i : n] coincides with the 2-norm of (Gi · · ·Gn−1v)[i : n], that is, |w(i)

i |. On

the other hand, if Gh = I then (w(h)∗, 0, . . . , 0) = (w(h+1)∗, 0, . . . , 0) so that w(h+1)
h+1 = 0. This

implies that ‖v[h+ 1 : n]‖ = 0, whence vi = 0 for i = h+ 1, . . . ,n. This way, one can choose
Gi = I for i = h+ 1, . . . ,n− 1.

Notice that the matrices Qj are of the form Qj = Gj+1 . . . Gn−1, and they are computed in
order to reduce a vector to a multiple of e1 (if we do not look at the first j− 1 components).
For this reason Lemma 3.3.8 guarantees that if Gh = I then also all the rotation with an index
bigger than h are equal to I, so that

Qj = Ij ⊕ (G̃j+1 . . . G̃h−1)⊕ In−h−1. (3.10)

where G̃i are restricted version of Gi and h is the minimum index such that Gh = I. We have
that all the remaining rotations are non-trivial, i.e., si 6= 0.
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We are now ready to characterize the structure of the partially reduced matrices. Recall
that we had, by Equation (3.4), the following structure in the matrix Aj:

Aj =



a
(j)
1,1 . . . a

(j)
1,j × . . . ×

a
(j)
2,1

. . .
...

...

. . . a
(j)
j,j × . . . ×

a
(j)
j+1,j ? . . . ?

...
...

? . . . ?


.

We call Âj the matrix whose elements are indicated by the ? symbol, that is the submatrix that
still need to be reduced to upper Hessenberg form. We want to characterize the structure of
this matrix, and to prove that, at any step, there exist Ûj, V̂j, Ŵj and Ŝj such that

Âj = ÛjV̂
∗
j + t(ÛjŴ

∗
j ) + Ŝj

where Ûj, V̂j, Ŵj ∈ C(n−j)×k and Sj is 1-quasiseparable and Hermitian. We have that the
matrix A0 = Â0 = A = D+UV∗ clearly has this structure by choosing S0 = 0 and W0 = 0.
The next theorem shows that the structure is maintained by the Hessenberg reduction process.

Theorem 3.3.9. Let U,V ,W ∈ Cn×k, S = diag(d) + t(ab∗) ∈ QSHn1 and define

A = UV∗ + t(UW∗) + S.

Let Gi, i = 2, . . . ,n− 1 be Givens rotations acting on the rows i and i+ 1 such that

QAe1 = a1,1e1 +βe2, where Q = G2 . . . Gn−1.

Then the matrix Â obtained by removing the first row and the first column of QAQ∗ can be written
again as

Â = ÛV̂∗ + t(ÛŴ∗) + Ŝ

where Û, Ŵ ∈ C(n−1)×k, and Ŝ = diag(d̂+ t(âb̂∗)) ∈ QSHn−11 for some vectors d̂, â, b̂ ∈ Cn−1.
Moreover, Û and V̂ are obtained by removing the first row of QU and QV , respectively.

Proof. According to Lemma 3.3.8 and to the above remarks, we may assume that in the first
step of the process of reduction in Hessenberg form, the parameters si satisfy the condition
si 6= 0 for i = 2, . . . ,h, while si = 0, for i = h+ 1, . . . ,n− 1, for some h 6 n− 1. If this is
not the case then the matrix Q has the form highlighted in Equation (3.10) and so if we call Q̃
the active block of Q we can apply this theorem to the matrix Q̃ÃQ̃∗ where Ã is the leading
square block of A partitioned according to the partitioning of Q. Lemma 3.3.3 provides a way
to extend this representation to dimension n. In view of this fact we can assume, without loss
of generality, that h = n− 1. We have

QAQ∗ = (QU)(QV)∗ + F, F = Q(t(UW∗) + S)Q∗.

In view of Corollary 3.3.6 we have F = t(Q(UW∗ + ab∗)Q∗) − R for R ∈ QSHn1 . Thus

QAQ∗ = (QU)(QV)∗ + t(QU(QW)∗) + t(Qa(Qb)∗) − R. (3.11)
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Recall from Theorem 3.3.5 that Re1 = 0 and that Q has been chosen so that QAQ∗e1 =

αe1+βe2. This fact, together with (3.11), implies that the vector u = t(Qa(Qb)∗)e1 is such that
u[3 : n] is in the span of the columns of (QU)[3 : n, :]. In view of Property (v) of Lemma 3.2.3
we may write t(Qa(Qb)∗)[2 : n, 2 : n] = t(ûz∗) for û = u[2 : n], and for a suitable z ∈ Cn−1.
Applying the linearity properties of Lemma 3.2.3 yields the following representation for the
trailing principal submatrix Â of QAQ∗ of size n− 1:

Â = ÛV̂∗ + t(ÛW̃∗ + ûẑ∗) − R̂,

where Û, V̂ and W̃ are obtained by removing the first row of U, V and W, respectively, while
R̂ = R[2 : n, 2 : n]. Since û[2 : n] is in the span of Û[2 : n, :], and since the first row of Û as
well as the first entry of û do not play any role in the computation of t(ÛW̃∗ + ûẑ∗), we may
set û1 equal to an appropriate value in such a way that û is in the span of the columns of Û.
This way, the matrix ÛW̃∗ + ûẑ∗ has rank at most k and can be written as ÛŴ∗ for a suitable
Ŵ ∈ Ck×n. Thus we have

Â = ÛV̂∗ + t(ÛŴ∗) + Ŝ

for Ŝ = −R̂, that concludes the proof.

This result concludes the theoretical analysis of the conservations of the rank structure in
the partially reduced matrices. Notice that, in fact, if Âj = ÛhV̂

∗
j + t(ÛjŴ

∗
j ) + Ŝ as described

above we have the following.

Theorem 3.3.10. Let Âj be the submatrix of the matrix Aj obtained at the j-th step of Hessenberg
reduction, as per Equation (3.4). Then, if

Âj = ÛjV̂
∗
j + t(ÛjŴ

∗
j ) + Ŝj

with Ûj, V̂j, Ŵj ∈ C(n−j+1)×k and Ŝj ∈ QSHk1 we have

(i) The QS ranks of Âj are bounded by lr(Âj) 6 k+ 1 and ur(Âj) 6 2k+ 1.

(ii) The same bounds also holds for the bigger matrix Aj ∈ Cn×n so that we have: lr(Aj) 6 k+ 1

and ur(Aj) 6 2k+ 1.

Proof. We first prove Property (i). Since rank(ÛjV̂∗j ) 6 kwe have lr(ÛjV̂∗j ) 6 k and ur(ÛjV̂∗j ) 6
k. Moreover, since ur(t(ÛjŴ∗j )) = lr(t(ÛjŴ∗j ) 6 k and lr(Ŝj) = ur(Ŝj) 6 1 we have that (by
subaddivity of the ranks) ur(Âj) 6 2k+ 1. On the other hand since we have

tril(ÛjV̂∗j + t(ÛjŴ
∗
j ),−1) = tril(ÛjV̂∗j + ÛjŴ

∗
j ,−1) = tril(Ûj(V̂j + Ŵj)∗,−1)

the lower rank of Âj are bounded by k+ 1. This bound can be trivially extended to the big
matrix Aj since every submatrix in its strictly lower triangular part either contains a portion of
Âj or a part of the subdiagonal elements in the first j positions. For this reasons every lower
submatrix must have rank bounded by k+ 1 or 1, and so we have that lr(Aj) 6 k+ 1. To prove
the result also for the upper part note that we can write

Aj = Qj:1DQ
∗
j:1 +Qj:1U(Qj:1V)

∗, Qj:1 := Qj . . . Q1.

We can note that each submatrix contained in the strictly lower triangular part of Qj:1DQj:1 is
of the sum of a rank kmatrix obtained by the combination of the low rank factor −Qj:1U(Qj:1V)∗
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taken to the left-hand side of the above equation, the factors t(ÛjŴ∗j ) and ÛjV̂∗j if the subma-
trix intersects Âj plus a quasiseparable matrix of rank 1 containing the subdiagonal elements
or part of Ŝj (again, depending on the choice of the submatrix). The first rank k terms share
the same left factor since Ûj is simply a truncated version of Qj:1U and so their sum is still a
rank k matrix. This implies that lr(Qj:1DQ∗j:1) 6 k+ 1. Given that this matrix is Hermitian the
same holds also for the upper part and taking the rank k contribution again to the right we
have ur(Aj) 6 2k+ 1, as requested.

3.3.4 Operating on matrices using GV representations

We have presented a theoretical analysis that allows to prove that the ranks in the reduction to
Hessenberg form are preserved. Unfortunately, this representation is not very useful as it is,
since it might lead to instabilities as highlighted at the start of Section 3.2.1. For this reason we
propose to use GV representation to track the structure of the blocks of the form t(UV∗). We
have already seen in the previous Section 3.2.5 how it is possible to represent a matrix in this
way, but we do not know how to perform the operations that we need efficiently and without
degrading the structure.

This section is devoted to cover this topic. We summarize here the operations that we
need to able to handle in order to carry out the reduction algorithm described in the previous
section. Recall that, at each step, we have to track the structure of the matrix Âj that is given
in the form

Âj = ÛjV̂
∗
j + t(ÛjŴ

∗
j ) + Ŝj

with Ŝj Hermitian and 1-quasiseparable. We propose to use GV representations for Ŝj and
for t(ÛjŴ∗j ). We need to explain how to efficiently perform the following tasks assuming we
are given GV representations of a matrix M = D+ t(UV∗) = GV(G,W,D) ∈ QSHk and of
S = DS + t(uv

∗) ∈ QSH1, where U,V ∈ Cn×k, G spans U, u, v ∈ Cn and u = Ux for some
vector x ∈ Ck:

1. Compute a GV representation of rank k of M+ S. This is guaranteed to exist since the
condition u = Ux says that the column span in the lower triangular part of S is contained
in the column span in the lower triangular part of M.

2. Given a unitary upper Hessenberg matrix P, compute a GV representation of rank k
of t(PU(PV)∗), and a GV representation of rank 1 of R = PMP∗ − t(PU(PV)∗). This is
needed in order to apply Theorem 3.3.5 in Theorem 3.3.9.

We consider the first problem, of computing a representation of M+ S. We first note that if
we have M1 = GV(G,W1,D1) and M2 = GV(G,W2,D2) then a representation for αM1+βM2
is trivially given by αM1+βM2 = GV(G,αW1+βW2,αD1+βD2). We want to use this result
in order to compute the representation for M+ S and we do it by first finding a representation
for S of the form S = GV(G,WS,DS).

It is natural to ask if such a representation is guaranteed to exist. The answer is yes as
reported by the following lemma.

Lemma 3.3.11. Let M and S be two matrices as defined above. Then S admits a representation of the
form S = GV(G,WS,DS), and so M+ S can be written as

M+ S = GV(G,W +WS,D+DS).
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Proof. In view of Theorem 3.2.19 we have M+ S = M+DS + t(uv
∗) = M+DS + t(U(vx

∗)∗)
is quasiseparable of rank k and G∗(M+ S) is lower banded with bandwidth k and since G∗M
is also lower banded the same holds for G∗S. A straightforward application of Lemma 3.2.18

yields the thesis.

The above proof is not directly constructive so we need to construct an algorithm for the
computation of WS. In this context we suppose to work with Givens representations only so
we assume that S = GV(F, z,DS) is a GV representation of S with quasiseparable rank 1. In
order to find WS we use the fact that, by definition,

tril(S,−1)ej = G[j+ 1 :]

 0j
Wej

0max(0,n−j−k)

 ,

and we follow these steps (the above equation only holds for the indices up to n− k, for the
general formula we refer to Definition 3.2.16).

1. We compute the last column of WS by using Lemma 3.2.18. This is almost free since no
rotations are involved, and the only significant element of WSen−1 is equal to zn−1.

2. We compute WSei starting from WSei+1; this vector can be computed by using some
elements in G∗[i+ 1 :]Mei. In fact, since we are in the 1-quasiseparable case then zi =
ziei+1. So we have

G∗[i+ 1 :]Mei = G∗[i+ 1 :]F[i+ 1 :]zi = ziG
∗[i+ 1 :]F[i+ 1 :]ei.

In particular, the only relevant quantity that we need to compute to obtain a representa-
tion for the i-th column of M is Γi := G∗[i+ 1 :]F[i+ 1 :]ei. To this end we have

Γi = G∗[i+ 1]G∗[i+ 2 :]F[i+ 2 :]F[i+ 1]ei

= G∗[i+ 1]G∗[i+ 2 :]F[i+ 2 :] (αei +βei+1) =

= G∗[i+ 1] (βΓi+1 +αei)

for some α,β such that α2 +β2 = 1.

The above procedure allows to compute the representation for S at a very low cost. In fact,
the first step costs only O(1) flops, and each subsequent step requires only O(k) rotations on
a vector, and so accounts for O(k) flops. In total we have an algorithm with a cost of O(nk)
flops for this step.

We now need to handle the computation of the residual matrix provided by Theorem 3.3.5.
We notice that Theorem 3.3.7 is a step in the right direction, since it shows that the residual of
matrices that are are involved in the process can be obtained directly as Givens–Vector repre-
sented matrices. Unfortunately the representation obtained that way is given by rows instead
of columns (see Remark 3.2.17). In the book [89] an algorithm for swapping the representation
is given and it requires O(n) flops. We rely on that result, and so we assume that we can obtain
the residual directly as a GV represented 1-quasiseparable matrix. There is still to clarify how
to compute the updated k-quasiseparable matrix t(PU(PV)∗).

Looking at the proof of Theorem 3.3.7 we can see that the matrix R (and its GV represen-
tation) can be obtained easily if we are able to compute a single residual Ri = t(FiUVF

∗
i ) −
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Fit(UV
∗)F∗i obtained by applying a single rotation. For this reason we show how this is pos-

sible in the context of GV representations. We will focus on the case where i < n− k− 1 so
that there is no need to take additional care for border conditions, but the left out cases are
completely analogous to this one.

Assume we are given D,U,V ,W and G such that M = D+ t(UV∗) = GV(G,W,D). Note
that we can compute an updated Ĝ such that Ĝ spans FiU. In fact, we know that G∗F∗iFiU
is of the form

[×
0

]
where × is an appropriate k × k block. The rotation F∗i can be passed

through the rotations inside G∗ (by properly updating them using the turnover operation – see
Lemma 3.2.14) obtaining F̂∗i+kĜ

∗ = G∗F∗i . Then, by F̂∗i+kĜ
∗FiU =

[×
0

]
, we can conclude that

also Ĝ∗FiU = F̂i+k
[×
0

]
=
[×
0

]
since F̂i+k is operating on the null rows.

Moreover, it is easy to check that GV(Ĝ,W,D) correctly represents the lower part of t(Fi(D+

UV∗)F∗i ) on every column but the one with indices i, i+ 1. In fact, the diagonal part ofM is left
unchanged on the indices different from i, i+ 1. For the rest of the matrix we can distinguish
two cases and we do not need to care about D:

• If j > i+ 1, both the left multiplication by Fi and the right multiplication by F∗i leave
unchanged the relevant part of U and V needed for the computation of the portion of
the j-th column contained in the lower part of the matrix. Moreover, since in this case
Ĝ[j+ 1 :] = G[j+ 1 :] we conclude that the proposed representation for these columns is
valid.

• Also when j < i the right multiplication by F∗i does not change the j-th column at all.
However, the left multiplication by Fi does, and we can verify that tril(t(FiUV∗F∗i ),−1)ej =
tril(FiUV ,−1)ej. Recall that, by definition of GV representation, we have

tril(t(UV∗),−1)ej = tril(UV∗,−1)ej = tril(M,−1)ej = G[j+ i :]wi.

Since j < i we have Fi tril(UV∗,−1)ej = tril(FiUV∗,−1)ej so that we can write

tril(FiUV∗,−1)ej = FiG[j+ 1 :]wi = Ĝ[j+ 1 :]F̂i+kwj = Ĝ[j+ 1 :]wj

where the last two equalities follow from the definition of Ĝ and from the fact that the
components of wj with index bigger than j+ k are zero. Thus we have that GV(Ĝ,W,D)

provides a good representation of the lower part of the j-th column of t(FiUV∗F∗i ), as
requested.

A pictorial representation of these two facts can help to get a better understanding of what
is going on (here we are fixing k = 2). The rotation Fi on the left is highlighted using the
bold font. Equation (3.12) represents the first case, where the rotation Fi does not intersect the
indices of the rotations in G[j+ 1 :], and Equation (3.13) the latter case, where an update of the
rotations is necessary. 

0
...

0

?

?

0
...

0


=



0
...

0

?

?

0
...

0


(3.12)
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0
...

0

?

?

0
...

0


=

ˆ
ˆ ˆ

ˆ ˆ



0
...

0

?

?

0
...

0


=

ˆ
ˆ ˆ

ˆ



0
...

0

?

?

0
...

0


(3.13)

It remains to understand what happens on the rows i and i+ 1. We show how to update
D and W in the i an i+ 1 components in order to account for what happens in these indices.
Note that these columns of M can be described in the following way (we report the case k = 3

for simplicity):

M

ei ei+1

 = G[i+ 2 :]




di 0

w1,i 0

w2,i 0

w3,i 0

0 0

+


0 ×
0 di+1
0 w1,i+1
0 w2,i+1
0 w3,i+1



 .

Left and right multiplying by Fi and F∗i (reported with the bold font), respectively, leads to
the following structure:

FiMF
∗
i

ei ei+1

 = G[i+ 2 :]




di 0

w1,i 0

w2,i 0

w3,i 0

0 0

+


0 ×
0 di+1
0 w1,i+1
0 w2,i+1
0 w3,i+1



 .

We can explicitly compute the value inside the brackets and then observe that, since
Ĝ[i+ 2 :] = G[i + 2 :], we have a representation of the columns of FiMF∗i . Now we want to
find a Hermitian matrix R of the form R = αei+1e

t
i +αeie

t
i+1, ŵj,i, ŵj,i+1 for j = 1, . . . ,k and

d̂i, d̂i+1 such that, writing with ˆ the rotations taken from Ĝ, we have




di 0

w1,i 0

w2,i 0

w3,i 0

0 0

+


0 ×
0 di+1
0 w1,i+1
0 w2,i+1
0 w3,i+1




︸ ︷︷ ︸

C

+ R =

ˆ

ˆ

ˆ


d̂i 0

ŵ1,i 0

ŵ2,i 0

ŵ3,i 0

0 0

+


0 ×
0 d̂i+1
0 ŵ1,i+1
0 ŵ2,i+1
0 ŵ3,i+1

 .

(3.14)

Let C be the left matrix in (3.14). Then the elements ŵj,i+1 must coincide with the vector
C[3 :, 2], the diagonal elements d̂i and d̂i+1 are determined by the diagonal of the top 2× 2
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block of C. It remains to determine the elements ŵj,i and the value α. To find them we can
multiply on the left by the inverses of the rotations in Ĝ[i]. We get the equation

ˆ
ˆ

ˆ

Ce1 +

0

α

0

0

0


 =


d̂i
ŵ1,i
ŵ2,i
ŵ3,i
0

 .

We can choose α such that we get a 0 in the last component (which can always be done if the
rotations are not trivial – and this is guaranteed by Lemma 3.3.8) and then set the values ŵj,i
by back substitution.

3.3.5 Assembling the reduction algorithm

Now we have all the necessary tools to formulate the reduction Algorithm 5 in terms of Givens–
Vector representations. Recall that our input is a matrix of the form A = D+UV∗ so we expect
to receive a vector d containing the diagonal elements of D and two n× k matrices U and V .

The output of our algorithm will be two other n× k matrices Un−2 and Vn−2 that are
the original U and V updated with all the rotations applied on the left. Moreover, we require
as output two vectors d̂ and ŝ with the diagonal and subdiagonal elements of H, the upper
Hessenberg form of A that we compute.

This is enough to retrieve the full matrix H and also a structured rank representation of it,
as highlighted by the following.

Lemma 3.3.12. Let H = QAQ∗ be an upper Hessenberg form of A = D+UV∗. if Û = QU and
V̂ = QV then H can be written as

H = T − t(ÛV̂∗) + ÛV̂∗ (3.15)

where T is a Hermitian tridiagonal matrix such that its lower subdiagonal elements coincide with the
ones of H and the diagonal ones are equal to the ones of H minus the ones of ÛV̂∗.

Proof. Note that we can write

H = QAQ∗ = QDQ∗ + ÛV̂∗

so that, being QDQ∗ Hermitian we have tril(QDQ∗,−1) = tril(H,−1) − tril(ÛV̂∗,−1). We can
recover the upper part by writing

QDQ∗ = t(H) − t(ÛV̂∗) + D̂

where D̂ is chosen diagonal with diagonal elements equal to the ones of H minus the ones of
ÛV̂∗ in order to satisfy Equation (3.15). The thesis follows by summing ÛV̂∗ on both sides of
the equation and setting T = t(H) + D̂.

Algorithm 6 reports a pseudocode of the implementation of the reduction algorithm. This
sketch of the algorithm does not take into account the representation that we are using, so it
is valid both for generators based representations and for Givens–Vector ones. In each case
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Algorithm 6 High level reduction process using Givens–Vector representations.
1: function HessenbergReduction(D,U,V)
2: A1 ← D+UV∗

3: M← 0

4: S← 0

5: s← zeros(1,n− 1)

6: d← zeros(1,n)
7: for i = 1, . . . ,n− 2− k do
8: G← cleanColumn(Ai[:, 1])
9: d[i]← (GAi[:, 1])[1]

10: s[i]← (GAi[:, 1])[2]
11: U← (G ·U)[2 : n, :]
12: V ← (G · V)[2 : n, :]
13: (RM,M)← conjugateAndTruncate(M,G)
14: (RS,S)← conjugateAndTruncate(S,G)
15: M←M+ S

16: S← RM + RS
17: end for
18: (d[n− 1− k : n], s[n− 1− k : n− 1],U,V)← reduceTrailingBlock(An−1−k)

19: end function

the functions conjugateAndTruncate and the sums of lines 15 and 16 have to be implemented
according to the representation chosen.

Here we report a brief documentation and explanation for the function called in the pseu-
docode.

• cleanColumn(v) is a function that takes as input a column vector and returns a sequence
of Givens rotations G such that Gv = v1e1 +αe2 for some α.

• (RM,M)←conjugateAndTruncate(M,G) takes as input a quasiseparable Hermitian ma-
trix M ∈ QSHk and a sequence of Givens rotations G. Then it computes a quasiseparable
representation for GMG∗ − RM where RM is a matrix in QSH1. It returns an updated
representation of M and the residual matrix RM.

• S ← RM + RS computes the sum of the matrices RM,RS ∈ QSH1. This is done by
assuming that both have the same sequence of Givens rotations in their representation.

• reduceTrailingBlock(A) reduces the last k × k block of the matrix using a standard
Hessenberg reduction process. This is done because, in the last steps, the trailing block
does not have any particular structure anymore and so using the standard reduction
algorithm is faster.

Some numerical issues might be encountered in the above version of the algorithm. For
instance, some cancellation may happen in the sum RM + RS, which eventually may affect the
Givens rotations of the representation of M.

A technique based on re-orthogonalization can be used to restore better approximations.
Recall that the rotations inside the GV representation of M are such that G∗U =

[
Z
0

]
. Such

rotations are not unique but they are essentially unique, that is, their entries can be determined
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up to a multiplicative constant of modulus 1. Based on this information we can compute
rotations in order to obtain G∗U in the desired form and correct the moduli of the sine and
cosine inside G without altering the signs.

This has shown to be quite effective in practice, leading to better numerical results. The cost
of a re-orthogonalization is the cost of a QR factorization of U, thus asymptotically O(nk2). By
performing it every k steps we have a total cost of the modified reduction algorithm that is still
O(n2k), since we need O(n) steps to complete the reduction and O(nk2) · 1kO(n) = O(n2k)

flops.

3.3.6 Numerical experiments

In this section we present some numerical experiments that have been run in order to validate
the results obtained. We have implemented Givens–Vector representations and all the routines
described above and in Algorithm 6.

The code has been written in the Julia language (see [11]) and have been run on a laptop
with an Intel(R) Core(TM) i3-2367M CPU running at 1.40GHz and 4 GB of RAM. Moreover, it
will soon be available at http://numpi.dm.unipi.it/software/ for testing.

The goal of the experiments are the following:

• Validate the theoretical complexity of the algorithm in n, that is expected to be quadratic.

• Validate the theoretical complexity of the algorithm in k, that is expected to be linear.
This is the main difference with other Hessenberg reduction algorithm available in the
literature.

• Find out what can be inferred on the stability of the algorithm. As we will see, the
results obtained are sometimes affected by numerical errors. Some techniques such as
the re-orthogonalization can help in these case and has been used in our experiments.

Every experiment has been run 10 times and the mean value of the timings has been taken.
In Figure 3.3 we have reported, in log scale, the timings for some experiments with n = 100 · i
for i = 1, . . . , 10. In Figure 3.4 we have reported the CPU time in the case of matrices of fixed
size n = 400 with various quasiseparable ranks ranging from 5 to 160.

Looking at the results in Figure 3.4 we see that the complexity in the rank is almost sublin-
ear at the start. This is due to the inefficiency of operations on small matrices and the overhead
of these operations in our Julia implementation. The linear trend starts to appear for larger
ranks.

As a last experiment in Figure 3.5 and Figure 3.6 we have reported the absolute and rela-
tive errors, respectively, on eigenvalue computations for various sizes and fixed quasiseparable
rank. The errors were obtained as differences between the eigenvalues computed from the start-
ing full matrix using the QR algorithm and the QR algorithm applied to the Hessenberg matrix
provided by our algorithm. In these examples the re-orthogonalization technique described in
Section 3.3.5 has been used, in order to mitigate the errors.

The matrices in these examples have been obtained by using the randn function that con-
structs matrices whose elements are drawn from a N(0, 1) Gaussian distribution. This func-
tion has been used to construct D, U and V diagonal and n × k, respectively, such that
A = D+UV∗.

http://numpi.dm.unipi.it/software/
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Figure 3.3: CPU time, in seconds, for the Hessenberg reduction of a diagonal plus rank 10
matrix of size n. Here the line is the plot of γn2 for an appropriate γ. It is evident the
quadratic behavior of the time.
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Figure 3.4: CPU time, in seconds, for the Hessenberg reduction of a 400× 400 diagonal plus
rank k matrix.
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Figure 3.5: Absolute errors on eigenvalues computation for random matrices of quasiseparable
rank 30 and variable sizes.
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Figure 3.6: Relative errors on eigenvalues computation for random matrices of quasiseparable
rank 30 and variable sizes.
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3.4 hessenberg triangular reduction

In this section we want to generalize the results of Section 3.3. In that case we had a matrix
A = D+UV∗ in the form diagonal plus low rank and we wanted to compute its Hessenberg
form. The main motivation for this is to solve the eigenvalue problem xI−A that is equivalent
to xI−H where H = QAQ∗ is upper Hessenberg, and we know that secular linearizations for
monic matrix polynomials have this form.

It is natural to ask what happens when the matrix polynomial is not monic and we build
a non-monic linearization xA− B. It is easy to note that also in this case both A and B have a
rank structure. More precisely, they have the form

A = I+UAV
∗
A B = DB +UBV

∗
B.

Similarly to what we have done in the monic case, here we assume DB to be real. The prepro-
cessing step usually performed before solving eigenvalues problems in form of a pencil is the
Hessenberg triangular reduction [80]. This process takes the role of the Hessenberg reduction
in the monic case and constructs two unitary matrices Q and Z such that

T = QAZ∗, H = QBZ∗

where T is upper triangular and H is upper Hessenberg. The algorithm for the reduction has
been introduced in [80] by Moler and Stewart. It can be described with the following steps:

(i) The matrix A is reduced to upper triangular form by computing its QR factorization. If
we have A = PR where P is unitary and R upper triangular we can left-multiply both A
and B by P∗ so that A0 := P∗A = R and B0 := P∗B.

(ii) The matrix B is reduced to upper Hessenberg form applying Givens rotations from the
left. Each rotation also multiplies A and degrades its upper triangular structure. This
can be restored by right-multiplying by an appropriate Givens rotations, that does not
destroy the partial Hessenberg structure of B. In order to achieve this the lower diagonal
elements of B (except the first subdiagonal) are set to 0 starting from the first column and
from the bottom to the top.

Remark 3.4.1. Note that, in the first step, it is not strictly necessary to compute a QR factoriza-
tion of A in order to take it to upper triangular form. In principle, any combination of unitary
transformations Q and Z such that QAZ∗ is upper triangular can be used. This is important
for us since later we will exploit this freedom in order to keep the upper triangular version of
A in a structured form that makes it easier to perform efficient operations on it.

3.4.1 A restriction operator

In Section 3.3 we proved that a particular rank structure is maintained during the steps of
Hessenberg reduction performed with the use of Givens rotations. However, we have shown
that the structure is not maintained in the whole matrix (or at least not explicitly) but only
in the trailing part that still needs to be reduced. We want to give similar results for the
Hessenberg triangular reduction.
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To make this notion of considering the trailing submatrix as transparent as possible and to
operate easily on these matrices we introduce the following restriction operator:

R :
⋃

n,k∈N+

Cn×k −→
⋃

n,k∈N

C(n−1)×k

R(A) 7−→ RnA, Rn =

0 1
...

. . .

0 1

 ∈ C(n−1)×n

For any matrix A the operator R(A) extracts the submatrix obtained by removing the first row
from A.

In the same way we define the operator R∗ as the right multiplication by R∗k and we use the
notation AR∗ to mean R∗ applied to A (according to the syntax for matrix multiplication). In
this way we have that RAR∗ is the trailing principal submatrix of A obtained by removing the
first row and the first column. We use the shorthand Rm and R∗,m to mean the composition
of R and R∗ performed m times.

Note that, in principle, the notation R∗A does not make sense, since we have only defined
the meaning of AR∗. Nevertheless, we agree that R∗A := IR∗Awhere I is the identity matrix of
appropriate dimension. The same holds also forAR, and allows us to define also R∗R := IR∗RI
and RR∗ = RIR∗.

It is easy to show that these operators enjoy the following properties, most of which are a
consequence of thinking of R and R∗ as projection operators.

• R and R∗ are linear with respect to C so that, for any µ,η ∈ C, R(µA+ηB) = µRA+ηRB.

• (RA)∗ = A∗R∗, so that the usage of the ∗ operator on R is coherent with the one defined
on matrices.

• For every triangular and invertible matrix T we have (RTR∗)−1 = RT−1R∗. In particular,
if T is invertible then RTR∗ is still invertible.

• RR∗ = I, that is, the composition of these two operators act as the identity. The converse
is not true, so that R∗R 6= I.

• For every upper triangular matrix T the relation RiTR∗,iRi = RiT holds. Note that, in
general, RAR∗RX 6= RAX since, as reported in the previous point, R∗R 6= I.

3.4.2 Choosing the initial transformation

As we have noted in Remark 3.4.1 the preliminary reduction to upper triangular form of the
matrix A can be chosen freely. We are interested in choices that preserve the rank structure as
much as possible.

Recall that A = I+UAV
∗
A, and that we have chosen Q0 and Z0 so that A0 = Q0AZ

∗
0 = T0

is upper triangular. This is the key of our analysis, and we show that not only the upper
triangular matrix T0 is structured, but the same holds for the unitary matrix Q0Z∗0.

For this analysis we need to be more precise on the structure of the matrices Q0 and Z0.
We show two possible strategies to compute them.
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Strategy 1 is the one commonly used in the Hessenberg triangular reduction (HTR from
now on), while Strategy 2 is the one that we propose to ease the parametrization of the struc-
ture.

Reduction strategy 1. We compute a QR factorization of A so that A = QR. We set then
Q0 = Q∗, T0 = Q0A = R and B0 = Q0B. In this strategy Z0 is chosen to be equal to the
identity matrix.

Unfortunately, this choice makes it harder to store the matrices Ti since, even if we can
prove that they are quasiseparable (see Lemma 3.4.2), we don’t have an explicit expression
for the generators of the upper triangular part. For this reason, we present the following
alternative strategy where the matrix T0 = Q0AZ

∗
0 is sparse.

As we will prove in Lemma 3.4.15 the sparsity is also preserved in the trailing submatrices
of Ti for i > 0, and this will provide a practical way to implement the algorithm.

Reduction strategy 2. We describe the strategy as follows:

• We compute a unitary matrix Z, given as the product of k sequences of ascending Givens
rotations such that ZUA is upper triangular. Then we compute the matrix ZAZ∗ =

I+ZUA(ZVA)
∗ that has the following structure:

ZAZ∗ =

[
X Y

0 In−k

]
, X ∈ Ck×k, Y ∈ Ck×n−k.

• We compute a k×k unitary matrix P, again given as a sequence of Givens rotations, such
that PX is upper triangular. We have then that we can choose Q = (P⊕ In−k)Z and then
QAZ∗ = T is upper triangular.

We focus on the analysis of Strategy 2. Nevertheless, note that the hypothesis of Lemma 3.4.2
are satisfied for both the strategies listed above.

Lemma 3.4.2. Let A = I+UAV
∗
A with UA, VA two n× k matrices and Q0 and Z0 unitary matrices

such that Q0AZ∗o is upper triangular. Then the upper quasiseparability rank of Q0AZ∗0 is bounded by
2k. Moreover, both the lower and the upper quasiseparability ranks of Q0Z∗0 are bounded by k.

Proof. We have T0 = Q0AZ
∗
0 = Q0Z

∗
0 + (Q0UA)(Z0VA)

∗ so that the (strictly) lower triangular
part of Q0Z∗0 coincides with the stricly lower triangular part of −(Q0UA)(Z0VA)

∗. In partic-
ular, every submatrix contained in the lower part of Q0Z∗0 cannot have a rank higher than k,
and this proves the bound about the lower quasiseparability rank. Since unitary matrices are
rank-symmetric, we can say the same for the upper quasiseparability rank.

The statement about the upper QS rank of T0 can be derived from that fact that T0 =

Q0Z
∗
0 +QUA(Z0VA)

∗, and both summands cannot have an upper QS rank bigger than k.

We can now show that the matrix B0 is also structured.

Lemma 3.4.3. Let B0 = Q0BZ
∗
0 where Q0 and Z0 are unitary matrices as above. Then there exist

three n× k matrices W0 and S0, Y0 and D0 real diagonal such that

B0 = T0(D0 + t(W0S
∗
0) +Z0UB(Z0VB)

∗) +Q0UAY
∗
0 .
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Proof. In both reduction strategies (1) and (2) we have that the unitary matrix Z can be decom-
posed as k sequences of Givens rotations. By applying Lemma 3.3.5 repeatedly k times, we
obtain that there exist W0 and S0 two n× k matrices such that

Z(DB +UBV
∗
B)Z
∗ = D0 + (ZUB)(ZVB)

∗ + t(W0S
∗
0).

We have then that

B0 = Q0BZ
∗
0 = Q0Z

∗
0Z0(DB +UBV

∗
B)Z
∗
0

= (T0 −Q0UA(Z0VA)
∗)(D0 +Z0UB(Z0VB)

∗ + t(W0S
∗
0))

= T0(D0 +Z0UB(ZVB)
∗ + t(W0S

∗
0)) +Q0UAY

∗
0

for some Y0. This concludes the proof.

Remark 3.4.4. Note that in the above representation the term Q0UAY
∗
0 is such that all the rows

with index larger than k are equal to 0. In particular, this term does not influence the lower
QS rank of the matrix B0.

Lemma 3.4.5. The lower and upper QS rank of B0 are bounded, respectively, by 2k and 4k.

Proof. Recall that T0 = Q0Z
∗
0 +Q0UA(Z0VA)

∗. In particular, we have that, by setting H0 =

D0 +Z0UB(ZVB)
∗ + t(W0S

∗
0),

B0 = T0H0 +Q0UAY
∗
0 = Q0Z

∗
0H0 +Q0UA(Y0 +Z0VA)

∗

Since H0 is quasiseparable of order 2k and Q0Z∗0 is quasiseparable of order k, we have that
B0 has quasiseparable rank at most 4k. We can make the bound sharper in the lower part by
observing that Q0Z∗0 = Q̂0 ⊕ In−k so that the multiplication by Q0Z∗0 leaves all the rows with
index bigger than k unchanged. It is easy to see that under this assumption the lower QS rank
of Q0Z∗0H0 is still bounded by 2k. Moreover, since etjQ0UA = 0 for every j > k the second
part of the sum also changes only elements in first k rows, thus leaving the lower QS rank
unchanged. In conclusion, the lower QS rank of B0 can be bounded by 2k.

3.4.3 Analyzing the induction step

We are now ready to analyze the subsequent steps and to understand how the QS ranks evolve.
We introduce some simplified notation for the unitary matrices multiplying on the left and on
the right:

Qi:0 := Qi . . . Q0, Z∗0:i := Z
∗
0 . . . Z

∗
i , Zi:0 := Zi . . . Z0

We start by looking at Ti, whose structure is easily provided by the following

Lemma 3.4.6. Let Ti = Qi . . . Q0AZ∗0 . . . Z
∗
i be the upper triangular matrix obtained at the i-th step

of the HTR of the pencil xA−B. Then the upper QS rank of Ti can be bounded by 2k.

Proof. The result can be obtain by writing Ti = Qi . . . Q0Z∗0 . . . Z
∗
i + ÛAV̂

∗
A where

ÛA = Qi . . . Q0UA, V̂A = Zi . . . Z0VA

and the following the same procedure of Lemma 3.4.2.
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Since the analysis of the QS ranks evolution of Bi is a little bit more involved, it is conve-
nient to define some new notation to make the exposition clearer.

We are interested in formulating an hypothesis on the structure of Bi. Here and in the
following we will for simplicity assume that A is invertible. In Section 3.4.4 we will show that
this is actually not strictly necessary, but rank deficiency in A needs some additional care and
might deteriorate the bound on the rank.

For this analysis we will need to keep track of a particular n× j matrix U. We introduce
the following notation, for any choice of the matrix U.

Ui = Qi:0U, UZ,i = Zi:0U, Ûi = RiUi, ÛZ,i = RiUZ,i. (3.16)

Hypothesis 1: The matrix B0 = Q0BZ
∗
0 has the form

B0 = T0(D+ t(UZ,0S
∗) + t(a0b

∗
0)) +U0W

∗ (3.17)

for some S and W n× j matrices and for a n× j matrix U such that there exists XA and XB
with UXA = UA and UXB = UB.

We can note the both choices of an initial transformation lead to a structure of this kind by
setting U = [UA UB] and XtA = [I 0], XtB = [0 I].

We can show that this kind of representation is “almost” preserved during the iterations.
More precisely, it will not be possible to show that the entire matrix Bi still has a representation
of this kind, but we can show that the trailing submatrix of size (n− i)× (n− i) of Bi still has
this form.

In the same spirit of the definition of the matrices of Equation (3.16) we define B̂i = RiBR∗,i.
We want to show that, even if Bi might not have the same structure of Bi, B̂i does. We can
now state the most important rank conservation theorem of this section.

Theorem 3.4.7. Let B̂i be trailing principal submatrix defined as above and obtained from Bi at the
i-th step of the HTR. If B0 has the form given in Equation (3.17) then B̂i can be represented as

B̂i = T̂i(Di + t(ÛZ,iS
∗
i ) + t(aib

∗
i )) + ÛiW

∗
i

where Di is a real diagonal matrix, Si and Wi are some appropriate (n− i)× j matrices and ai and bi
are vectors of length (n− i), where j is the number of columns of U.

We prove now some technical tools that will be needed in order to give the proof of Theo-
rem 3.4.7.

Lemma 3.4.8. Let A be a n× n complex matrix, U, V two n× k matrices and a, b two vectors such
that A = t(UV∗) + t(ab∗). Assume that b1 6= 0 and Q is a unitary matrix of the form 1⊕ Q̂ such
that QAe1 = αe1 +βe2 for some α,β ∈ C. Then there exist a vector x ∈ Ck and α̂, β̂ ∈ C such that
QUx = Qa+ α̂e1 + β̂e2.

Proof. Recall that by definition of the operator t(·) we can write t(UV∗)e1 = UV∗e1−(et1UV
∗e1)e1.

This implies the existence of a constant γ such that

αe1 +βe2 = QAe1 = QUV∗e1 +Qab
∗e1 + γe1.

The above can be rewritten asQab∗e1 = −QUV∗e1+(α−γ)e1+βe2 and since, by hypothesis,
b∗e1 6= 0 we can set x = −V∗e1

b∗e1
and obtain the thesis with α̂ = α−γ

b∗e1
and β̂ = β

b∗e1
.
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We recall here a lemma known as Woodbury matrix inversion formula that will be widely
used in the following. The original proof of this result can be found in [93]. This version of the
formula is not as general as in the original paper, but is tailored to our needs.

Lemma 3.4.9 (Woodbury matrix inversion). Let A, U and V be an n× n and two n× k matrices,
respectively. If both A and A+UV∗ are invertible then

(A+UV∗)−1 = A−1 −A−1U(I+ V∗A−1U)−1V∗A−1.

In the special case where A is the identity this relation simplifies to

(I+UV∗)−1 = I−U(I+ V∗U)−1V∗.

Lemma 3.4.10. Using the above notation, let Ti = Qi . . . Q0(I+UAV∗A)Z
∗
0 . . . Z

∗
i and Ui and UZ,i

be the matrices obtained by left multiplying U by the sequence of Qj and Zj, respectively. Then there
exist two matrices S and Ŝ such that

T−1i Ui = UZ,iS, T̂−1i Ûi = ÛZ,iS.

Proof. The first statement can be verified by direct inspection, since

T−1i Ui = Zi . . . Z0(I+UAVA)
−1Q∗1 . . . Q

∗
iQi . . . Q1U = UZ,i −Zi:0UAS̃.

where S̃ can be obtained by relying on the Woodbury matrix inversion formula of Lemma 3.4.9.
S can be chosen as S = I − XAS̃. Then the statement can be verified directly recalling that
UXA = UA. On the other hand,

T̂−1i Ûi = RiT−1R∗,iRiU = RiT−1U = RiUZ,iS = ÛZ,iS

which concludes the proof.

We now have all the tools needed to prove Theorem 3.4.7.

Proof of Theorem 3.4.7. We prove this result by induction. First, we observe that it is possible to
rewrite B̂i using the restriction operator:

B̂i = RiBiR
∗,i = Ri(Qi . . . Q

∗
0(I+UBVB)

∗Z∗0 . . . Z
∗
i )R
∗,i

and a similar relation also holds for Ti:

T̂i = RiTiR
∗,i = Ri(Qi . . . Q

∗
0(I+UAVA)

∗Z∗0 . . . Z
∗
i )R
∗,i.

By taking advantage of the properties of the restriction operator we can also write the inductive
hypothesis on B̂i−1:

B̂i−1 = T̂i−1
(
D̂i−1 + t(ÛZ,i−1Ŝ

∗
i−1) + t(âi−1b̂

∗
i−1)

)
+ Ûi−1Ŵ

∗
i−1

= Ri−1Ti−1(Di−1 + t(UZ,i−1S
∗
i−1) + t(ai−1b

∗
i−1))R

∗,i−1 +Ri−1Ui−1(R
i−1Wi−1)

∗.

Here we stress that while some of the matrices above are actually obtained as a truncation of
bigger matrices (such as ÛZ,i that is defined as Ri−1Zi . . . Z0U, for example), some others are
not. More precisely, the matrices D̂i−1 and Ŝi−1 and the vectors âi−1 and b̂i−1 are indeed
only defined in their small versions by means of the inductive hypothesis. In the following we
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will sometimes use bigger versions of them written as Si−1, Di−1, ai−1 and bi−1. These are
defined simply padding the original small ones with additional zeros at the beginning. More
precisely, we define

Si−1 = (R∗n)
i−1Ŝi−1(Rn)

i−1, Di−1 = (R∗n)
i−1D̂i−1(Rn)

i−1,

ai−1 = (R∗n)
i−1âi−1, bi−1 = (R∗n)

i−1b̂i−1.

We note that the theorem holds for B̂0 = B0 by hypothesis, since B0 does have the pre-
scribed structure, so we only need to prove the induction step. Assume that the theorem is
satisfied for i− 1 and consider two unitary matrices Qi and Zi, each made of a sequence of
rotations, such that Bi = QiBi−1Z

∗
i has the i-th column in Hessenberg form. Since both Qi

and Zi are of the form Qi = Ii ⊕ Q̂i and Zi = Ii ⊕ Ẑi we have that for every n× n matrix X
the relation RiQiX = Q̂iR

iX holds (and the same can be shown for Zi). We have

Ri−1BiR
∗,i−1 = Ri−1QiBi−1Z

∗
iR
∗,i−1

= Ri−1QiTi−1Z
∗
iZi(Di−1 + t(UZ,i−1S

∗
i−1) + t(ai−1b

∗
i−1))Z

∗
iR
∗,i−1

+Ri−1QiUi−1(R
i−1ZiWi−1)

∗.

We can now apply Theorem 3.3.5 to perform the conjugation by Zi of the internal block. This
leads to the following for some ai and bi such that the first i component of bi are equal to 0
(given the structure of Zi and by applying Lemma 3.3.3):

Ri−1BiR
∗,i−1 = Ri−1Ti(Di + t(UZ,iS̃

∗
i ) + t(Ziai−1b

∗
i−1Z

∗
i ) + t(aib

∗
i ))R

∗,i−1

+Ri−1UiW
∗
iR
∗,i−1.

This is almost in the sought form except for an additional term of quasiseparable rank 1 given
by t(Ziai−1b∗i−1Z

∗
i ). We show here that this term can be absorbed in the previous one. Recall

that Ri−1TiR∗,i−1 is invertible so that we can mutliply on the left by its inverse and obtain

Ri−1T−1i BiR
∗,i−1 = Ri−1(Di + t(UZ,iS̃

∗
i ) + t(Ziai−1b

∗
i−1Z

∗
i ) + t(aib

∗
i ))R

∗,i−1

+Ri−1UZ,iW̃
∗
iR
∗,i−1

thanks to the properties of the R operator and to Lemma 3.4.10. Since Bi has the i-th column
in Hessenberg form and XR∗,i−1e2 = Xei for any matrix X we can right multiply by e2 and
obtain that, for a vector x and two scalars d, f with f 6= 0

Ri−1T−1i BiR
∗,i−1e2 = αe1 +βe2

= de1 +Ri−1UZ,ix+ R
i−1Ziaif.

Applying the operator Ri on both sides of T−1i Bi yields

RiT−1i BiR
∗,ie1 = βe1 = RiUZ,ix+RiZiaif

so that RiZiai =
β
f e1 −

1
fUZ,ix. For this reason we can write

Rit(Zaaib
∗
iZ
∗
i )R
∗,i = Rit(−

1

f
UZ,ixb

∗
iZ
∗
i )
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since the first row of A is ignored when computing t(A). In particular, we can obtain the
desired representation of RiBiR∗,i:

RiBiR
∗,i = RRi−1Bi−1R

∗,i−1R∗ =

= RiTiR
∗,iRRi−1T−1i BiR

∗,i−1R∗ =

= T̂iR
i(Di + t(UZ,iS̃

∗
i ) + t(Ziai−1b

∗
i−1Z

∗
i ) + t(aib

∗
i ))R

∗,i +RiUiW
∗
iR
∗,i

= T̂i(D̂i + t(ÛZ,i(R
i(S̃i −

1

f
Zibi−1x

∗))∗) + t(âib̂
∗
i )) + ÛiŴ

∗
i

= T̂i(D̂i + t(ÛZ,iŜ
∗
i ) + t(âib̂

∗
i )) + ÛiŴ

∗
i

by setting Ŝi = Ri(S̃i−
1
f
Zibi−1x

∗). This matrix is exactly in the form required by the theorem,
and so the proof is complete.

The application of Theorem 3.4.7 completes the analysis of the structures present in the
iteration of the HTR. Nevertheless, it is not clear if, in this form, the above formulas provide a
bound on the quasiseparability rank of the matrices involved.

We show here that this is the case. Notice that we are still considering only the case of A
invertible, since both Theorem 3.4.7 and the following lemma require this. However, we will
generalize these results to the non invertible case in Section 3.4.4.

We need some technical lemma before going on:

Lemma 3.4.11. Let Ti and Bi be two matrices defined as above. Then we have

lr(Bi) 6 j+ 1, ur(Bi) 6 2j+ k+ 1

Proof. Notice that we can write

B̂i = T̂i(D̂i + t(ÛZ,iŜ
∗
i ) + t(âib̂

∗
i ) + T̂

−1
i ÛiŴ

∗
i ) = T̂i(D̂i + t(ÛZ,iŜ

∗
i ) + t(âib̂

∗
i ) + ÛZ,iSŴ

∗
i ).

This shows that the matrix inside the brackets has QS rank at most (j+ 1, 2j+ 1). Multiplying
by the upper triangular matrix does not increase the lower QS rank so the bound for the
quasiseparability lower rank is j+ 1. Since T̂i = RiQiZ

∗
iR
∗,i + ÛiXAY

∗ for some Y we have

B̂i = RiQZ∗(Di + t(UZ,iS
∗
i ) + t(aib

∗
i ) +UZ,iSW

∗
i +UZ,iXAY

∗)R∗,i

and the inner matrix has QS ranks at most (j+ 1, 2j+ 1). Given that Qi:0Z∗0:i has rank at most
(k,k) we obtain the desired bound.

3.4.4 Extension to the singular case

In the characterization of the ranks involved in the transformations the fact that T is invertible
plays an important role. Indeed, this section is devoted to the generalization of the previous
results when T is singular and we will see that the rank bound is degraded by the rank
deficiency of T . More precisely, in the following we assume that

A = I+UAV
∗
A, B = DB +UBV

∗
B, rank(A) = n− s.

Given that A is a rank k perturbation of the identity we must have s 6 k. In this case we can
apply the same procedure for the reduction to upper triangular form of the matrix A. A direct
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analysis shows that the matrices computed by the algorithm described in Strategy (2) give us
a matrix of the form

Q0AZ
∗
0 =

[
T W∗

0 In−k

]
, W ∈ Cn×k (3.18)

where T is a k× k upper triangular matrix. It is clear that T must have rank k− s, so that we
expect a portion of T to be 0. In order to make the algorithm efficient we want to control the
position of these zeros and so we apply the following result.

Lemma 3.4.12. Let A = I+UAV
∗
A be a matrix of rank n− s with s 6 k as above. Then there exist

two unitary matrices Q and Z such that Z = M(G) where G is a k-sequence of Givens rotations and

ΠQAZ∗ =

[
T W∗

0 In−k

]
, T =



0 . . . 0 × . . . ×
. . .

...
...

...

0 × . . . ×

T̂


where T̂ is upper triangular and invertible and Π is a permutation matrix.

Proof. We can construct a matrix Q0,1 = M(G1) where G1 is a k-sequence of Givens rotations
such that

G∗1UA =

[
RA
0

]
where RA is square and upper triangular. We set Z0,1 := Q0,1 so we have

Q0,1AZ
∗
0,1 = Q0,1AQ

∗
0,1 =

[
Ik + RAV

∗
AQ
∗
0,1 ×

0 In−k

]
=

[
X Y

0 In−k

]
.

where the symbol × is used to denote non-zero elements and X and Y are two matrices of
appropriate dimensions.

We can now multiply the above matrix on the right by Givens rotations in order to make
X antitriangular with all the elements in the bottom-right part. We can start to annihilate
the nonzero elements in the top-left position and then proceed row by row. We have then
Z0,2 = Ẑ0,2 ⊕ In−k and

Q0,1AZ
∗
0,1Z

∗
0,2 =

[
XẐ∗0,2 Y

0 In,k

]
, XẐ∗0,2 =


0 . . . 0 ×
... . .

.
. .
. ...

0 . .
. ...

× . . . . . . ×

 .

We can then set Π̂ the permutation matrix associated with the permutation that maps i to k− i
and we have that left multiplying by Π = Π̂⊕ In−k yields the required structure. Moreover,
when performing the antitriangular decomposition of X we can left-multiply by a permutation
matrix Π2 (swapping the rows) in order to make it rank-revealing and so we also have the
zeros as depicted in the thesis. We can then show that the matrix QAZ∗ has the prescribed
structure if Q = ΠΠ2Q0,1 and Z = Z0,2Z0,1.
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It remains to show that Z0,2Z0,1 can be written as M(G) with G product of k 1-sequences.
We show this fact pictorially, since it describes much better how this works. For this example
we fix k = 4. We have that, by construction (the order of the rotation can be obtained by the
procedure described above)

Z0,1 = , Z0,2 =

where the rotations of Z0,2 have been printed in bold to distinguish them and the highest
rotation of Z0,2 acts on the same row of the highest rotation of Z0,1. Taking the product yields

Z0,2Z0,1 =

which is in fact the composition of k (in our case 4) sequences of rotations. This completes the
proof.

We can use the above theorem to compute the matrices Q0 and Z0 needed for the initial
transformation. In this way the structure of Q0AZ∗0 is the same of Equation (3.18) but the
triangular matrix T has s zeros in the first diagonal elements.

We will show in Lemma 3.4.14 that also Q0BZ∗0 has the a particular structure similar to the
one that is present in the non singular case. Moreover, we will show that this structure can be
used to prove the same results on rank conservation, even if degraded of a constant factor s.

For this we introduce the following matrix Js.

Lemma 3.4.13. Let J(n)s be the n× s matrix defined by

J
(n)
s =

[
Is
0

]
and let Ti, Qi and Zi be the triangular matrix obtained at the i-th step of the Hessenberg triangular
reduction and the related unitary transformations. Assume that T0 has exactly s zeros on the diagonal,
all in the top left position. The index n will be omitted whenever it is clear from the context. Then we
have

• Ti has no more than s zeros on the diagonal, and they are packed in the top left positions.

• For all i = 0, . . . ,n− 2 there exists a matrix Xi ∈ Cn×(s+i) such that Qi:1(T0 + JsJ∗s)Z∗1:i =
Ti + Js+iX

∗
i .
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• For every i the matrix Ti + JsJ∗s is invertible, and there exist two n× k matrices Y1, Y2, Y3 such
that

(Ti + JsJ
∗
s)

−1Ui = UZ,iY
∗
1 + Js+iY

∗
2 , (Ti + JsJ

∗
s)

−1Ti = I− JsY
∗
3 = I− Js+i

[
Y3
0

]∗

• For every positive integer s, i such that i < n− s the following relation holds: RiJ
(n)
s+iR

∗,i =

J
(n−i)
s .

Proof. Suppose that T0 has s zeros in the top-left diagonal entries. We prove that if etiT0ej 6= 0
then etiTiej 6= 0. Consider a pair of rotations (G,H) acting on the same consecutive rows
(k,k + 1) such that GT0H∗ is still upper triangular. The diagonal elements of GT0H∗ that
differs from the one of T0 can be computed by looking at the two rows where the rotations are
acting:

G

[
dk uk
0 dk+1

]
H∗ =

[
d̂k ûk
0 d̂k+1

]
.

If dkdk+1 6= 0 then the same must hold for d̂kd̂k+1 since the two upper triangular matrix
must have the same rank. Moreover, if dk = 0 then the first column is equal to 0 and so the
same holds for the first column of the matrix left multiplied by G. Since the right rotation H is
computed in order to restore the triangular structure and the matrix is already triangular we
have H = I, thus we have proved the first statement. Notice that this might not be true for any
choice of two matrices G and H in the equation above but it holds for the rotations computed
by the HTR algorithm.

Now that we have characterized the structure of the zeros on the diagonal of Ti it follows
that Ti + JsJ∗s is singular since the first s diagonal entries of Ti are the only one being equal to
zero, and we are correcting them with the sum of JsJ∗s. Moreover, we can note that

Rs(Ti + JsJ
∗
s)

−1R∗,s = (Rs(Ti + JsJ
∗
s)R
∗,s)−1 = (RsTiR

∗,s)−1.

This implies that the rows and columns with index bigger than s in the inverse are independent
of the shift JsJ∗s and are exactly equal to the inverse of the relative submatrix in Ti. This implies
that

(Ti + JsJ
∗
s)

−1Ti = I− JsY
∗
3

for an appropriate Y∗3 . The results concerning (T + JsJs)
∗U follows by this fact and the previous

lemmas for the invertible case.

In this context, it is possible to prove a generalization of Theorem 3.4.7 that holds for a
singular A. More precisely, we have the following:

Theorem 3.4.14. Let Bi be the matrix obtained at the i-th step of the HTR algorithm. Suppose that the
matrix A is singular, and has rank n− s, with some s 6 k. Then the matrix B̂i = RiBiR

∗,i can be
written as

B̂i = T̂i(D+ t(ÛZ,iS̃
∗
i ) + t(aib

∗
i )) + ÛiW

∗
i

where U, Si and Wi are appropriate n× (2k+ s) matrices and UZ,i and Ui are defined starting from
U using Equation (3.16), as usual.
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Proof. As in Theorem 3.4.7, we prove the result by induction. First of all, we need to prove that
B0 has the prescribed form. We already know that with the choice of Q0 and Z0 of reduction
strategy (2) this holds, thanks to Lemma 3.4.3. Recalling that B0 = QBZ∗0 we can follow the
same procedure of Lemma 3.4.3 and we obtain

B0 = Q0BZ
∗
0 = Q0Z

∗
0Z0BZ

∗
0 = T0Z0(D0 +UBV

∗
B)Z
∗
0 +U0W

∗
0 .

Since Z0 is a product of k sequences of rotations we can perform the conjugation by Z̃0 apply-
ing Lemma 3.4.3 which gives us, by setting Ũ = [UA UB],

B0 = T0(D0 + t(Z0ŨS
∗
0,1)) +Q0ŨW

∗
0 .

By setting U = [Ũ Z−1
0 Js] we note that (thanks to Lemma 3.4.13) UZ,i = [UZ,0 Js] so we can

write
B0 = T0(D0 + t(UZ,0S̃

∗
0)) +UiW

∗
i .

The term Js is not actually needed in the representation of the matrix B0, but we will need it
in the next steps in order to deal with the rank deficiency of the upper triangular matrix.

Now we prove the inductive step. Let Bi = QiBi−1Z∗i with the usual notation. We reapply
the same arguments of Theorem 3.4.7 and we get that

Ri−1BiR
∗,i−1 = Ri−1Ti(Di + t(UZ,iS̃

∗
i ) + t(Ziai−1b

∗
i−1Z

∗
i ) + t(aib

∗
i ))R

∗,i−1

+Ri−1UiW
∗
iR
∗,i−1.

Now we want to show that the term RiZiai−1 can be written as RiUZ,ix+ αe1. We can left
multiply on the left the above equation by the inverse of Ri−1(Ti + JsJ

∗
s)R
∗,i−1 and on the

right by e2 so, by applying repeatedly Lemma 3.4.13, we get

Ri−1(Ti + JsJ
∗
s)

−1BiR
∗,i−1e2 = di,1e1 +Ri−1UZ,ix1 +Ri−1Ziai−1x2

+Ri−1UZ,ix3 +Ri−1Js+ix4.

where y1, x1, x3 and x4 are appropriate vectors and x2 is a scalar. The above multiplied on
the left by the R operator implies that

RiZiai−1 = Jsx̃1 + ÛZ,ix̃2.

To conclude we just need to show that Js can be written as ÛZ,iX for some X. This can be
proved by induction. In fact, we know that this holds at the step 0 and if there exist Xi−1 such
that ÛZ,i−1Xi−1 = Js we can write

ÛZ,iXi−1 = RZiUZ,i−1Xi−1 = RZiJs.

But the matrix ZiJs is a rectangular irreducible upper Hessenberg matrix, since Zi is a product
of non trivial Givens rotations (see Lemma 3.3.8). Then RZiJs is an upper triangular matrix of
size (n− i)× s with no zeros on the diagonal. If we call Yi the top s× s block we have

ÛZ,iXi−1Y
−1
i = RZiJsY

−1
i = Js.

So we can set Xi = Xi−1Y
−1
i and we can conclude the proof by following the same steps of

Theorem 3.4.7.

The above concludes the analysis in the singular case. We have shown that, even if with
some work and in a more involved framework compared to the previous section, it is possible
to bound the QS rank increase during the reduction process.
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3.4.5 Working on the upper triangular part

We have already shown that T0 has a very sparse structure, since only the first k rows differ
from the identity. In this section we prove that T̂i for i > 0 has the same structure.

Lemma 3.4.15. Let Q = G2 . . . Gn−1 be a unitary matrix that can be written as a product of Givens
rotations Gi such that Gi acts on the rows (i, i+ 1). Let T0 an upper triangular matrix with all the
off-diagonal elements on the rows with index bigger than k equal to 0 and the diagonal elements of
modulus 1. If Z is another unitary matrix with the same structure of Q such that T1 = QT0Z

∗ is still
upper triangular, then T1 has the off-diagonal elements with row index bigger than k+ 1 equal to zero.

Proof. It suffices to note that, for every i > k the rotation Gi multiplying on the left is acting
on a 2× 2 diagonal and unitary matrix. Let this 2× 2 matrix be S. We use the notation GiS to
restrict the product of Gi to this submatrix. If G̃i is another Givens rotation such that GiSG̃i
is upper triangular then, being unitary, it must be diagonal. This implies that Gk+1 . . . GnT0
still has the same structure of T0. A direct inspection shows that Gk . . . GnT0G̃n . . . G̃k has the
property that all the off-diagonal elements with row index bigger than k+ 1 are zero and the
same holds also when multiplying by G2, . . . ,Gk−1 on the left and G̃2, . . . , G̃k−1 on the right.
This proves that T1 has the desired structure.

Corollary 3.4.16. The matrix T̂1 = RQT0Z
∗R∗ has the same structure of T0, that is, all the off-diagonal

elements with row index bigger than k are zero.

Proof. Using the previous Lemma we have that T1 has all the off-diagonal elements with row
index bigger than k+ 1 equal to zero. The property requested by the thesis is obtained if we
truncate T1 removing the first row and column.

Remark 3.4.17. The above Lemma can be applied as it is to T̂1 to prove that T̂2 has the same
sparse structure. We can iterate the process by induction and show that the structure is shared
by any T̂i for i > 0.

We consider now the problem of updating Ti to obtain Ti+1. To this end, we perform the
following block partitioning of Ti:

Ti =

[
T
(1)
i Ml,iM

∗
u,i

0 In−i−1

]
, Ml,i,Mu,i ∈ C(i+1)×2k, T (1)i ∈ C(i+1)×(i+1).

Recall that Ti+1 = QiTiZ
∗
i and that Qi and Zi are of the form Ii ⊕ Q̂n−i and Ii ⊕ Ẑn−i,

respectively. In particular, only O(k) rotations act on the block T (1)i so that its update costs
only O(nk) flops. Moreover, even if we have O(n) rotations acting on the rank 2k block, each
can be applied only with O(k) operations. This leads to a total cost of the update of O(nk)
operations. Notice that the above applies to the case where T is invertible, otherwise the
complexity grows to (n(2k+ s)), but since s 6 k this is still bounded by O(nk).

3.4.6 Parametrizing the Hessenberg part

In this section we show how to parametrize the partial Hessenberg matrix Bi computed at
each step of the algorithm. In the previous section we have shown that the quasiseparability



120 quasiseparable matrices

rank is bounded during the steps and we have also given a possible factorized representation
in Equation (3.17). Here we recall it for the sake of clarity:

B̂i = T̂i(D̂i + t(ÛZ,iŜ
∗
i ) + t(âib̂

∗
i )) +UiW

∗
i .

It is worth to recall that this representation only gives the part of the matrix that still need to be
reduced to upper Hessenberg form, and ignores the rest. This is enough in order to carry out
the algorithm and compute the required unitary rotations, but will not give the final matrix
as an output at the end. For this reason, the matrix H needs to be recovered a posteriori. A
strategy to carry out this operation is described in Section 3.4.7

In the representation of B̂i we have three different terms that will be handled differently:

• T̂i is the trailing part of Ti whose representation has already been described in Sec-
tion 3.4.5. For this reason it is not necessary to further discuss it here, since we already
know how to update it.

• The Hermitian matrix D̂i + t(ÛiŜ∗i + t(âib̂
∗
i )) needs to be updated at each step by left

and right multiplying it by Zi and Z∗i , respectively. For this operation we refer to the
algorithm described in Section 3.3, where this operation is performed with the use of
Givens–Vector representations. It shall be stressed that the cost of the algorithm pre-
sented there is O(nk) flops per step.

• The low-rank part can be updated by simply multiplying its factors by the Givens rota-
tions. Since they are tall and thin n× k matrices, this costs O(nk) per step, within the
desired cost bound of the algorithm.

Note that, at the i-th step, it is possible to store the diagonal and subdiagonal elements of
the partial Hessenberg matrix Bi. In fact, these two elements will not change anymore during
the algorithm and so they are equal to the diagonal and subdiagonal elements of H = Bn−2.
This will be useful in the next section to recover the full matrix H.

3.4.7 Recovering the full matrix

The algorithm that we have presented can track the structure of the trailing principal submatrix
that still need to be reduced and carry out the transformation until complete Hessenberg
triangular reduction. However, from this formulation it is not completely clear how to recover
the Hessenberg matrix QBZ∗ at the end of the process.

To this end we consider the matrix QBZ∗ obtained at the final reduction step so that we
have

H = QBZ∗ = QZ∗ZDBZ
∗ +QUBV

∗
BZ
∗ = Tn−2ZDBZ

∗ +QUBVBZ
∗ −QUAVADBZ

∗.

It is worth to note that the above formula expresses H as Tn−2S plus a low rank correction
where S is Hermitian. Moreover, note that is possible to compute the matrix VADB at the start
of the algorithm and then perform the update of the low-rank parts at O(nk) cost per step.
Thus, at the end, we have that for some Vn−2,

H = Tn−2S+Un−2V
∗
n−2 (3.19)
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where Uj is as defined in the previous Section and has size n× 2k. If Tn−2 is invertible then it
is possible to write

T−1n−2H− T−1n−2Un−2V
∗
n−2 = S

and note that, since Tn−2H is upper Hessenberg and its diagonal and subdiagonal elements
can be computed in linear time, we have a direct expression for the lower part of S. Being
S Hermitian, this provides a direct expression for its upper part, too. This allows to use
Equation (3.19) to represent the final matrix H. Note that, since Tn−2 is quasiseparable, this
also provides a structured representation of H.

Moreover, it shall be stressed that the solution of the linear system T−1n−2Un−2 can be
avoided since

T−1n−2Un−2 = Zn−2 . . . Z1T
−1
0 U0

and this linear system can be easily solved in O(k3) time given the structure of T0. Then it is
sufficient to update the solution left multiplying by Zi at each step of the algorithm and thus
obtain the desired T−1n−2Un−2 at the end.

A slightly more involved strategy must be used when Tn−2 is singular. Since we cannot
invert it directly, we shall left multiply Equation (3.19) by the inverse of Tn−2 + JsJ∗s.

We get the following relation

S = (Tn−2 + JsJ
∗
s)

−1H− (Tn−2 + JsJ
∗
s)

−1R− JsY
∗
3S

and the computation of (Tn−2 + JsJ
∗
s)

−1R only requires O(n2k) operation since it requires
k back-substitutions. Here we have the solution of a slightly more costly triangular system
(given the O(n2k) complexity instead of the O(k3) of the previous strategy) but still within the
cost bound that we hoped for. Notice that, since Y3 is not known, the above allows to compute
the last n− k rows of S. Given the symmetry of S we can recover the whole matrix but the
top-left leading k× k matrix. To solve this issue we can store the full k× k leading minor of
the matrix H as it is computed. This is not costly since it requires O(k3) flops and after k steps
that part of the matrix is not modified anymore.

3.5 an alternative hessenberg reduction strategy

In this section we present an alternative strategy for the computation of the upper Hessenberg
form for a diagonal plus low rank matrix A = D+UV∗. We make the following remark.

Remark 3.5.1. Despite the common usage of the article “the” in front of the expression “Hes-
senberg form”, the upper Hessenberg form of a matrix A is not unique. What can be guaran-
teed is that if the first column of the conjugating matrix Q is fixed then H = Q∗AQ is uniquely
determined up to a conjugation by a diagonal matrix D with diagonal elements of modulus
1. This result is known in the literature as the implicit Q theorem and it is the basis of the
implicit QR iteration [91].

This result guarantees that as soon as the first column of Q is chosen the matrix H is
essentially determined. However, the result can be also seen from another viewpoint: since
the Hessenberg form is not unique, we can try to choose the initial transformation in order to
provide an easy reduction process.

The process that we introduce in this section is heavily based on Givens rotations so we
borrow the syntax of Section 3.3 for Givens rotations and sequences of Givens rotations.

The algorithm is composed of the following parts:
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reduction to banded form The matrix A = D+UV∗ is reduced to banded plus low rank
form Q1AQ

∗
1 = B+U1V

∗
1 where B has bandwidth k and

U1 =

[
X1
0

]
, X1 ∈ Ck×k.

The unitary matrix Q1 is obtained as M(G∗) where G is a k-sequence of Givens rotations.
We show that this transformation can be computed in O(n2k) flops.

reduction to hessenberg form We reduce the matrixQ1AQ∗1 to upper Hessenberg form
by annihilating subdiagonal elements one at a time using Givens rotations from the left.
This operation degrades the k-banded structure of the matrix so we restore it using other
rotations from the right. We can show that this can be carried out in O(k2) operations,
and so the total cost of the reduction is O(n2k).

Notice that by applying a preliminary transformation Q1 to the matrix A we alter the
first column and so we have that the final matrix H will be completely different from the
one computed by the classical Hessenberg reduction schemes based on Givens rotations or
Householder reflectors and by the procedure described in Section 3.3. However, in the context
of finding eigenvalues it is not relevant which Hessenberg reduction form is computed as soon
as it is obtained through unitary transformations (in order to not deteriorate the conditioning
of the eigenvalue problem).

3.5.1 Reduction to banded form

In this section we describe the first of the two steps required for the Hessenberg reduction: the
reduction of A to banded plus low rank. The algorithm that we report for this task is inspired
by Algorithm 2 of [3].

Suppose that U,V ∈ Cn×k. Assume k is fixed and consider the map ` defined by

`(i, j) : N2 −→ N

(i, j) 7−→ k(n+ j− i) + j
.

If we set I = {1, . . . ,n}× {1, . . . ,k} ⊆ N2 we have that `|I is an injective map. In fact, we can
easily verify that if `(i, j) = `(i ′, j ′) with (i, j), (i ′, j ′) ∈ I then

0 = `(i, j) − `(i ′, j ′) = k((j− j ′) − (i− i ′)) + j− j ′.

In particular we have j ≡ j ′ mod k and since they are both such that 1 6 j, j ′ 6 k then we
must have j = j ′. Then i = i ′ follows by back substitution. This allows to define an order on I
by inheriting the order on N through the map `. That is, we define the total order 6`

(i, j) 6` (i ′, j ′) ⇐⇒ `(i, j) 6 `(i ′, j ′).

Our purpose is to set the elements of U to zero using Givens rotations starting from the
elements larger with respect to the order 6`. Pictorially we obtain the following pattern for
the appearance of the zeros:

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

→

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
0 × ×

→

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
0 × ×
0 × ×

→

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
0 × ×
0 0 ×

→

× × ×
× × ×
× × ×
× × ×
× × ×
0 × ×
0 × ×
0 0 ×

→ . . . (3.20)



3.5 an alternative hessenberg reduction strategy 123

We obtain this result by applying Givens rotations on the left. Since we are transforming the
whole matrix A the same rotations have to be applied to the diagonal matrix D, thus losing
the diagonal structure. Since we are conjugating the matrix A we also need to apply the same
transformations on the right. Those will alter the entries of V but this is not a problem since we
do not have any requirement on the structure of V . Nevertheless, we want to understand what
happens to the matrix Q1DQ∗1. Before going on we want to better characterize the rotations in
Q1.

Algorithm 7 Algorithm for the reduction of A = D+UV∗ to Q1AQ∗1 = B+U1V
∗
1 where B is

banded with bandwidth k and U1 = [X1 0]
t with X1 ∈ Ck×k.

1: function BandReduction(D,U,V)
2: U1 ← U

3: V1 ← V

4: B← D

5: for i = n : -1 : 2 do
6: for j = 1, min{k,n− i+ 1} do
7: l← i+ j− 1

8: G← GivensRotation(U1[l− 1 : l, j])
9: U1 ← G ∗U1

10: V1 ← G ∗ V1
11: B← G ∗B ∗G∗
12: for s = l+k : k : n do
13: G← GivensRotation(B[s− 1 : s, s− k− 1])
14: V1 ← G ∗ V1 . No need to update U1 since has zeros on these entries
15: B← G ∗B ∗G ′
16: end for
17: end for
18: end for
19: return (B,U1,V1).
20: end function

We notice that the rotations can be written as a sequence of rotations in the sense of Defi-
nition 3.2.8. In particular, notice that the rotations needed to transform the matrix U in upper
triangular form are Gi,j with

(i, j) ∈ Ĩ := {(i, j) ∈ I | j = 1, . . . ,k, j 6 i 6 n− 1}.

The set Ĩ is ordered with the order induced by 6`, so that we can define G = (Gi,j)(i,j)∈Ĩ, and
we have that Q1 = M(G∗).

However, it is easy to verify that if we perform the algorithm as it is, we end up with U
being in the required form but Q1DQ∗1 being a full matrix. We propose the following solution,
similar to what is found in [3]: we consider the matrix D as a (very special) Hermitian banded
matrix with bandwidth k. When applying the rotations we will preserve the banded structure
of the matrix D by left multiplying by appropriately chosen rotations that act on the rows
where U has already been set to 0. This way we have that both Q1U and Q1DQ∗1 have the
required structure. The pseudocode describing the reduction is reported in Algorithm 7.
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× ×
× ×
× ×
× ×
× ×
× ×




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × 0 0 0
0 0 0 × 0 0
0 0 0 0 × 0
0 0 0 0 0 ×

→

× ×
× ×
× ×
× ×
× ×
0 ×




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × 0 0 0
0 0 0 × 0 0
0 0 0 0 × ×
0 0 0 0 × ×

→ · · ·

· · · →


× ×
× ×
× ×
× ×
0 ×
0 ×




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × 0 0 0
0 0 0 × × ×
0 0 0 × × ×
0 0 0 × × ×

→

× ×
× ×
× ×
× ×
0 ×
0 0




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × 0 0 0
0 0 0 × × ×
0 0 0 × × ×
0 0 0 × × ×

→ · · ·

· · · →


× ×
× ×
× ×
0 ×
0 ×
0 0




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

→

× ×
× ×
× ×
0 ×
0 0
0 0




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

→ · · ·

· · · →


× ×
× ×
× ×
0 ×
0 0
0 0




× 0 0 0 0 0
0 × 0 0 0 0
0 0 × × × 0
0 0 × × × ×
0 0 × × × ×
0 0 0 × × ×

→

× ×
× ×
0 ×
0 0
0 0
0 0




× 0 0 0 0 0
0 × × × × 0
0 × × × × 0
0 × × × × ×
0 × × × × ×
0 0 0 × × ×

→ · · ·

· · · →


× ×
× ×
0 ×
0 0
0 0
0 0




× 0 0 0 0 0
0 × × × × 0
0 × × × × 0
0 × × × × ×
0 × × × × ×
0 0 0 × × ×

→

× ×
× ×
0 ×
0 ×
0 0
0 0




× 0 0 0 0 0
0 × × × 0 0
0 × × × × 0
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×

→ · · ·

· · · →


× ×
0 ×
0 ×
0 0
0 0
0 0




× × × × 0 0
× × × × 0 0
× × × × × 0
× × × × × ×
0 0 × × × ×
0 0 0 × × ×

→

× ×
0 ×
0 0
0 0
0 0
0 0




× × × × 0 0
× × × × 0 0
× × × × × 0
× × × × × ×
0 0 × × × ×
0 0 0 × × ×

→ · · ·

· · · →


× ×
0 ×
0 0
0 0
0 0
0 0




× × × 0 0 0
× × × × 0 0
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×

→

× ×
0 ×
0 0
0 0
0 0
0 0




× × × 0 0 0
× × × × 0 0
× × × × × 0
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×

 .

Figure 3.7: Steps needed for the reduction of a matrix A = D+UV∗ to banded plus low rank
in the case of n = 6 and k = 2. Here we report the evolution of the matrix U and of the
diagonal matrix D. The matrices are displayed side by side so it is easy to apply the rotations
at the same time.
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The outer for loop iterates over the row indices of the matrix U. For each row the first inner
loop walks along the diagonals to clean the elements of U, as specified by the order 6` and
pictorially shown by Equation (3.20). The second inner loop, instead, cleans the bulges that
have been introduced on the banded matrix B by the rotations. Notice that if i > n− k the
latter loop does nothing, since no indices are included in the set i+ k : k : n, so for the first
k− 1 steps that code is not executed at all. In Figure 3.7 we show the evolution of the matrices
U1 and B in the first steps of the reduction algorithm for k = 2. The pictorial representation
shows how the zeros in the matrix U1 allow to recover the banded structure in the matrix B.
Even if it is not reported, the matrix V1 needs to be updated in the same way of U1.

We note that the second loop has the index s that runs from i+ k to n with step k. This is
motivated by the fact that when cleaning the element on row i+k on the (k+1)-th subdiagonal
the multiplication on the right by the same rotations creates a bugle k diagonal entries below.
We use the loop to chase all the bulges until the end of the matrix. This step is shown in the
last two transformations of the pictorial representation.

Notice that Algorithm 7 consists of O(nk · nk )) rotations since the outer loop is executed
n− 1 times while the inner ones are executed O(k) times and O(nk ), respectively. Each rotation
has a cost ofO(k) flops. In fact this is the cost of left multiplyingU1 and V1 that have k columns
and also the cost of conjugating B that has a band structure that never exceeds bandwidth k+ 1.

This implies that the total cost of the reduction is O(n2k). Since our purpose is to design
an algorithm with total cost bounded by O(n2k) we are satisfied with this result.

3.5.2 Reduction to Hessenberg form of a banded plus low rank matrix

We now show how to perform the actual Hessenberg reduction. We suppose to have A1 :=

Q1AQ
∗
1 = B+U1V

∗
1 computed with the algorithm of the previous subsection and we follow a

slightly modified version of the usual reduction algorithm based on Givens rotations.
We perform the following steps:

• We compute a sequence of k rotations G so that G∗A1e1 = αe1 + βe2 for some α,β. We
apply the rotation separately to B and U1V∗1 so that we compute G∗BG and G∗U1,G∗V1.

• At this point G∗B is no more banded with bandwidth k but has a bulge of order k on the
columns from 2 to k and on the rows from 3+ k to 1+ 2k. Notice that this is the same of
saying that G∗A1G has the bulge since G∗U1 has only the first k+ 1 rows different from
zero. We compute a sequence of Givens rotations to remove the bulge from the left and
we right and left multiply G∗A1G by them. This cleans the bulge but at the same time
another one is created k entries below. We continue to chase the bulge until the end of
the matrix.

• We repeat the process on the trailing matrix obtained by removing the first row and
column. Before continuing with the recursion we store the diagonal and subdiagonal
elements of the first column.

The first and the last point of the above algorithm are quite clear, since they are exactly the
same of the standard Hessenberg reduction process.

The middle one, however, needs to be studied more carefully. First of all, given the structure
of A1, we note that G = {G2, . . . ,Gk}. Most of the first column, in fact, is already set to 0 and
so we only need O(k) rotations to put it in Hessenberg form. We also notice that GkU1 makes
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the k+ 1 row of U1 different from zero, but all the other rotations do not change the structure
of U1, since they are acting on rows above the (k+ 1)-th. Moreover, since the bulge starts from
row 3+ k the rotations needed to clean it do not alter the zero structure of U1. For this reason
we only need to care about A1 when chasing the bulge, and consequently update V1.

We notice that, being the bulge a k×kmatrix, it is not trivial how it can be removed by only
O(k) rotations. This is actually possible since the bulge itself has a quasiseparable structure of
QS rank 1, inherited by the fact that it is created by a sequence of rotations. However, there
is no need to compute a representation for the quasiseparable structure in order to remove it.
It is much simpler to avoid its creation in the first place. In practice, we follow this pattern to
apply the rotations in G that clean the first column:

• We apply the last rotation Gk. This creates a bulge in position (2k+ 1,k).

• We clean the above bulge with a rotation from the left. This step will create another bulge
k entries below, and we chase it until the end of the matrix.

• We do the same applying the rotations Gj with j < k that will create a bulge in position
(k+ j+ 1, j) that we clean with a rotation from the left and the required bulge chasing.

The above strategy allows to make the bulge chasing operation O(k2) per bulge, since only
O(k) rotations are involved and applying each one only costs O(k) flops. Since we have O(nk )
bulges to chase we get a total cost per column of O(nk ) ·O(k

2) = O(nk) and so a total cost for
this part of the algorithm of O(n2k).

As we have said, at each step we do not track the entire structure but we only store the
diagonal and subdiagonal elements of the Hessenberg form. Since we are also tracking the low
rank factors U1 and V1 properly updated with the rotations, in the end we are able to recover
the whole matrix H along with its rank structure.

Lemma 3.5.2. The Hessenberg form H computed through unitary rotations satisfies the following
relation:

H−H∗ = U2V
∗
2 − V2U

∗
2

where U2 = Q2Q1U and V2 = Q2Q1V .

Proof. Recall that H = Q2Q1(D + UV∗)Q∗1Q
∗
2. Since Q2Q1DQ∗1Q

∗
2 is Hermitian it is not

present in the difference H−H∗ and so we have the thesis.

Using the above result and the fact that we know the lower part of H we can recover the
upper part. In fact, we have

tril(H) − tril(H∗) = tril(H−H∗) = tril(U2V∗2 − V2U
∗
2)

and since tril(H∗) = triu(H)∗ we have triu(H) = tril(H)∗ − tril(U2V∗2 − V2U
∗
2)
∗ = tril(H)∗ −

triu(V2U∗2 −U2V
∗
2). This implies that the upper Hessenberg form that we have found is the

sum of a tridiagonal matrix and the upper triangular part of a low rank one (which has rank
2k).
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Size QS (s) LAPACK (s)

100 0.026 0.006

200 0.034 0.022

400 0.12 0.091

800 0.32 0.56

1600 1.00 3.82

3200 4.32 28.68

6400 21.72 237.12

Figure 3.8: CPU time, in seconds, for the Hessenberg reduction of a diagonal plus rank 10
matrix of size n. Here the line is the plot of γn2 for an appropriate γ. It is evident the
quadratic behavior of the time.

3.5.3 Numerical experiments

In this section we report some numerical experiments that we have run in order to validate
the approach. The code has been written in the FORTRAN language and exposed to MATLAB
and GNU Octave through a MEX file, for easier testing. We have run it on a laptop with an
Intel(R) Core(TM) i3-2367M CPU running at 1.40GHz and 4 GB of RAM. Moreover, it will soon
be available at http://numpi.dm.unipi.it/software/ for testing.

We have checked that the complexity is really quadratic in the size and linear in the rank
in Figure 3.8 and Figure 3.9, respectively. In Figure 3.8 we compare our algorithm with the
standard Hessenberg reduction on a problem with quasiseparable rank equal to 10. The clas-
sical algorithm is faster for n < 800. From the plot we might guess that the two approaches
are comparable at around n ≈ 500. Using the above results we can estimate that the contant
in front of the complexity O(n2k) of our algorithm is more or less 60 times bigger than the
one in fron of the O(n3) in front of the classical Hessenberg reduction strategy. This can be
considered as a good result because the implementation of our method is not blocked and so
does not take fully advantage of vectorization. A possible way to improve the result could
be to rely in Householder reflections and operate on blocks. We think that this possibility
deserves further study. The flops count for Householder-based Hessenberg reduction is just
10
3 n

3, so the constant is very small. In our case, we have to compute and apply about O(n2k)
rotations to at least 3 different matrices. Combining this with the fact that Givens rotations
tend to be more expensive than Householder reflections we have a motivation for the fact that
our constant is bigger.

http://numpi.dm.unipi.it/software/


128 quasiseparable matrices

101 102
100

101

k (QS rank)

Ti
m

e
(s

)

QS Rank Time (s)

5 1.33
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80 11.99

160 23.97

Figure 3.9: CPU time, in seconds, for the Hessenberg reduction of a 2000× 2000 diagonal plus
rank k matrix.

Size Relative error

160 4.65e-15

320 5.57e-15

640 1.19e-14

1280 8.70e-15

Table 3.1: Relative error (in the 2-norm) of the eigenvalues computed starting from the Hes-
senberg matrix H obtained by the structured quasiseparable reduction. The eigenvalues have
been compared to the ones computed by the function eig in GNU Octave.

Figure 3.9 shows that the complexity is linear in the rank as soon as it is large enough, and
it exhibits a slight sublinear behavior before. This is likely due to better performance of the
algorithm when a more dense linear algebra is performed operating on bigger bulges.

Moreover, we have tested the accuracy of the approaches by computing the eigenvalues of
the Hessenberg matrix computed with this strategy and comparing them to the eigenvalues of
the full matrix A. The results are reported in Table 3.1. The error is the relative error (in the
2-norm) of the vector containing the eigenvalues. The matrices have been generated using the
randn function of GNU Octave, that is by writing them as a sum of a random diagonal matrix
plus the product of two random n× k matrices.

3.6 an application to quadratic matrix equations

The purpose of this section is to investigate the use of quasiseparable representations in the
solution of some special quadratic matrix equations. A much more detailed analysis of these
results (along with other extensions) is available in [16].
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We consider the problem of finding the invariant probability measure of a QBD (Quasi
Birth and Death) Markov chain. This is a stochastic process often found in the probabilistic
analysis of queues. It models situations where the space state is divided in levels and each
level contains a certain number of substates. Transitions are possible only to adjacent levels,
while the internal transitions of the level might be arbitrary. This kind of restriction gives a
probability transition matrix of the form

P =


Â0 A1
A−1 A0 A1

. . .
. . .

. . .

. . .
. . .

. . .


since typically the set of levels is isomorphic to N+ and the transitions inside the levels and
from one to the other are independent of the specific level. Thus we have a block Toeplitz
structure with substochastic blocks (except for the top-left block, that needs to be different to
account for the fact that we cannot move left since it represents the lowest possible level). The
computation of the invariant vector can be rephrased in terms of the solution of the following
matrix equation [18]:

X = A−1 +A0X+A1X
2, Ai ∈ Rm×m.

The minimal non negative solution G of the matrix equation is guaranteed to exist in this
context and can be obtained applying the cyclic reduction (see [18, 17]) that defines an iteration
on four matrices given by setting A(0)

i = Ai for i = −1, 0, 1, Â(0)
0 := Â0 and defining Â(`)

i and

Â
(`)
0 by the following formulas:

A
(k+1)
i =

{
A

(`)
i (I−A

(`)
0 )−1A

(`)
i if i 6= 0

A
(`)
0 +A

(`)
−1(I−A

(`)
0 )−1A

(`)
1 +A

(`)
1 (I−A

(`)
0 )−1A

(`)
−1 if i = 0

Â
(k+1)
0 = Â

(`)
0 +A

(`)
1 (I−Ak0)

−1A
(`)
−1

At each step an approximation of the solution G can be given as G(`) := (Â
(`)
i )−1A

(`)
1 . If

the above iteration converges then G(`) goes to the solution G as ` goes to infinity.
In [18] a thorough analysis of the algorithm is carried out for the solution of Quasi-Birth

and Death Markov chains (in short: QBDs). A natural example in this setting is to consider
random walks on {0, . . . ,n}×N+. In this case the states are of the form (i, l) where l is the level
and i is the index of the substate. Allowing to move only to adjacent levels and to adjacent
substates imposes a tridiagonal structure on the blocks Ai.

The fact that the matrices Ai represent probability measures implies that they are non-
negative and the sum A−1 +A0 +A1 is row stochastic, that is,

(A−1 +A0 +A1)e = e, e =

1...
1

 . (3.21)

We want to deal with situations where this additional structure is available. The case of
tridiagonal blocks is theoretically analyzed by Myazawa [79]. The approach that we present
here can be easily generalized to the case of k-quasiseparable coefficients, but in order to keep
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the exposition simple we restrict our attention to tridiagonal matrices. In the general case, we
might want to answer the following questions:

• Does the quasiseparable structure of Ai imply that also the solution of the matrix equa-
tion is quasiseparable?

• Is the quasiseparable structure maintained during the iterations of the cyclic reduction?
If it is, is it possible to exploit this fact in order to speed up the algorithm?

We can answer positively to both questions, provided we make the right assumptions and
we look at them in the right framework. In this context we will focus mainly on studying the
structure of the matrices Ai since that is the ingredient needed to lower the cost of the iteration.
In order to analyze these structures we introduce the matrix polynomial ϕ(z) defined as

ϕ(z) := A−1 + z(A0 − I) + z
2A1.

In the same spirit we define the function ϕ(`)(z) for every ` > 0 by setting

ϕ(`)(z) := A
(`)
−1 + z(A

(`)
0 − I) + z2A

(`)
1 .

It is immediate to note that ϕ(0)(z) ≡ ϕ(z). We also define ψ(z) = zϕ(z)−1 and ψ(`)(z) =

z(ϕ(`)(z))−1, whenever this makes sense1. Notice that Equation (3.21) guarantees that 1 is
always an eigenvalue of ϕ(z), since ϕ(1)e = 0.

We have the following important relationship, proved in [18]:

Theorem 3.6.1. Let A(`)
i be the matrices involved in the CR iteration and ϕ(`)(z) and ψ(`)(z) defined

as above. Then, for every ` > 0,

ψ(`+1)(z2) =
1

2

(
ψ(`)(z) +ψ(`)(−z)

)
. (3.22)

Recalling that ϕ(`)(z) = zψ(`)(z)−1 we can retrieve a representation for ϕ(`)(z) as

ϕ(`)(z2
`
) = z2

` 1

2`

2`−1∑
j=0

ψ(ζj
2`
z)

−1

(3.23)

where ζn is any n-th primitive root of the unity. This fact can be used to give an apparently
negative answer to the second question that we have asked.

Remark 3.6.2. Recalling that the QS rank is maintained under inversion, the QS rank of A(`)
i

can be bounded by C · 2k where C is an appropriate constant. In fact, we know that by
Equation (3.23) the matrix function ϕ(`)(z) can be written as the average of 2k terms that have
QS rank 1, and this gives the thesis on the matrix function ϕ(z). Moreover, the coefficients of
A

(`)
i can be retrieved from ϕ(`)(z) through the following interpolation formulas:

A
(`)
−1 =

1

3

(
ϕ(`)(ζ6) +ϕ

(`)(ζ56) +ϕ
(`)(−1)

)
(3.24)

A
(`)
0 =

ζ56
2

(
ϕ(`)(ζ6) −ϕ

(`)(−ζ6)
)

(3.25)

A
(`)
1 =

1

3

(
ζ26ϕ

(`)(ζ56) + ζ
4
6ϕ

(`)(ζ6) +ϕ
(`)(−1)

)
(3.26)

1 The matrix function ψ(z) can be defined for every z such that ϕ(z) is invertible, that is, for each z that is not part of
the spectrum of ϕ(z).
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Figure 3.10: Plot of the most significant singular values of an offdiagonal matrix of the middle
coefficient A(`)

0 generated by the CR iteration applied to a problem of size 1600. Each line in
the plot shows the most significant singular values for a different value of `.

where, as usual, ζ6 is a primitive 6-th root of the unity. This implies that if ϕ(`)(z) is quasisep-
arable for any z ∈ C the same must hold for its coefficients, even if we might need to put a
constant in front of the QS rank.

The above estimate is rather pessimistic, since it provides only an exponential bound to the
increase of the QS rank of the coefficients. However, numerical experiments show that this
bound is strict, at least in early iterations. Analyzing the QS rank of the subsequent iterations
show that the offdiagonal submatrices of ϕ(`)(z) are, in general, full rank. Nevertheless, they
exhibit an exponential decay in the singular values and so they can be approximated very well
by a quasiseparable matrix. In Figure 3.10 we have reported the plot of the most significant
singular values of a offdiagonal matrix of ϕ(`)(z) for Ai ∈ C1600×1600.

Figure 3.10 shows that the singular values tend to be arranged on a straight line in the
logarithmic scale, and so they exhibit an exponential decay. Moreover, it is clear from this
example that the singular values σi drop below a threshold comparable to the unit roundoff u
at a value of i of about 25. The machine precision is reported as an horizontal line in the plot.

This suggests that even if the off-diagonal matrices have theoretically full rank they are
numerically of rank about (at most) 25, at least in this example. The natural question is: how
can we exploit this fact?

The quasiseparable representations that we have used for the Hessenberg reduction can
handle only the exact QS rank and it is not easy to represent approximations of non quasisep-
arable matrices. In our experiments we have found hierarchical representations of [26] that we
have surveyed in Section 3.1 to be the most convenient for this purpose.

In fact, in hierarchical representations, we have that the off-diagonal blocks are represented
as outer products UV∗ with U and V n× k matrices with k larger than the QS rank. As we will
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see, it is easy to obtain these factors U and V from SVD decompositions that allow to construct
QS approximations given a certain truncation threshold.

This section is divided in three parts:

(i) In Section 3.6.1 we prove that the behavior of the singular values that we have found in
the numerical experiments is linked with some spectral properties of the matrix function
ϕ(z).

(ii) In Section 3.6.2 we show that the characterization of the structure generalizes to the case
where a shift is applied to the matrix polynomial, an operation sometimes needed in
order to improve the convergence of the method.

(iii) In Section 3.6.3 we show how it is possible to use H-matrices in order to design a fast
version of the CR algorithm for this kind of matrices.

3.6.1 Exponential decay of the singular values

Here we deal with the following problem: given a class of matrix functions ψ(z) (which in
our case will be the inverses of ϕ(z) associated with a QBD process) with the same spectral
properties we prove that the singular values of off-diagonal submatrices exhibit an exponential
decay that is maintained under CR iterations.

In this context we assume to be working with a non null-recurrent process, that is a kind
of regular case for Markov chains. The general analysis of the decay for null-recurrent QBDs
is more involved. These results are extended to those cases in [16].

We report the following useful properties of the matrix polynomial ϕ(z). A proof of these
results can be found in [17] and [57].

Lemma 3.6.3. Let ϕ(z) = A−1+ zA0− zI+ z
2A1 be the matrix polynomial associated with the QBD

process with blocks equal to A−1,A0 and A1. We have that the following properties hold in the non
null recurrent case.

(i) The real number 1 is always an eigenvalue of ϕ(z). Moreover, the matrix polynomial ϕ(z) has
another positive real eigenvalue ρ such that one of the two conditions is satisfied.

• ρ < 1 and the annulus A = {z | ρ < |z| < 1} does not contain any eigenvalue of ϕ(z).
Moreover, ρ is the spectral radius of the minimal nonnegative solution G of the matrix
equation A−1 +A0X+A1X

2 = X. In this case we set ρmin := ρ and ρmax := 1.

• If ρ > 1 and the annulus A = {z | 1 < |z| < ρ} does not contain any eigenvalue of ϕ(z).
Moreover, ρ is inverse of the spectral radius of the minimal nonnegative solution R of the
matrix equation X2A−1 +XA0 +A1 = X. In this case we set ρmin := 1 and ρmax = ρ.

(ii) If we call A(z) and D(z) any diagonal block of ϕ(z) in the partitioning

ϕ(z) =

[
A(z) B(z)

C(z) D(z)

]
then A(z) and D(z) are invertible in the annulus A defined above.

(iii) The real numbers 1 and ρ are the unique solution to the equation ρ(rI−ϕ(r)) = r where ρ is the
spectral radius and r ∈ R+. In particular, in the interval (ρmin, ρmax) we have ρ(rI−ϕ(r)) 6 r
so that ρ(I− z−1ϕ(z)) 6 1 for any z contained in the annulus A.
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Remark 3.6.4. In order to make the exposition simpler we would like to have the annulus A

of the form

At =

{
z | t 6 |z| 6

1

t

}
, ρ < 1.

We can achieve this by setting ϕ̂(z) := ϕ(z
√
ρmaxρmin) so that we have the invertibility of

ϕ̂(z) in annulus as defined above by setting t :=
√
ρmin
ρmax

.

In view of the above remark in the following we will always assume that ϕ(z) is already
in the form of ϕ̂(z), without the need of rescaling. In particular, all the results that we prove
are independent of the scaling introduced on the matrix function ϕ(z). Moreover, while most
of the following results hold in the quasiseparable case, here we only consider the problem of
tridiagonal coefficients.

Remark 3.6.5. We notice that the matrix function ϕ(z) that we are interested in has a rather
particular form, since it can be written as

z−1ϕ(z) = I− (z−1A−1 +A0 + zA1), Ai positive and

for i = −1, 0, 1. In particular, ρ(z−1A−1 +A0 + zA1) < 1 for any z ∈ At so that by setting
K(z) = z−1A−1 +A0 + zA1 we can write

zϕ(z)−1 =

∞∑
j=0

K(z)j.

We can partition K(z) according to the partitioning that we have proposed on ϕ(z) so that we
have

z−1ϕ(z) = I−K(z) =

[
I

I

]
−

[
AK(z) BK(z)

CK(z) DK(z)

]
.

K(z) is defined by non negative coefficients so, for any z, |K(z)| 6 K(|z|). In particular, for any
z ∈ At we have that both AK(z) and DK(z) have a spectral radius smaller than K(|z|). In fact,
by relying on the Perron-Frobenius theorem we have

ρ(AK(z)) = ρ

([
AK(z) 0

0 0

])
,

[
|AK(z)| 0

0 0

]
6

[
AK(|z|) 0

0 0

]
6 K(|z|).

that implies ρ(AK(z)) 6 ρ(K(|z|)). Since ρ(K(|z|)) < 1 in the annulus At we can claim that the
same holds for AK(z) and DK(z). In particular, both A(z) = I−AK(z) and D(z) = I−DK(z)

are invertible and it holds

|A(z)−1| 6
∞∑
j=0

|AK(z)|
j 6

∞∑
j=0

K(|z|)j = zϕ(|z|)−1,

and the same for D(z)−1. The monotonicity of the Euclidean matrix norm allows to conclude
that

‖A(z)−1‖2 6 ‖zϕ(|z|)−1‖2, ‖D(z)−1‖2 6 ‖zϕ(|z|)−1‖2
Lemma 3.6.6. Let ϕ(z) be defined as above. Assume that ϕ(z) is invertible in the annulus At. Then
there exist two holomorphic matrix functions u(z) and v(z) of size n× k such that

ϕ(z) =

[
A(z) B(z)

C(z) D(z)

]
=⇒ zϕ(z)−1 =

[
× ×

u(z)vt(z) ×

]
.
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where k is the quasiseparability rank of ϕ(z). Moreover, u(z) and v(z) satisfy the following constraints:

‖u(z)‖2 6 ‖ψ(z)‖2, ‖v(z)‖2 6 ‖ψ(z)‖2.

where C is the constant of Remark 3.6.5.

Proof. Having that ϕ(z) is tridiagonal we can write C(z) = f(z)ej+1etj for an appropriate value
of j. Choosing ũ(z) := f(z)ej+1 and ṽ(z) := ej allow us to write C(z) = u(z)vt(z). Moreover,
we have that |f(z)| is bounded by max{ρmax, 1

ρmin
} as a consequence of the non-negative and

stochasticity properties. We can then write[
A(z) B(z)

ũ(z)ṽt(z) D(z)

] [
I

−D−1(z)C(z) I

]
=

[
SD(z) B(z)

0 D(z)

]
where SD(z) is the Schur complement. In particular, given the invertibility of ϕ(z) in the annu-
lus we have that bothD(z) and SD(z) are invertible and taking the inverses on both sides yields
that the block in the bottom left corner of the inverse zϕ−1(z) is given by D−1(z)C(z)S−1D (z) =

D−1(z)ũ(z)ṽt(z)S−1D (z). Setting

u(z) := D−1(z)ũ(z), v(z) = S−tD (z)ṽ(z)

gives the thesis.
We can now prove that the bounds on the norms are satisfied. Notice that S−1D (z), being an

element of the inverse of z−1ϕ(z), is bounded in norm by ‖ψ(z)‖2. Moreover, the bounds on
the inverse of D(z) given in Remark 3.6.5 guarantee that

‖D−1(z)‖2 6 z‖ψ(z)‖2

and so we can retrieve the following bound on the norm of u(z) and v(z):

‖u(z)‖2 6 ‖ψ(z)‖2, ‖v(z)‖2 6 ‖ψ(z)‖2.

Theorem 3.6.7. Letψ(z) be the 1-quasiseparable matrix function obtained as the inverse of a tridiagonal
matrix function ϕ(z) on the annulus At for some t > 1. We assume that ϕ(z) and ψ(z) are associated
with a QBD process according to the notation used above. If C(z) is an off-diagonal block of ψ(`)(z)

then its singular values σj(C(z)) are such that

σj(C(z)) 6 Ct · sup
z∈At

‖ψ(z)‖22 · e
−α(t)j,

where Ct a moderate computable constant which depends on t, α(t) = 1
2 log(t) and ψ(`)(z) is defined

according to Equation (3.22).

We want to emphasize that our aim is to derive some decay result that is only dependent
on the spectral data of ψ(z), that is, on requiring that its eigenvalues are outside of a given
annulus. In particular, notice that if t is chosen in a way that At is the maximum annulus of
invertibility ψ(z) will be unbounded on this open set. On the other hand, if t is chosen too
small the exponential decay will be slow. As usual with this kind of bounds, the value of t will
need to be set looking for a fair trade-off between the decay speed and the size of the constant.
The rest of this section is devoted to prove the above result.
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Remark 3.6.8. If Theorem 3.6.7 holds then each offdiagonal matrix function C(z) of ψ(z) has
numerical rank (with threshold equal to u) bounded by

ranku(C(z)) 6
maxz∈At log(‖ψ(z)‖2) − log(u) + log(Ct)

α(t)

where the above formula is obtained by requiring that σj 6 u · σ1 and assuming that in z the
norm of C(z) is not too far from the maximum attained on the circle of ‖ψ(z)‖2.

Our analysis of the decay of the singular values is strictly connected with the matrix func-
tions ϕ(`)(z) and ψ(`)(z). For this reason we need to understand the relation of the singular
values of the offdiagonal submatrices of a matrix with the ones of its inverse.

Lemma 3.6.9. Let A and B be two n×n matrices. Let σj(A) denote the j-th singular value of A sorted
in decreasing order, and the same for B. If B is invertible it holds that

σj(A)

‖B−1‖2
6 σj(AB) 6 ‖B‖2σj(A),

σj(A)

‖B−1‖2
6 σj(BA

∗) 6 ‖B‖2σj(A).

Proof. Recall that the singular values of a matrix A are the square roots of the eigenvalues of
the Hermitian matrix A∗A. We can write

A = UAΣAV
∗
A, B = UBΣBV

∗
B

where UA, VA, UB and VB are unitary matrices and ΣA and ΣB are diagonal with the singular
values on the diagonal. Since the singular values are invariant for the multiplication by unitary
matrices we have that, by setting Q = V∗AUB, we can write

σj(AB)
2 = max

dim(V)=j
V⊆Rn

min
x∈V

x∗Σ∗BQ
∗Σ∗AΣAQΣBx

x∗x
= max

dim(V)=j
V⊆Rn

min
x∈V

(ΣBx)
∗Q∗Σ2AQ(ΣBx)

x∗x

which is obtained by writing the j-th eigenvalue of ABB∗A∗ by using the Rayleigh quotient.
By setting y = ΣBx and recalling that ΣB must be invertible by hypothesis we have

σj(AB)
2 = max

dim(V)=j
V⊆Rn

min
y∈V

y∗Q∗Σ2AQy

y∗y
· y
∗y

x∗x

so that by using the fact that Q is unitary and that x∗x
‖B−1‖2 6 y∗y 6 ‖B‖2x∗x we obtain

σj(A)
2

‖B−1‖22
=
σj(ΣA)

2

‖B−1‖22
6 σj(AB)

2 6 ‖B‖22 · σj(ΣA)
2 = ‖B‖22 · σj(A)

2.

We are now ready to show that the singular values of the off-diagonal blocks of A do not
change too much under inversion, given reasonable hypothesis on the matrix A.

Lemma 3.6.10. Let A be an invertible matrix with the following block decompositions:

A =

[
A1,1 A1,2
A2,1 A2,2

]
, A−1 =

[
Ã1,1 Ã1,2
Ã2,1 Ã2,2

]
where the corresponding blocks have the same sizes. It holds that
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(i) If A2,2 is invertible then

1

‖A2,2‖2‖SA2,2‖2
σk(A2,1) 6 σk(Ã2,1) 6 ‖A−1

2,2‖2 · ‖S
−1
A2,2
‖2 · σk(A2,1)

where SA2,2 = A1,1 −A1,2A
−1
2,2A2,1 is the Schur complement of A2,2.

(ii) If A1,1 is invertible then

1

‖A1,1‖2‖SA1,1‖2
σk(A2,1) 6 σk(Ã2,1) 6 ‖A−1

1,1‖2 · ‖S
−1
A1,1
‖2 · σk(A2,1)

where SA1,1 = A2,2 −A2,1A
−1
1,1A1,2 is the Schur complement of A1,1.

Proof. To prove the lemma we write the block inversion formula for A so that we get

A−1 =

[
A−1
1,1 +A

−1
1,1A1,2S

−1
A1,1

A2,1A
−1
1,1 −A−1

1,1A1,2S
−1
A1,1

S−1A1,1
A2,1A

−1
1,1 S−1A1,1

]
.

Since we have Ã2,1 = S−1A1,1
A2,1A

−1
1,1 applying Lemma 3.6.9 two times yields

1

‖A1,1‖2‖SA1,1‖2
σk(A2,1) 6 σk(Ã2,1) 6 ‖A−1

1,1‖2 · ‖S
−1
A1,1
‖2 · σk(A2,1)

which is point (ii) of the thesis. The other can be obtained in the same way by just using the
other inversion formula involving SA2,2 .

In order to obtain the estimates on the singular values we consider a decomposition of the
form A =

∑n
i=0 uiv

∗
i . Notice that in the case where the ui and the vi form orthogonal basis

this is exactly the SVD if we rescale ui and vi in order to have unitary norm and we take out a
positive scalar σi. In practice, we will not be able to directly obtain such a decomposition, but
instead we will handle the case where the ui and vi are not orthogonal. Nevertheless, it is still
possible to bound the singular values, as the following lemma shows.

Lemma 3.6.11. Let A =
∑
j∈ZAj where the matrices Aj are of rank k. Assume that ‖Aj‖2 6

Me−α|j| for some positive constant j and α > 0. Then we have that the singular values of A are
bounded by

σl(A) 6
2M

1− e−α
e−αd

l−k
2k e.

Proof. The idea of the proof is based on the fact that if B is a rank l approximation of A then
σl+1 6 ‖A− B‖2. In fact, we know that the best rank l approximation of A is given by the
truncated SVD where only the first l singular values and vectors have been considered. Since
B cannot be a better approximation and the residual norm 2 of the truncated SVD is exactly
σl+1 we can conclude that the above inequality holds.

Notice that, for any l, if we set Il−1 = {j ∈ Z | |j| < d l−k2k e} the matrix B =
∑
j∈Il−1 Aj is a

rank (at most) l− 1 approximation to A. For this reason

σl(A) 6 ‖B−A‖2 6
∑
j∈ICl−1

‖Aj‖2 6M
∑
k∈ICl−1

e−α|j| 6
2M

1− e−α
e−αd

l−k
2k e.

This concludes the proof.
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We now have all the required tools needed to give a proof of Theorem 3.6.7.

Proof of Theorem 3.6.7. Since ψ(z) is analytic on the annulus At the same must hold for the off-
diagonal block C(z). Moreover, given the quasiseparability condition on ψ(z), we know that
we can write C(z) = u(z)v(z)t where u(z) and v(z) are vector functions as per Lemma 3.6.6.
According to the Lemma we have the following bounds on their norm:

‖u(z)‖2 6 ‖ψ(z)‖2, ‖v(z)‖2 6 ‖ψ(z)‖2.

Moreover, we know that u(z) and v(z) can be chosen analytic in this context (again thanks to
Lemma 3.6.6) so that we can expand them in the Fourier basis:

u(z) =
∑
k∈Z

ûkz
k, v(z) =

∑
k∈Z

v̂kz
k.

Thanks to [68, Theorem 4.4c] we know that the Fourier coefficients of analytic functions have
an exponential decay given by their domain of definition, that in our case means

‖ûj‖∞ 6 max
|z|={t, 1t }

‖u(z)‖∞e−α|j|, ‖v̂j‖∞ 6 max
|z|={t, 1t }

‖v(z)‖∞e−α|j|, α = log(t).

. Since ‖u(z)‖∞ 6 ‖u(z)‖2 6 ‖ψ(z)‖2 and, ‖v̂j‖∞ 6 ‖v̂j‖2 6 ‖ψ(z)‖2 we can write

|ûj| 6 ‖ψ(z)‖2e−α|j|, |v̂j| 6 ‖ψ(z)‖2e−α|j|.

Moreover, recalling that ψ(`)(z) can be written as

ψ(`)(z) =
1

2`

2`∑
j=1

ψ(ζj
2`
z)

the same must hold for C(z) by linearity, and so substituting the Fourier expansion in the
above equation yields

C(`)(z) =
1

2`

2`∑
j=1

C(ζj
2`
z) =

1

2`

2`∑
j=1

∑
l∈Z

ûlz
lζ
lj

2`

∑
s∈Z

v̂∗sz
sjζs
2`

.

Swapping the indices in the sum allows to simplify many terms, since the sum over the roots
of the unity gives 0:

C(`)(z) =
1

2`

∑
l∈Z

∑
s∈Z

2`∑
j=1

ûlv̂
∗
sz
l+sζ

(l+s)j

2`
=
∑
l∈Z

ûl
∑
s∈Z

v̂∗
s2`−l

zs2
`
.

If we take |z| = 1 we can write C(`)(z) as C(`)(z) =
∑
l∈Z Xl with

Xl = ûl
∑
s∈Z

v̂∗
s2`−l

zs2
`
.

being a rank 1 matrix. The decay on v̂s and ûl guarantees that

‖Xl‖2 6 ‖ûl‖2 ·
∑
s∈Z

‖v̂∗
s2`−l

‖2 6 Ct sup
z∈At

‖ψ(z)‖22
e−α|l|

1− e−α2
`

.

where Ct is an appropriate constant. Applying Lemma 3.6.11 gives the thesis.
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The above theorem guarantees the requested decay on the off-diagonal singular values of
ψ(z). We need now to recover the same bound on the off-diagonal singular values of ϕ(z).
Recalling that zϕ(z)−1 = ψ(z) we can use Lemma 3.6.10 to obtain the thesis. We have the
following

Theorem 3.6.12. Let ϕ(`)(z) be the matrix function associated to the `-th step of the cyclic reduction
for a QBD with tridiagonal coefficients and invertible on an annulus At. Then, the singular values of
each offdiagonal block C(z) are bounded by

σj(C(z)) 6 Ctn max
z∈At

‖ψ(z)‖22e
−α|j|

where α and Ct are the usual constants of Theorem 3.6.7 and n is the size of ϕ(z).

Proof. Since z−1ϕ(`)(z) = (ψ(`))−1(z) we can combine Lemma 3.6.10 and Theorem 3.6.7 and
we have

σj(C(z)) 6 ‖A1,1(z)‖2‖A2,2(z)‖2σj(B̃(z))

where C̃(z) is the block corresponding to C(z) in ψ(`)(z). Given that ‖ϕ(z)‖∞ 6 2 we have

σj(C(z)) 6 4nσj(C̃(z)) 6 Ctn‖ψ(z)‖22

where Ct is an appropriate constant and we have used that ‖·‖2 6
√
n‖·‖∞.

3.6.2 Applying the shift

In many practical situations in order to speed up the convergence of the cyclic reduction it
is useful to shift away the eigenvalue 1. In [18] it is shown that we can consider a rank 1
modification of ϕ(z) with the eigenvalue removed. We have the following.

Lemma 3.6.13. There exist a rank 1 stochastic matrix Q such that the matrix polynomial ϕ̃(z) =

z2Ã1 + zÃ0 + Ã−1 with

Ã−1 = A−1 −A−1Q, Ã0 = A0 +A1Q, Ã1 = A1,

and ϕ(z) share the same eigenvalues with the only exception of an eigenvalue 1 of ϕ(z) that is moved to
0 in ϕ̃(z). Moreover, Q is of the form eut where e is the vector of ones and u > 0 is such that ute = 1.

We can define ψ̃(z) as zϕ̃(z)−1 and we have the following important result that relates the
cyclic reduction iterations on the modified problem with the ones on the original one.

Theorem 3.6.14. Let ϕ̃(`)(z) be the matrix polynomial obtained at the `-step of the CR iteration applied
to the shifted ϕ̃(z). Then we have ϕ̃(`)(z) = ϕ(`)(z)+R(`)(z) and ψ̃(`)(z) = ψ(`)(z)+ T (`)(z) where
R(`)(z) and T (`)(z) has rank at most 1.

Proof. Note that

ϕ̃(0)(z)−1 = (ϕ(0)(z) + (zA1 −A−1)Q)−1

= (ϕ(0)(z) + (zA1 −A−1)eu
t)−1 = ϕ(0)(z)−1 − x(z)ut
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for some vector x(z) thanks to the Woodbury matrix inversion formula. Using this fact we can
write

ϕ̃(`)(z2
`
) = z2

`

 1

2`

2`−1∑
j=0

ψ̃(0)(ζjz)

−1

= z2
`

 1

2`

2`−1∑
j=0

ζjz
(
ϕ(0)(ζjz)

−1 − x(ζjz)u
t
)−1

.

Observe that T (`)(z2
`
) :=

(
1
2`

2`−1∑
j=0

ζjzx(ζjz)

)
ut has rank 1 and so the part of the statement

concerning ψ̃(`) is proved.

By setting x̂(z2
`
) := 1

2`z2
`

∑2`−1
j=0 ζjzx(ζjz) we have

ϕ̃(`)(z2
`
) =

(
ϕ(`)(z2

`
)−1 − x̂(z2

`
)ut
)−1

= ϕ(`)(z2
`
) + R(`)(z2

`
)

where R(z) has rank 1 and the last equality is obtained applying the Woodbury matrix inver-
sion formula again.

The above guarantees that if we have the decay of the off-diagonal singular values in ϕ(z)
then the same must hold also for ϕ̃(z), since at each step they differ only by a rank 1 update.

3.6.3 Using H-matrices for the cyclic reduction

Given the structure of numerical quasiseparability of the matrices A(`)
i involved in the CR

iteration it is natural to ask how to exploit it. We propose the following strategy. We represent
the starting matrices using the H-matrix framework and we carry on the iterations using
the matrix operations implemented in the library H2Lib [24]. We have developed a partial
MATLAB interface to the library in order to make the implementation of the CR and the
comparison of performance easier. It can be found at [75].

As explained in Section 3.1 the library implementing the H-matrices representations per-
form SVDs at each step to ensure that the rank used for the quasiseparable representation is
not too high given a certain threshold. That is, it checks what is the lowest rank that can be
used to represent each off-diagonal matrix up to a certain ε. Theorem 3.6.7 guarantees that, at
each step, this value is bounded by the same constant that can be computed imposing that j
is large enough to have σj(C(z)) 6 u‖C(z)‖2 where u is the current unit roundoff and C(z) is
an off-diagonal submatrix of ϕ(z), according the notation used in the previous sections. It is
important to notice that in this context we are not directly relying on the above bound in or-
der to determine the quasiseparability rank. This has the advantage that whenever the bound
obtained by Theorem 3.6.7 is not strict we do not waste computational effort, since the SVD
determines the correct numerical rank in any case.

We have carried out experiments on several random QBDs with different values of the
threshold ranging from 10−8 to 10−16 and we have observed that

• The performance improvement is very noticeable. The cost of the algorithm goes from
cubic to n times a power of logn, since the QS rank increases as logn and the operations
on H-matrices have generally a cost of n times a small power in logn.

• The accuracy of the results is comparable to the threshold chosen, so the method seems
to be very robust from the numerical experiments.
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CR H10−16 H10−12 H10−8

Size Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue
100 6.04e− 02 1.91e− 16 2.21e− 01 1.79e− 15 2.04e− 01 8.26e− 14 1.92e− 01 7.40e− 10
200 1.88e− 01 2.51e− 16 5.78e− 01 1.39e− 14 5.03e− 01 1.01e− 13 4.29e− 01 2.29e− 09
400 1.61e+ 01 2.09e− 16 3.32e+ 00 1.41e− 14 2.60e+ 00 1.33e− 13 1.98e+ 00 1.99e− 09
800 2.63e+ 01 2.74e− 16 4.55e+ 00 1.94e− 14 3.49e+ 00 2.71e− 13 2.63e+ 00 2.69e− 09
1600 8.12e+ 01 3.82e− 12 1.18e+ 01 3.82e− 12 8.78e+ 00 3.82e− 12 6.24e+ 00 3.39e− 09
3200 6.35e+ 02 5.46e− 08 3.12e+ 01 5.46e− 08 2.21e+ 01 5.46e− 08 1.51e+ 01 5.43e− 08
6400 5.03e+ 03 3.89e− 08 7.83e+ 01 3.89e− 08 5.38e+ 01 3.89e− 08 3.58e+ 01 3.87e− 08
12800 4.06e+ 04 1.99e− 08 1.94e+ 02 1.99e− 08 1.29e+ 02 1.99e− 08 8.37e+ 01 1.97e− 08

Table 3.2: Table reporting the timings for the unshifted runs of the cyclic reduction applied
with the standard algorithm (not exploiting the structure) and with the implementation based
on H-matrices.

CR H10−16 H10−12 H10−8

Size Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue
100 8.99e− 02 2.21e− 16 2.52e− 01 1.17e− 15 2.27e− 01 8.58e− 14 2.16e− 01 8.60e− 10
200 4.31e− 01 2.11e− 16 6.34e− 01 9.98e− 15 5.20e− 01 1.05e− 13 4.48e− 01 1.77e− 09
400 1.40e+ 01 2.33e− 16 2.75e+ 00 1.55e− 14 2.09e+ 00 1.13e− 13 1.63e+ 00 1.90e− 09
800 2.89e+ 01 4.28e− 16 5.60e+ 00 1.51e− 14 4.06e+ 00 2.79e− 13 3.15e+ 00 2.35e− 09
1600 8.25e+ 01 2.63e− 14 1.48e+ 01 2.66e− 14 9.63e+ 00 2.93e− 13 7.03e+ 00 2.81e− 09
3200 6.46e+ 02 6.92e− 08 4.11e+ 01 6.92e− 08 2.44e+ 01 6.92e− 08 1.72e+ 01 7.18e− 08
6400 5.11e+ 03 1.25e− 10 1.10e+ 02 1.25e− 10 6.00e+ 01 1.25e− 10 4.11e+ 01 8.06e− 09
12800 4.13e+ 04 2.03e− 08 3.06e+ 02 2.03e− 08 1.48e+ 02 2.03e− 08 9.89e+ 01 2.02e− 08

Table 3.3: Table reporting the timings for the shifted runs of the cyclic reduction applied with
the standard algorithm (not exploiting the structure) and with the implementation based on
H-matrices.

The results of the numerical experiments have been reported in Figure 3.11 and in Tables 3.3
and 3.2. In the tables we have reported the timings and the residual norm of the approximation
of the solution G of the matrix equation after 15 iterations.
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Figure 3.11: Timings of the execution of different implementations of the CR iteration. The
iteration is applied to tridiagonal starting matrices of different size. The experiments report
the timings for the shifted and unshifted version of the cyclic reduction.
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C O N C L U S I O N S

main contributions and results

In this chapter we summarize the main results and contributions that have been presented in
the thesis. Our main goal was to show that rank structures (in the form of quasiseparabil-
ity) and matrix polynomials do play well together. We have started our analysis from scalar
polynomials, and after briefly reporting the available methods for numerically finding their
roots we have provided the tools needed to design the secsolve algorithm. This is one of the
main contributions of this thesis that has been completed in the first part of the PhD. The al-
gorithm is, as of today, the fastest method available for the approximation of polynomial roots
at arbitrary precision in almost any case, as shown by the numerical experiments reported in
Table 1.2. Here we have exploited the rank structure of a particular companion matrix of the
form A = D+ uv∗ in order to make the algorithm effective.

In the last part of Chapter 1 we have presented an approximation algorithm for the roots
of Mandelbrot polynomials. As far as we know this is the fastest algorithm available at the
moment.

The analysis of these tools has been a source of inspiration for the development of a similar
framework for matrix polynomials. In Chapter 2 we have turned our attention to the case of
matrix polynomials P(x) =

∑n
i=0 Pix

i ∈ Cm×m[x] and we have developed a novel family of
linearizations and `-ifications that mimic the role that the previously mentioned companion
matrix had in the scalar case. We have given numerical evidence that the conditioning of the
eigenvalue problem associated with these linearizations is low in many cases if good choices
for the parameters are made, and we have discussed how the tropical roots can be used to
perform these optimal choices. In the last part of Chapter 2 we have also shown a construction
that further generalizes this family of linearizations and allows to show how it is possible
to build linearizations with an arbitrarily low condition number related to the eigenvalue
problem.

To further analyze the role of quasiseparability in Section 3.1 we have briefly reviewed
some possible choices to represent quasiseparable matrices. In Section 3.3 and 3.4 we have
presented an analysis of the Hessenberg and Hessenberg triangular reduction processes from
the point of view of quasiseparability. We have shown that whenever the starting matrix A
or the pencil xA− B do have a real diagonal plus low rank structure (a condition more strict
than quasiseparability) then the quasiseparable structure is available also in the Hessenberg
form. We have shown how it is possible to build an O(n2k) algorithm where n is the size of
the matrices and k is the quasiseparable rank.

In Section 3.5 we have shown an alternative approach for the construction of the Hessenberg
form that seems to be more stable and easier to compute. In particular, we have overcome the
problem of representing the quasiseparable structure by maintaining a particular banded plus
low rank structure. Numerical experiments seem to confirm that this approach is reliable.
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original contributions

Here we provide a list of the original contributions developed during the PhD that have been
published, submitted, or are currently in preparation.

• The approach presented in Chapter 1 for the solution of polynomials and secular equa-
tions has been published in [20]. The results have been extended to cover the case of
Mandelbrot polynomials and also other classes of functions related to polynomials (such
as rational functions). These last extensions are not part of [20] but might be the subject
of future work.

• The class of secular linearizations and `-ifications presented in Section 2.2 has been de-
scribed in the paper [21]. In the paper we show how to construct these `-ifications and
also provide numerical evidence of their good properties in many interesting cases.

• The class of secular linearizations associated with a certain matrix polynomial Q(x) is de-
scribed in a paper that is currently in preparation [81]. In this work we aim, among other
things, at giving a solid theoretical base to understand the good conditioning properties
found in the linearizations of [21].

• The quasiseparable Hessenberg reduction process of Section 3.3 is described in [22],
which has been recently published. In that work the new framework used in this the-
sis to deal with Givens rotations is introduced. The theoretical results that are presented
are of general interest when dealing with quasiseparable structures, and the formaliza-
tion of the action of rotations aims to find a bridge between easy to follow graphical
representations like the arrows of [89, 90, 88] and the sometimes involved notation (at
least in this context) using classical matrix products.

• A paper describing the Hessenberg reduction process of Section 3.5 is currently in prepa-
ration and will be submitted soon.

• The work of Section 3.6 has been recently submitted. The paper contains the results of
this thesis and also other extensions to more general quasiseparable matrices.

Here we mention some other papers that have been developed during the course of the
PhD. Even though they are not directly related to the subject of this thesis (and in fact they
have not been included) they can be seen as a byproduct of this research.

• A paper in collaboration with a group working in the context of random polynomials has
been submitted to arXiv in [29]. The work aims at developing a tool, based on MPSolve,
capable of guaranteeing the number of real roots of random polynomials. The tool has
been used to provide new asymptotic data in the study of the distribution of the roots of
Cauchy and Gaussian random polynomials.

• A work on the solution of ∗-Sylvester equations by means of periodic Schur decom-
positions is currently in preparation in collaboration with Fernando De Terán, Bruno
Iannazzo and Federico Poloni. We have described a practical algorithm for the solution
that is based on the combination of periodic QR and a back-substitution. A FORTRAN
implementation of the algorithm has been written and will be released in the near future.



conclusions 145

future research

Here we give some ideas of possible extensions of the results that we have presented that could
constitute future research focus. Several developments are possible.

• The polynomial approximation package MPSolve allows for the analysis and implemen-
tation of polynomial solvers in different basis. Part of this work has already been carried
out for Chebyshev polynomials and is part of the current MPSolve release. Extensions
are possible to other kind of orthogonal basis and also to find the eigenvalues of matrix
polynomials implicitly represented as the roots of detP(x). This is one of the reasons
that inspired curiosity about the secular linearizations of Section 2.2 in the first place.

• A unified theory for the analysis of the linearizations and `-ifications of Section 2.2 and
2.5 would be nice to have. In particular, we would want to provide explicit constructions
for the polynomial Q(x) needed in the context of the linearization of Section 2.5 in a
similar way to we have done by setting Q(x) =

∏n
i=1(x− bi)Im, but involving also the

eigenvectors.

• The structured Hessenberg reduction of Section 3.5 deserves to be further studied. In
particular, we might want to extend this approach, that seems to work very reliably, to
the unitary plus low rank case which is very interesting because it would allow to work
with classical Frobenius forms and not only Chebyshev and secular linearizations. This
analysis will be part of a future work [60].

• The approach of Section 3.6 is interesting since considers approximate quasiseparable
structures. More advanced techniques for bounding the off-diagonal decay of singular
values are being studied and will be available in [16], which is to be submitted soon.
In particular, a bound involving Krylov spaces techniques that allows to measure how
much the Fourier coefficient become parallel will be provided. Moreover, it could be
interesting the extend these techniques to the infinite problem and see if the theoretical
framework admits an extension to this more general setting. This will be part of future
works. A further improvement could be obtained by switching to H2-matrices, instead
of H-matrices. However, the software available for the use of H2-matrices is still in a beta
stage, and so we could not make the switch yet. Nevertheless, we plan to investigate the
possible performance improvement given by this change.
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have been the same without the support of all of them along the way.

The PhD thesis, being the symbol of the end of this period of my life, seems the right place
to say thank you to everyone.
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I wish to thank my family (in an extended sense so, in case Riccardo wonders, I think I
can now officially include him), for the support that they always gave and continue to give
me. I am particularly grateful for the fact that they continue to support me even if this means
pushing me farther from my hometown (but hopefully only from the geographical point of
view).

I am also grateful to all the people that shared the everyday life in Pisa with me, even if
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