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Abstract
Evaluating the action of a matrix function on a vector, that is x = f (M)v, is an ubiq-
uitous task in applications. WhenM is large, one usually relies on Krylov projection
methods. In this paper, we provide effective choices for the poles of the rational Krylov
method for approximating x when f (z) is either Cauchy–Stieltjes or Laplace–Stieltjes
(or, which is equivalent, completely monotonic) and M is a positive definite matrix.
Relying on the same tools used to analyze the generic situation, we then focus on the
caseM = I ⊗ A− BT ⊗ I , and v obtained vectorizing a low-rank matrix; this finds
application, for instance, in solving fractional diffusion equation on two-dimensional
tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kro-
necker structure and we introduce an error analysis for the numerical approximation
of x . Pole selection strategies with explicit convergence bounds are given also in this
case.
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1 Introduction

We are concerned with the evaluation of x = f (M)v, where f (z) is a Stieltjes
function, which can be expressed in integral form

f (z) =
∫ ∞

0
g(t, z)μ(t) dt, g(t, z) ∈

{
e−t z,

1

t + z

}
. (1)

The two choices for g(t, z) define Laplace–Stieltjes and Cauchy–Stieltjes functions,
respectively [8,31]. The former class is a superset of the latter, and coincides with
the set of completely monotonic functions, whose derivatives satisfy (−1) j f ( j) ≥
0 over R+ for any j ∈ N.

We are interested in two instances of this problem; first, we consider the
caseM := A, where A ∈ C

n×n is Hermitian positive definitewith spectrum contained
in [a, b], v ∈ C

n×s is a generic (block) vector, and a rational Krylov method [18] is
used to approximate x = f (M)v. In this case, we want to estimate the Euclidean
norm of the error ‖x − x�‖2, where x� is the approximation returned by � steps of the
method. Second, we consider

M := I ⊗ A − BT ⊗ I ∈ C
n2×n2 , (2)

where A,−B ∈ C
n×n are Hermitian positive definite with spectra contained

in [a, b], v = vec(F) ∈ C
n2 is the vectorization of a low-rank matrix F =

UF V T
F ∈ C

n×n , and a tensorized rational Krylov method [8] is used for comput-
ing vec(X) = f (M)vec(F). This problem is a generalization of the solution of
a Sylvester equation with a low-rank right hand side, which corresponds to evalu-
ate the function f (z) = z−1. Here, we are concerned with estimating the quantity
‖X − X�‖2, where X� is the approximation obtained after � steps.

1.1 Main contributions

This paper discusses the connection between rational Krylov evaluation of Stieltjes
matrix functions and the parameter dependent rational approximation (with the given
poles) of the kernel functions e−t z and 1

t+z .
The contributions of this work are the following:

1. Corollary 3 provides a choice of poles for the rational Krylov approximation
of f (M)v, where f (z) is Laplace–Stieltjes,with an explicit error bounddepending
on the spectrum of A.

2. Similarly, for Cauchy–Stieltjes functions, we show (inCorollary 4) how leveraging
an approach proposed in [14] allows to recover a result previously given in [4] using
different theoretical tools.

3. In Sect. 3.5, we obtain new nested sequences of poles by applying the approach
of equidistributed sequences to the results in Corollary 3–4.

4. In the particular case where M := I ⊗ A − BT ⊗ I we extend the analy-
sis recently proposed in [8] to rational Krylov subspaces. Also in this setting,
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Rational Krylov for Stieltjes matrix functions… 239

Table 1 Summary of the convergence rates for rational Krylov methods with the proposed poles

Function class Argument Error bound Reference

Laplace–Stieltjes M := A ‖x − x�‖2 ∼ O(ρ
�
2[a,b]) Cor. 3

M := I ⊗ A − BT ⊗ I ‖X − X�‖2 ∼ O(ρ
�
2[a,b]) Cor. 5

Cauchy–Stieltjes M := A ‖x − x�‖2 ∼ O(ρ�[a,4b]) Cor. 4

M := I ⊗ A − BT ⊗ I ‖X − X�‖2 ∼ O(ρ�[a,2b]) Cor. 7

The convergence rate ρ[α,β] is defined by ρ[α,β] := exp(−π2/ log(4 β
α ))

we provide explicit choices for the poles and explicit convergence bounds. For
Laplace–Stieltjes functions a direct consequence of the analysis mentioned above
leads to Corollary 5; in the Cauchy case, we describe a choice of poles that enables
the simultaneous solution of a set of parameter dependent Sylvester equations. This
results in a practical choice of poles and an explicit error bound given in Corol-
lary 7.

5. Finally,wegive results predicting thedecay in the singular values of X wherevec(X)

= f (M)vec(F), F is a low-rank matrix, and f (z) is either Laplace–Stieltjes
(Theorem 6) or Cauchy–Stieltjes (Theorem 7). This generalizes the well-known
low-rank approximability of the solutions of of Sylvester equations with low-rank
right hand sides [5]. The result for Laplace–Stieltjes follows by the error bound for
the rational Krylov method and an Eckart–Young argument. The one for Cauchy–
Stieltjes requires to combine the integral representation with the ADI approximant
for the solution of matrix equations.

The error bounds obtained are summarized in Table 1.
We recall that completely monotonic functions are well approximated by exponen-

tial sums [11]. Another consequence of our results in the Laplace–Stieltjes case is to
constructively show that they are also well-approximated by rational functions.

1.2 Motivating problems

Computing the action of a matrix function on a vector is a classical task in numerical
analysis, and finds applications in several fields, such as complex networks [7], signal
processing [29], numerical solution of ODEs [20], and many others.

Matrices with the Kronecker sum structure as in (2) often arise from the discretiza-
tion of differential operators on tensorized 2D grids. Applying the inverse of such
matrices to a vector is equivalent to solving a matrix equation. When the right hand
side is a smooth function or has small support, the vector v is the vectorization of a
numerically low-rank matrix. The latter property has been exploited to develop sev-
eral efficient solution methods, see [28] and the references therein. Variants of these
approaches have been proposed under weaker assumptions, such as when the smooth-
ness is only available far from the diagonal x = y, as it happens with kernel functions
[23,25].
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240 S. Massei, L. Robol

In recent years, there has been an increasing interest in models involving fractional
derivatives. For 2D problems on rectangular grids, discretizations by finite differ-
ences or finite elements lead to linear systems that can be recast as the solution of
matrix equations with particularly structured coefficients [12,24]. However, a promis-
ing formulation which simplifies the design of boundary conditions relies on first
discretizing the 2D Laplacian on the chosen domain, and then considers the action of
the matrix function z−α (with the Laplacian as argument) on the right hand side. This
is known in the literature as the matrix transform method [32]. In this framework, one
has 0 < α < 1, and therefore z−α is a Cauchy–Stieltjes function, a property that has
been previously exploited for designing fast and stable restarted polynomial Krylov
methods for its evaluation [27]. The algorithm proposed in this paper allows to exploit
the Kronecker structure of the 2D Laplacian on rectangular domains in the evaluation
of the matrix function.

Another motivation for our analysis stems from the study of exponential integra-
tors, where it is required to evaluate the ϕ j (z) functions [20], which are part of the
Laplace–Stieltjes class. This has been the subject of deep studies concerning (restarted)
polynomial and rational Krylov methods [17,27]. However, to the best of our knowl-
edge the Kronecker structure, and the associated low-rank preservation, has not been
exploited in these approaches, despite being often present in discretization of differ-
ential operators [30].

The paper is organized as follows. In Sect. 2 we recall the definitions and main
properties of Stieltjes functions. Then, in Sect. 3 we recall the rational Krylov method
and then we analyze the simultaneous approximation of parameter dependent expo-
nentials and resolvents; this leads to the choice of poles and convergence bounds for
Stieltjes functions given in Sect. 3.4. In Sect. 4 we provide an analysis of the conver-
gence of the method proposed in [8] when rational Krylov subspaces are employed.
In particular, in Sect. 4.4 we provide decay bounds for the singular values of X such
that vec(X) = f (M)vec(F).Wegive someconcluding remarks andoutlook inSect. 5.

2 Laplace–Stieltjes and Cauchy–Stieltjes functions

We recall the definition and the properties of Laplace–Stieltjes and Cauchy–Stieltjes
functions that are relevant for our analysis. Functions expressed as Stieltjes integrals
admit a representation of the form:

f (z) =
∫ ∞

0
g(t, z)μ(t) dt, (3)

where μ(t)dt is a (non-negative) measure on [0,∞], and g(t, z) is integrable with
respect to that measure. The choice of g(t, z) determines the particular class of Stielt-
jes functions under consideration (Laplace–Stieltjes or Cauchy–Stieltjes), and μ(t) is
called the density of f (z). μ(t) can be a proper function, or a distribution, e.g.
a Dirac delta. In particular, we can restrict the domain of integration to a subset
of (0,∞) imposing that μ(t) = 0 elsewhere. We refer the reader to [31] for further
details.
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Rational Krylov for Stieltjes matrix functions… 241

2.1 Laplace–Stieltjes functions

Laplace–Stieltjes functions are obtained by setting g(t, z) = e−t z in (3).

Definition 1 Let f (z) be a function defined on
(0,+∞). Then, f (z) is a Laplace–Stieltjes function if there is a positive mea-

sure μ(t)dt on R+ such that

f (z) =
∫ ∞

0
e−t zμ(t) dt . (4)

Examples of Laplace–Stieltjes functions include:

f (z) = z−1 =
∫ ∞

0
e−t z t dt, f (z) = e−z =

∫ ∞

1
e−t z dt,

f (z) = (1− e−z)/z =
∫ ∞

0
e−t zμ(t) dt, μ(t) :=

{
1 t ∈ [0, 1]
0 t > 1

.

The last example is an instance of a particularly relevant class of Laplace–Stieltjes
functions, with applications to exponential integrators. These are often denoted
by ϕ j (z), and can be defined as follows:

ϕ j (z) :=
∫ ∞

0
e−t z [max{1− t, 0}] j−1

( j − 1)! dt, j ≥ 1.

A famous theorem of Bernstein states the equality between the set of Laplace–
Stieltjes functions and those of completely monotonic functions in (0,∞) [10], that
is (−1) j f ( j)(z) is positive over (0,∞) for any j ∈ N.

From the algorithmic point of view, the explicit knowledge of the Laplace den-
sity μ(t) will not play any role. Therefore, for the applications of the algorithms and
projection methods described here, it is only relevant to know that a function is in this
class.

2.2 Cauchy–Stieltjes functions

Cauchy–Stieltjes functions form a subclass of Laplace–Stieltjes functions, and are
obtained from (3) by setting g(t, z) = (t + z)−1.

Definition 2 Let f (z) be a function defined onC\R−. Then, f (z) is aCauchy–Stieltjes
function if there is a positive measure μ(t)dt on R+ such that

f (z) =
∫ ∞

0

μ(t)

t + z
dt . (5)
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A few examples of Cauchy–Stieltjes functions are:

f (z) = log(1+ z)

z
=
∫ ∞

1

t−1

t + z
dt, f (z) =

h∑
j=1

α j

z − β j
, α j > 0, β j < 0,

f (z) = z−α = sin(απ)

π

∫ ∞

0

t−α

t + z
dt, α ∈ (0, 1).

The rational functions with poles on the negative real semi-axis do not belong to this
class if one requires μ(t) to be a function, but they can be obtained by setting μ(t) =∑h

j=1 α jδ(t−β j ), where δ(·) is theDirac delta with unit mass at 0. For instance, z−1 is
obtained setting μ(t) := δ(t).

Since Cauchy–Stieltjes functions are also completely monotonic in (0,∞) [9], the
set of Cauchy–Stieltjes functions is contained in the one of Laplace–Stieltjes functions.
Indeed, assuming that f (z) is a Cauchy–Stieltjes function with densityμC (t), one can
construct a Laplace–Stieltjes representation as follows:

f (z) =
∫ ∞

0

μC (t)

t + z
dt =

∫ ∞

0

∫ ∞

0
e−s(t+z)μC (t) ds dt =

∫ ∞

0
e−sz

∫ ∞

0
e−stμC (t) dt

︸ ︷︷ ︸
μL (s)

ds,

where μL(s) defines the Laplace–Stieltjes density. In particular, note that if μC (t) is
positive, so is μL(s). For a more detailed analysis of the relation between Cauchy-
and Laplace–Stieltjes functions we refer the reader to [31, Section 8.4].

As in the Laplace case, the explicit knowledge ofμ(t) is not crucial for the analysis
and is not used in the algorithm.

3 Rational Krylov for evaluating Stieltjes functions

Projection schemes for the evaluation of the quantity f (A)v work as follows: an
orthonormal basis W for a (small) subspace W ⊆ C

n is computed, together with
the projections AW := W ∗AW and vW := W ∗v. Then, the action of f (A) on v is
approximated by:

f (A)v ≈ xW := W f (AW )vW .

Intuitively, the choice of the subspaceW is crucial for the quality of the approximation.
Usually, one is interested in providing a sequence of subspaces W1 ⊂ W2 ⊂ W3 ⊂
. . . and study the convergence of xW j to f (A)v as j increases. A common choice for
the space W j are Krylov subspaces.
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Rational Krylov for Stieltjes matrix functions… 243

3.1 Krylov subspaces

Several functions can be accurately approximated by polynomials. The idea behind
the standard Krylov method is to generate a subspace that contains all the quantities
of the form p(A)v for every p(z) polynomial of bounded degree.

Definition 3 Let A be an n × n matrix, and v ∈ C
n×s be a (block) vector. The Krylov

subspace of order � generated by A and v is defined as

K�(A, v) := span{v, Av, . . . , A�v} = {p(A)v : deg(p) ≤ �}.

Projection on Krylov subspaces is closely related to polynomial approximation.
Indeed, if f (z) is well approximated by p(z), then p(A)v is a good approximation
of f (A)v, in the sense that ‖ f (A)v − p(A)v‖2 ≤ maxz∈[a,b] | f (z)− p(z)| · ‖v‖2.

RationalKrylov subspaces are their rational analogue, and can be defined as follows.

Definition 4 Let A be a n × n matrix, v ∈ C
n×s be a (block) vector and Ψ =

(ψ1, . . . , ψ�), with ψ j ∈ C := C∪ {∞}. The rational Krylov subspace with poles Ψ

generated by A and v is defined as

RK�(A, v, Ψ ) = q�(A)−1K�(A, v) = span{q�(A)−1v, q�(A)−1Av,

. . . , q�(A)−1A�v},

where q�(z) = ∏�
j=1(z − ψ j ) and if ψ j = ∞, then we omit the factor (z −

ψ j ) from q�(z).

Note that, a Krylov subspace is a particular rational Krylov subspacewhere all poles
are chosen equal to∞:RK�(A, v, (∞, . . . ,∞)) = K�(A, v). A common strategy of
pole selection consists in alternating 0 and∞. The resulting vector space is known in
the literature as the extended Krylov subspace [13].

We denote by P� the set of polynomials of degree at most �, and byR�,� the set of
rational functions g(z)/l(z) with g(z), l(z) ∈ P�. Given Ψ = {ψ1, . . . , ψ�} ⊂ C, we
indicate with P�

Ψ
the set of rational functions of the form g(z)/l(z), with g(z) ∈ P� and

l(z) :=∏ψ j∈Ψ \{∞}(z − ψ j ).
It is well-known that Krylov subspaces contain the action of related rational matrix

functions of A on the (block) vector v, if the poles of the rational functions are a subset
of the poles used to construct the approximation space.

Lemma 1 (Exactness property) Let A be a n × n matrix, v ∈ C
n×s be a (block)

vector and Ψ = {ψ1, . . . , ψ�} ⊂ C. If UP , UR are orthonormal bases of
K�(A, v) and RK�(A, v, Ψ ), respectively, then:

1. f (z) ∈ P� �⇒ f (A)v = UP f (A�)(U∗
Pv) ∈ K�(A, v), A� = U∗

P AUP ,

2. f (z) ∈ P�

Ψ
�⇒ f (A)v = UR f (A�)(U∗

Rv) ∈ RK�(A, v, Ψ ), A� =
U∗
RAUR,

Lemma 1 enables to prove the quasi-optimality of the Galerkin projection described
in Sect. 3. Indeed, ifW := RK(A, v, Ψ ), then [18]
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‖xW − x‖2 ≤ 2 · ‖v‖2 · min
r(z)∈P�

Ψ

max
z∈[a,b] | f (z)− r(z)|. (6)

The optimal choice of poles for generating the rational Krylov subspaces is problem
dependent and linked to the rational approximation of the function f (z) on [a, b]. We
investigate how to perform this task when f is either a Laplace–Stieltjes or Cauchy–
Stieltjes function.

3.2 Simultaneous approximation of resolvents andmatrix exponentials

The integral expression (1) reads as

f (A)v =
∫ ∞

0
g(t, A)μ(t) dt, g(t, A) ∈ {e−t A, (t I + A)−1}

when evaluated at a matrix argument. Since the projection is a linear operation we
have

xW = W f (AW )vW =
∫ ∞

0
Wg(t, AW )vW μ(t)dt .

This suggests to look for a space approximating uniformly well, in the param-
eter t , matrix exponentials and resolvents, respectively. A result concerning the
approximation error in the L2 norm for t ∈ iR is given in [14, Lemma 4.1]. The
proof is obtained exploiting some results on the skeleton approximation of 1

t+λ
[26].

We provide a pointwise error bound, which can be obtained by following the same
steps of the proof of [14, Lemma 4.1]. We include the proof for completeness.

Theorem 1 Let A be Hermitian positive definite with spectrum contained in [a, b]andU
be an orthonormal basis of UR = RK�(A, v, Ψ ). Then, ∀t ∈ [0,∞), we have the
following inequality:

‖(t I + A)−1v −U (t I + A�)
−1v�‖2 ≤ 2

t + a
‖v‖2 min

r(z)∈P�
Ψ

maxz∈[a,b] |r(z)|
minz∈(−∞,0] |r(z)| (7)

where A� = U∗AU and v� = U∗v.

Proof Following the construction in [26], we consider the function fskel(λ, t) defined
by

fskel(t, λ) :=
[

1
t1+λ

· · · 1
t�+λ

]
M−1

⎡
⎢⎣

1
t+λ1

...
1

t+λ�

⎤
⎥⎦ , Mi j = 1

t j + λi
∈ C

�×�,

where Mi j are the entries of M and (t j , λi ) is an � × � grid of interpolation nodes.
The function fskel(t, λ) is usually called Skeleton approximation and it is practical
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for approximating 1
t+λ

; indeed its relative error takes the explicit form: 1 − (t +
λ) fskel(t, λ) = r(λ)

r(−t) with r(z) =∏�
j=1

z−λ j
t j+z . If this ratio of rational functions is small,

then fskel(t, λ) is a good approximation of 1
t+λ

and—consequently— fskel(t, A) is a
good approximation of (t I + A)−1. Note that, for every fixed t , fskel(t, λ) is a rational
function in λ with poles −t1, . . . ,−t�. Therefore, using the poles ψ j = −t j , j =
1, . . . , � for the projection we may write, thanks to (6):

‖(t I + A)−1v −U (t I + A)−1v�‖2 ≤ 2

t + a
‖v‖2 maxz∈[a,b] |r(z)|

minz∈(−∞,0] |r(z)| .

Taking the minimum over the possible choices of the parameters λ j we get (7). ��
Concerning the rational approximation of the (parameter dependent) exponential,

the idea is to rely on its Laplace transform that involves the resolvent:

e−t A = 1

2π i
lim

T→∞

∫ iT

−iT
est (s I + A)−1 ds. (8)

In this formulation, it is possible to exploit the Skeleton approximation of 1
s+λ

in
order to find a good choice of poles, independently on the parameter t . For proving
the main result we need the following technical lemma whose proof is given in the
“Appendix 2”.

Lemma 2 Let L−1 [̂r(s)] be the inverse Laplace transform of r̂(s) = 1
s

p(s)
p(−s) , where

p(s) is a polynomial of degree � with positive real zeros contained in [a, b]. Then,

‖L−1 [̂r(s)]‖L∞(R+) ≤ γ�,κ , γ�,κ := 2.23+ 2

π
log

(
4� ·

√
κ

π

)
,

where κ = b
a .

Theorem 2 Let A be Hermitian positive definite with spectrum contained in [a, b]andU
be an orthonormal basis of UR = RK�(A, v, Ψ ), where Ψ = {ψ1, . . . , ψ�} ⊆
[−b,−a]. Then, ∀t ∈ [0,∞), we have the following inequality:

‖e−t Av −Ue−t A�v�‖2 ≤ 4γ�,κ‖v‖2 max
z∈[a,b] |rΨ (z)|, (9)

where A� = U∗AU, v� = U∗v, κ := b
a , rΨ (z) ∈ R�,� is the rational function defined

by rΨ (z) :=∏�
j=1

z+ψ j
z−ψ j

and γ�,κ is the constant defined in Lemma 2.

Proof We consider the Skeleton approximation of 1
s+λ

by restricting the choice of
poles in both variables to Ψ

fskel(s, λ) :=
[

1
λ−ψ1

· · · 1
λ−ψ�

]
M−1

⎡
⎢⎢⎣

1
s−ψ1

...
1

s−ψ�

⎤
⎥⎥⎦ , Mi j = − 1

ψi + ψ j
,
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where Mi j denote the entries of M . Then, by using (8) for A and A� we get

e−t Av −Ue−t A�v� = 1

2π i
lim

T→∞

∫ iT

−iT
est (s I + A)−1v − estU (s I + A�)

−1v� ds.

Adding and removing the term est fskel(s, A)v = estU fskel(s, A�)U∗v inside the inte-
gral (the equality holds thanks to Lemma 1) we obtain the error expression

e−t Av −Ue−t A�v� = 1

2π i
lim

T→∞

∫ iT

−iT
est
[
(s I + A)−1v −U (s I + A�)

−1v�

]
ds

= 1

2π i
lim

T→∞

∫ iT

−iT
est (s I + A)−1 [I − (s I + A) fskel(s, A)] v ds

− 1

2π i
lim

T→∞U
∫ iT

−iT
est (s I + A�)

−1 [I − (s I + A�) fskel(s, A�)
]
v� ds

= 1

2π i
lim

T→∞

∫ iT

−iT
est (s I + A)−1rΨ (A)rΨ (−s)−1v ds

− 1

2π i
lim

T→∞U
∫ iT

−iT
est (s I + A�)

−1rΨ (A�)rΨ (−s)−1v� ds.

Since A and A� are normal, the above integrals can be controlled by the maximum of
the corresponding scalar functions on the spectrum of A (and A�), which yields the
bound

‖e−t Av −Ue−t A�v�‖2 ≤ 2 max
λ∈[a,b] |h(t, λ)|,

h(t, λ) := 1

2π i
lim

T→∞

∫ iT

−iT
est 1

s + λ

rΨ (λ)

rΨ (−s)
ds.

We note that rΨ (λ) can be pulled out of the integral, since it does not depend on s, and
thus the above can be rewritten as

h(t, λ) = rΨ (λ) · L−1
[

1

λ+ s

p(s)

p(−s)

]
(t)

= rΨ (λ) · L−1
[

s

s + λ

]
�L−1

[
1

s

p(s)

p(−s)

]
(t)

= rΨ (λ) · (δ(t)− λe−λt )�L−1
[
1

s

p(s)

p(−s)

]
(t),

where p(s) is as in Lemma 2 and δ(t) indicates the Dirac delta function. Since
the 1-norm of δ(t) − λe−tλ is equal to 2, using Young’s inequality we can

bound ‖h(t, λ)‖∞ ≤ 2‖L−1
[
1
s

p(s)
p(−s)

]
‖∞. Therefore, we need to estimate the infinity

norm ofL−1
[
1
s

p(s)
p(−s)

]
(t). Such inverse Laplace transform can be uniformly bounded

in t by using Lemma 2 with a constant that only depends on � and b/a:
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|h(λ, t)| ≤ 2γ�,κ |rΨ (λ)|.

This completes the proof. ��
Remark 1 The constant provided by Lemma 2 is likely not optimal. Indeed, experi-
mentally it seems to hold that γ�,κ = 1 for any choice of poles in the negative real
axis—not necessarily contained in [−b,−a]—and this has been verified in many
examples. If this is proved, then the statement of Theorem 1 can be made sharper by
removing the factor γ�,κ .

3.3 Bounds for the rational approximation problems

Theorems 1 and 2 show the connection between the error norm and certain rational
approximationproblems. In this sectionwediscuss the optimal values of suchproblems
in the cases of interests.

Definition 5 Let Ψ ⊂ C be a finite set, and I1, I2 closed subsets of C. Then, we
define1

θ�(I1, I2, Ψ ) := min
r(z)∈P�

Ψ

maxI1 |r(z)|
minI2 |r(z)| .

The θ� functions enjoy some invariance and inclusion properties, which we report
here, and will be extensively used in the rest of the paper.

Lemma 3 Let I1, I2 be subsets of the complex plane, and Ψ ⊂ C. Then, the map θ�

satisfies the following properties:

(i) (shift invariance) For any t ∈ C, it holds θ�(I1+ t, I2+ t, Ψ + t) = θ(I1, I2, Ψ ).
(ii) (monotonicity) θ�(I1, I2, Ψ ) is monotonic with respect to the inclusion on the

parameters I1 and I2:

I1 ⊆ I ′1, I2 ⊆ I ′2 �⇒ θ�(I1, I2, Ψ ) ≤ θ�(I ′1, I ′2, Ψ ).

(iii) (Möbius invariance) If M(z) is a Möbius transform, that is a rational func-
tion M(z) = (αz + β)/(γ z + δ) with αδ �= βγ , then

θ�(I1, I2, Ψ ) = θ�(M(I1), M(I2), M(Ψ )).

Proof Property (i) follows by (iii) because applying a shift is a particular Möbius
transformation. Note that, generically, when we compose a rational function r(z) =
p(z)
h(z) ∈ P�

Ψ
with M−1(z) we obtain another rational function of (at most) the same

degree and with poles M(Ψ ). Hence, we obtain

1 We allow the slight abuse of notation of writing |r(∞)| as the limit of |r(z)| as |z| → ∞, in the case
either I1 or I2 contains the point at infinity.
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θ�(I1, I2, Ψ ) = min
r(z)∈P�

Ψ

maxI1 |r(z)|
minI2 |r(z)| = min

r(z)∈P�
Ψ

maxM(I1) |r(M−1(z))|
minM(I2) |r(M−1(z))|

= min
r(z)∈ P�

M(Ψ )

maxM(I1) |r(z)|
minM(I2) |r(z)| = θ�(M(I1), M(I2), M(Ψ )).

Property (ii) follows easily from the fact that the maximum taken on a larger set is
larger, and the minimum taken on a larger set is smaller. ��
Now, we consider the related optimization problem, obtained by allowing Ψ to vary:

min
Ψ⊂C,|Ψ |=�

θ�(I1, I2, Ψ ) = min
r(z)∈R�,�

maxz∈I1 |r(z)|
minz∈I2 |r(z)| . (10)

The latter was posed and studied by Zolotarev in 1877 [33], and it is commonly known
as the third Zolotarev problem. We refer to [3] for a modern reference where the theory
is used to recover bounds on the convergence of rational Krylov methods and ADI
iterations for solving Sylvester equations.

In the case I1 = −I2 = [a, b] (10) simplifies to

min
r(z)∈R�,�

maxz∈[a,b] |r(z)|
minz∈[a,b] |r(−z)|

which admits the following explicit estimate.

Theorem 3 (Zolotarev) Let I = [a, b], with 0 < a < b. Then

min
Ψ⊂C, |Ψ |=�

θ�(I ,−I , Ψ ) ≤ 4ρ�[a,b], ρ[a,b] := exp

(
− π2

log (4κ)

)
, κ = b

a
.

In addition, the optimal rational function r [a,b]
� (z) that realizes the minimum has the

form

r [a,b]
� (z) := p[a,b]

� (z)

p[a,b]
� (−z)

, p[a,b]
� (z) :=

�∏
j=1

(z + ψ
[a,b]
j,� ), ψ

[a,b]
j,� ∈ −I .

We denote by Ψ
[a,b]
� := {ψ [a,b]

1,� , . . . , ψ
[a,b]
�,� } the set of poles of r [a,b]

� (z).

Explicit expression for the elements of Ψ
[a,b]
� are available in terms of elliptic func-

tions, see [14, Theorem 4.2].

Remark 2 The original version of Zolotarev’s result involves exp(− π2

μ(κ−1) ) in place of
ρ[a,b], where μ(·) is the Grötzsch ring function. For simplicity, in this paper we prefer
the slightly suboptimal form involving the logarithm.We remark that for large κ (which
is usually the case when considering rational Krylov methods) the difference is neg-
ligible [1, Section 17.3].
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We use Theorem 3 and the Möbius invariance property as building blocks for
bounding (7). The idea is to map the set [−∞, 0] ∪ [a, b] into [−1,−â] ∪ [̂a, 1]—for
some â ∈ (0, 1)—with a Möbius transformation; then make use of Theorem 3 and
Lemma 3(iii) to provide a convenient choice of Ψ for the original problem.

Lemma 4 The Möbius transformation

TC (z) := Δ+ z − b

Δ− z + b
, Δ :=

√
b2 − ab,

maps [−∞, 0] ∪ [a, b] into [−1,−â] ∪ [̂a, 1], with â := Δ+a−b
Δ−a+b = b−Δ

Δ+b . The inverse

map TC (z)−1 is given by:

T−1
C (z) := (b +Δ)z + b −Δ

1+ z
.

Moreover, for any 0 < a < b it holds â−1 ≤ 4b
a , and therefore ρ[̂a,1] ≤ ρ[a,4b].

Proof By direct substitution, we have TC (−∞) = −1, and TC (b) = 1; moreover,
again by direct computation one verifies that TC (0) + TC (a) = 0, which implies
that TC ([−∞, 0]) = [−1,−â] and TC ([a, b]) = [̂a, 1]. Then, we have

â−1 = Δ+ b

b −Δ
, Δ = b

√
1− a/b.

Using the relation
√
1− t ≤ 1− t

2 for any 0 ≤ t ≤ 1, we obtain that â−1 ≤ 2b− a
2

a
2

≤
4 b

a , which concludes the proof. ��
Remark 3 We note that the estimate ρ[̂a,1] ≤ ρ[a,4b] is asymptotically tight, that is
the limit of ρ[̂a,1]/ρ[a,4b] → 1 as b/a → ∞. For instance, if b/a = 10 then the
relative error between the two quantities is about 2 · 10−2, and for b/a = 1000
about 5 · 10−5. Since the interest for this approach is in dealing with matrices that are
not well-conditioned, we consider the error negligible in practice.

In light of Theorem 3 and Lemma 4, we consider the choice

Ψ
[a,b]
C,� := T−1

C (Ψ
[̂a,1]
� ) (11)

in Theorem 1. This yields the following estimate.

Corollary 1 Let A be Hermitian positive definite with spectrum contained in [a, b]
and U be an orthonormal basis of UR = RK�(A, v, Ψ

[a,b]
C,� ). Then, ∀t ∈ [0,∞)

‖(t I + A)−1v −U (t I + A�)
−1v�‖2 ≤ 8

t + a
‖v‖2ρ�[a,4b], (12)

where A� = U∗AU and v� = U∗v.
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WhenconsideringLaplace–Stieltjes functions,wemaychoose as polesΨ [a,b]
� which

are the optimal Zolotarev poles on the interval [a, b]. This enables to prove the fol-
lowing result, which builds on Theorem 2.

Corollary 2 Let A be Hermitian positive definite with spectrum contained in [a, b] and
U be an orthonormal basis of UR = RK�(A, v, Ψ

[a,b]
� ). Then, ∀t ∈ [0,∞)

‖e−t Av −Ue−t A�v�‖2 ≤ 8γ�,κ‖v‖2ρ
�
2[a,b], (13)

where A� = U∗AU and v� = U∗v.

Proof The proof relies on the fact that the optimal Zolotarev function evaluated on the

interval [a, b] can be bounded by 2ρ
�
2[a,b] [5, Theorem 3.3]. Since its zeros and poles

are symmetric with respect to the imaginary axis and real, we can apply Theorem 2 to
obtain (13). ��

3.4 Convergence bounds for Stieltjes functions

Let us consider f (z) a Stieltjes function of the general form (1). Then the error of the
rational Krylov method for approximating f (A)v is given by

‖ f (A)v −U f (A�)v�‖2 =
∥∥∥∥
∫ ∞

0
[g(t, A)v −Ug(t, A�)v�]μ(t) dt

∥∥∥∥
2

≤
∫ ∞

0
‖g(t, A)v −Ug(t, A�)v�‖2 μ(t) dt

where g(t, A) is either a parameter dependent exponential or resolvent function. There-
fore Corollary 1 and Corollary 2 provide all the ingredients to study the error of the
rational Krylov projection, when the suggested pole selection strategy is adopted.

Corollary 3 Let f (z) be a Laplace–Stieltjes function, A be Hermitian positive def-
inite with spectrum contained in [a, b], U be an orthonormal basis of UR =
RK�(A, v, Ψ

[a,b]
� ) and x� = U f (A�)v� with A� = U∗AU and v� = U∗v. Then

‖ f (A)v − x�‖2 ≤ 8γ�,κ f (0+)‖v‖2ρ
�
2[a,b], (14)

where γ�,κ is defined as in Theorem 2, and f (0+) := limz→0+ f (z).

Proof Since f (z) is a Laplace–Stieltjes function, we can express the error as follows:

‖ f (A)v − x�‖2 ≤
∫ ∞

0

∥∥∥e−t Av −Ue−t A�U∗v
∥∥∥
2
μ(t) dt

≤ 8γ�,κ

∫ ∞

0
μ(t) dt‖v‖2ρ

�
2[a,b]

= 8γ�,κ f (0+)‖v‖2ρ
�
2[a,b],

where we applied (6) and Corollary 2 to obtain the second inequality. ��
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Remark 4 In order to be meaningful, Corollary 3 requires the function f (z) to be finite
over [0,∞), whichmight not be the case in general (consider for instance x−α , which is
bothCauchy andLaplace–Stieltjes). Nevertheless, the result can be applied to f (z+η),
which is always completely monotonic for a positive η, by taking 0 < η < a. A value
of η closer to a gives a slower decay rate, but a smaller constant f (0+). Similarly,
if f (z) happens to be completely monotonic on an interval larger than [0,∞), then
boundswith a faster asymptotic convergence rate (but a larger constant) can beobtained
considering η < 0.

Corollary 1 allows to state the corresponding bound for Cauchy–Stieltjes functions.
The proof is analogous to the one of Corollary 3.

Corollary 4 Let f (z) be a Cauchy–Stieltjes function, A be Hermitian positive def-
inite with spectrum contained in [a, b], U be an orthonormal basis of UR =
RK�(A, v, Ψ

[a,b]
C,� ) with Ψ

[a,b]
C,� as in (11) and x� = U f (A�)v� with A� =

U∗AU and v� = U∗v. Then

‖ f (A)v − xG‖2 ≤ 8 f (a)‖v‖2ρ�[a,4b]. (15)

3.5 Nested sequences of poles

From the computational perspective, it is more convenient to have a nested sequence
of subspaces W1 ⊆ . . .W j ⊆ W j+1 ⊆ . . ., so that � can be chosen adaptively. For
example, in [19] the authors propose a greedy algorithm for the selection of the poles
taylored to the evaluation of Cauchy–Stieltjes matrix functions. See [15,16] for greedy
pole selection strategies to be applied in different—although closely related—contexts.

The choices of poles proposed in the previous sections require to a priori deter-
mine the degree � of the approximant x�. Given a target accuracy, one can use the
convergence bounds in Corollary 3–4 to determine �. Unfortunately, this is likely to
overestimate the minimum value of � that provides the sought accuracy.

An option, that allows to overcome this limitation, is to rely on the method of
equidistributed sequences (EDS), as described in [14, Section 4]. The latter exploits
the limit—as � →∞—of the measures generated by the set of pointsΨ

[a,b]
� , Ψ

[a,b]
C,� to

return infinite sequences of poles that are guaranteed to provide the same asymptotic
rate of convergence. More specifically, the EDS {̃σ j } j∈N associated with Ψ

[a,1]
� is

obtained with the following steps:

(i) Select ζ ∈ R
+ \ Q and generate the sequence {s j } j∈N := {0, ζ − �ζ�, 2ζ −

�2ζ�, 3ζ −�3ζ�, . . . }, where �·� indicates the greatest integer less than or equal
to the argument; this sequence has as asymptotic distribution (in the sense of
EDS) the Lebesgue measure on [0, 1].

(ii) Compute the sequence {t j } j∈N such that g(t j ) = s j where

g(t) := 1

2M

∫ t

a2

dy√
(y − a2)y(1− y)

, M :=
∫ 1

0

dy√
(1− y2)(1− (1− a2)y2)

,

(iii) Define σ̃ j := √
t j .
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More generally, the EDS associatedwithΨ
[a,b]
� , Ψ

[a,b]
C,� are obtained by applying either

a scaling or the Möbius transformation (11) to the EDS for Ψ
[a,1]
� .

In our implementation, only the finite portion {̃σ j } j=0,...,�−1 is—incrementally—
generated for computing x�. As starting irrational number we select ζ = 1√

2
and

each quantity t j is approximated by applying the Newton’s method to the equa-
tion g(t j ) − s j = 0. The initialization of the Newton iteration is done by

approximating t̂ �→ g(et̂ ) − s j with a linear function on the domain of interest,
and then using the exponential of its only root as starting point. This is done before-
hand selecting t = a2 and t = a as interpolation points; in our experience, with such
starting point Newton’s method converges in a few steps.

3.6 Some numerical tests

3.6.1 Laplace–Stieltjes functions

Let us consider the 1D diffusion problem over [0, 1] with zero Dirichlet boundary
conditions

∂u

∂t
= ε

∂2u

∂x2
+ f (x), u(x, 0) ≡ 0, ε = 10−2,

discretized using central finite differences in space with 50,000 points, and integrated
by means of the exponential Euler method with time step Δt = 0.1. This requires to
evaluate the action of the Laplace–Stieltjes matrix function ϕ1(

ε
h2

Δt A)v, where A is
the tridiagonal matrix A = tridiag(−1, 2,−1). We test the convergence rates of vari-
ous choices of poles by measuring the absolute error when using a random vector v.
Figure 1 (left) reports the results associated with: the poles from Corollary 2, the cor-
responding EDS computed as described in Sect. 3.5 and the extended Krylov method.
It is visible that the three approximations have the same convergence rate, although
the choice of poles fromCorollary 2 and the EDS performs slightly better.Wemention
that, since A is ill-conditioned, polynomial Krylov performs poorly on this example.

We keep the same settings and we test the convergence rates for the Laplace–

Stieltjes function z− 3
2 W (z) where W (z) is the Lambert W function [22]. The plot in

Fig. 1(right) shows that after about 10 iterations the convergence rate of the extended
Krylov method deteriorates, while the poles from Corollary 2 and the EDS provide
the best convergence rate.

3.6.2 Inverse square root

Let us test the pole selection strategies for Cauchy–Stieltjes functions, by consider-

ing the evaluation of f (z) = z− 1
2 on the n × n matrix tridiag(−1, 2,−1), for n =

104, 5 · 104, 105. The list of methods that we consider includes: the poles Ψ
[a,b]
C,� from

Corollary 1, the associated EDS, the extended Krylov method and the adaptive strat-
egy proposed in [19] for Cauchy–Stieltjes functions. The latter is implemented in
the markovfunmv package available at http://guettel.com/markovfunmv/ which we
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Fig. 1 Convergence history of the different projection spaces for the evaluation of ϕ1(A)v and A−
3
2 W (A)v

for a matrix argument of size 50,000 × 50,000. The methods tested are extended Krylov (EK), rational
Krylov with the poles from Corollary 2 and rational Krylov with nested poles obtained as in Sect. 3.5.
The bound in the left figure is obtained directly from Corollary 2. The bound in the right figure has been
obtained as in Remark 4

used for producing the results reported in Fig. 2. The poles from Corollary 1 and the
extendedKrylovmethod yield the best and theworst convergence history, respectively,
for all values of n. The EDS and markovfunm perform similarly for n = 104, but
as n increases the decay rate of markovfunm deteriorates significantly.

We consider a second numerical experiment which keeps the same settings apart
from the size of the matrix argument which is fixed to n = 105. Then, we measure the
number of iterations and the computational time needed by the methods using nested
sequences of poles, i.e. EK, EDS, markovfunm, to reach different target values for
the relative error ‖x−x�‖2‖x‖2 . The EK method has the cheapest iteration cost because it
exploits the pre-computation of theCholesky factor of thematrix A for the computation
of the orthogonal basis. However, as testified by the results in Table 2, the high number
of iterations makes EK competitive only for the high relative error 10−1. The iteration
costs of EDS and markovfunm is essentially the same since they only differ in the
computation of the poles, which requires a negligible portion of the computational
time. Therefore, the comparison between EDS and markovfunm goes along with
the number of iterations which makes the former more efficient.2 We remark that in
the situation where precomputing the Cholesky gives a larger computational benefit,
and memory is not an issue, EK may be competitive again.

We conclude the numerical experiments on the inverse square root by considering
matrix arguments with different distributions of the eigenvalues. More precisely, we
set A as the diagonal matrix of dimension n = 5 · 104 with the following spectrum
configurations:

(i) Equispaced values in the interval [ 1n , 1],
(ii) Eigenvalues of trid(−1, 2+ 10−3,−1) (shifted Laplacian),
(iii) 20 Chebyshev points in [10−3, 10−1] and n− 20 Chebyshev points in [10, 103].

2 To make a fair comparison between the methods, for this test we relied on the rational Arnoldi imple-
mentation found in markovfunm for the implementation of Algorithm 1 using EDS poles.
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EDS
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Bound

Fig. 2 Convergence history of the different projection spaces for the evaluation of A−
1
2 v, with A =

trid(−1, 2,−1), for different sizes n of the matrix argument. The methods tested are extended Krylov (EK),
rational Krylov with the poles from Corollary 1, rational Krylov with nested poles obtained as in Sect. 3.5
(EDS) and rational Krylov with the poles of markovfunm. The bound is obtained from Corollary 1

Table 2 Comparison of the time and number of iterations required for computing A−
1
2 v with different

relative tolerances using markovfunm, EDS, and extended Krylov

Relative error markovfunm EDS Extended Krylov

Time (s) Its Time (s) Its Time (s) Its

10−1 0.37 18 0.10 7 0.32 20

10−2 0.76 29 0.26 14 2.17 64

10−3 1.17 38 0.37 18 4.79 106

10−4 1.64 47 0.43 20 8.16 144

10−5 2.01 53 0.58 24 12.32 180

10−6 2.56 61 0.82 31 16.72 212

The argument A is the 100,000× 100,000 matrix trid(−1, 2,−1)

The convergence histories of the different projection spaces are reported in Fig. 3.
For all the eigenvalues configurations, EDS and markovfunm provide comparable
performances. The poles from Corollary 1 performs as EDS and markovfunm on
(ii) and slightly better on (i) and (iii). Once again, EK is the one providing the slowest
convergence rate on all examples.
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3.6.3 Other Cauchy–Stieltjes functions

Finally, we test the convergence rate of the different pole selection strategies for

the Cauchy–Stieltjes functions 1−e−
√

z

z , z−0.2, z−0.8 and the matrix argument A =
trid(−1, 2,−1).

The results reported in Fig. 4 show that in all cases the poles fromCorollary 1 and the
extendedKrylovmethodprovide the best and theworst convergence rates, respectively.
The EDS converges faster than markovfunm apart from the case of z−0.2 where the
two strategies perform similarly.

4 Evaluating Stieltjes functions of matrices with Kronecker structure

We consider the task of computing f (M)v whereM = I⊗A−BT ⊗ I . This problem
often stems from the discretizations of 2D differential equations, such as the matrix
transfer method used for fractional diffusion equations [32].

We assume that v = vec(F), where F = UF V T
F where UF and VF are tall and

skinny matrices. For instance, when f (z) = z−1, this is equivalent to solving the
matrix equation AX − X B = F . It is well-known that, if the spectra of A and B are
separated, then the low-rank property is numerically inherited by X [5]. For more
general functions than z−1, a projection scheme that preserves the Kronecker structure
has been proposed in [8] using polynomial Krylov methods. We briefly review it in
Sect. 4.1. Themethod proposed in [8] uses tensorized polynomialKrylov subspaces, so
it is not well-suited when A and B are ill-conditioned, as it often happens discretizing
differential operators. Therefore, we propose to replace the latter with a tensor product
of rational Krylov subspaces and we provide a strategy for the pole selection. This
enables a faster convergence and an effective scheme for the approximation of the
action of such matrix function in a low-rank format.

The case of Laplace–Stieltjes functions, described in Sect. 4.2, follows easily by the
analysis performed for the pole selection with a generic matrix A. The error analysis
for Cauchy–Stieltjes functions, presented in Sect. 4.3, requires more care and builds
on the theory for the solution of Sylvester equations.

4.1 Projectionmethods that preserve Kronecker structure

If A, B are n × n matrices, applying the projection scheme described in Sect. 3
requires to build an orthonormal basis W for a (low-dimensional) subspaceW ⊆ C

n2 ,
together with the projections of W ∗MW = H and vW = W ∗v. Then the action
of f (M) on v is approximated by:

f (M)v ≈ W f (H)vW .

The trick at the core of the projection scheme proposed in [8] consists in choosing
a tensorized subspace of the form W := U ⊗ V , spanned by an orthonormal basis
of the form W = U ⊗ V , where U and V are orthonormal bases of U ⊆ C

n and
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Fig. 3 Convergence history of the different projection spaces for the evaluation of A−
1
2 v for a diagonal

matrix argument of size 50,000 × 50,000 with different eigenvalue distributions. The methods tested are
extended Krylov (EK), rational Krylov with the poles from Corollary 1, rational Krylov with nested poles
obtained as in Sect. 3.5 (EDS) and rational Krylov with the poles of markovfunm. The bound is obtained
from Corollary 1

V ⊆ C
n , respectively. With this choice, the projection of M onto U ⊗ V retains the

same structure, that is

(U ⊗ V )∗M(U ⊗ V ) = I ⊗ AU − BT
V ⊗ I ,

where AU = U∗AU and BV = V ∗BV .
Since in our case v = vec(F) and F = UF V T

F , this enables to exploit the low-
rank structure as well. Indeed, the projection of F onto U ⊗ V can be written as
vW = vec(FW ) = vec((U∗UF )(V T

F V )). The high-level structure of the procedure is
sketched in Algorithm 1.

At the core of Algorithm 1 is the evaluation of the matrix function on the projected
matrix I ⊗ AU − BT

V ⊗ I . Even when U , V have a low dimension k � n, this matrix
is k2 × k2, so it is undesirable to build it explicitly and then evaluate f (·) on it.

When f (z) = z−1, it is well-known that such evaluation can be performed
in k3 flops by the Bartels-Stewart algorithm [2], in contrast to the k6 complexity that
would be required by a generic dense solver for the system defined by I⊗AU−BT

V⊗ I .
For a more general function, we can still design aO(k3) procedure for the evaluation
of f (·) in our case. Indeed, since AU and BV are Hermitian, we may diagonalize them
using a unitary transformation as follows:
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Fig. 4 Convergence history of the different projection spaces for the evaluation of f (A)v for different
Cauchy–Stieltjes functions f (z) and the matrix argumentA = trid(−1, 2,−1) of size 50,000 × 50,000.
The methods tested are extended Krylov (EK), rational Krylov with the poles from Corollary 1, rational
Krylovwith nested poles obtained as in Sect. 3.5 (EDS) and rationalKrylovwith the poles of markovfunm.
The bound is obtained from Corollary 1

Algorithm 1 Approximate vec−1( f (M)vec(F))

procedure KroneckerFun( f , A, B, UF , VF ) � Compute f (M)vec(F)

1: U , V ← orthonormal bases for the selected subspaces.
2: AU ← U∗AU
3: BV ← V ∗BV
4: FW ← U∗UF (V T

F V )

5: Y ← vec−1( f (I ⊗ AU − BT
V ⊗ I )vec(FW )).

6: return UY V ∗
end procedure

Q∗
A AU Q A = DA, Q∗

B BV Q B = DB .

Then, the evaluation of the matrix function f (z) with argument I ⊗ AU − BT
V ⊗ I can

be recast to a scalar problem by setting

f (I ⊗ AU − BT
V ⊗ I )vec(U∗FV ) = (Q B ⊗ Q A

)
f (D)

(
QT

B ⊗ Q∗
A

)
vec(U∗FV ),
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where D := I ⊗ DA − DB ⊗ I . If we denote by X = vec−1( f (M)vec(F)) and
with D the matrix defined by Di j = (DA)i i − (DB) j j , then

X = Q A
[

f ◦(D) ◦ (Q∗
AU∗FV Q B)

]
Q∗

B,

where ◦ denotes theHadamard product and f ◦(·) the function f (·) applied component-
wise to the entries of D: [ f ◦(D)]i j = f (Di j ).

Assuming that the matrices Q A, Q B and the corresponding diagonal matri-
ces DA, DB , are available, this step requires k2 scalar function evaluation, plus 4matrix-
matrix multiplications, for a total computational cost bounded by O(c f · k2 + k3),
where c f denotes the cost of a single function evaluation. The procedure is described
in Algorithm 2.

Algorithm 2Evaluation of f (I⊗AU−BT
V⊗ I )vec(U∗FV ) for normal k×k matrices

AU , BV
1: procedure funm_diag( f , AU , BV , U∗FV )
2: (Q A, DA) ← Eig(AU )

3: (Q B , DB ) ← Eig(BV )

4: FW ← Q∗
AU∗FV Q B

5: for i, j = 1, . . . , n do
6: Xi j ← f ((DA)i i + (DB ) j j ) ·

(
FW

)
i j

7: end for
8: return vec(Q A X Q∗

B )

9: end procedure

4.2 Convergence bounds for Laplace–Stieltjes functions of matrices with
Kronecker structure

The study of approximation methods for Laplace–Stieltjes functions is made eas-
ier by the following property of the matrix exponential: whenever M, N commute,
then eM+N = eM eN . Since the matrices BT ⊗ I and I ⊗ A commute, we have

x = vec(X) = f (M)v =
∫ ∞

0
e−tMvμ(t) dt = vec

(∫ ∞

0
e−t AUF V T

F et Bμ(t) dt

)
.

Consider projecting the matrix M onto a tensorized subspace spanned by the Kro-
necker products of unitary matrices U ⊗ V . This, combined with Algorithm 1, yields
an approximation whose accuracy is closely connected with the one of approximat-
ing e−t A by projecting using U , and et B using V . As discussed in Sect. 3, there exists
a choice of poles that approximates uniformly well the matrix exponential, and this
can be leveraged here as well.

Corollary 5 Let f (z) be a Laplace–Stieltjes function, A,−B be Hermitian positive
definite with spectrum contained in [a, b] and X� be the approximation of X =
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Fig. 5 Convergence history of the different projection spaces for the evaluation of ϕ1(M)v with the
Kronecker structured matrix M = I ⊗ A + A ⊗ I , where A is of size 1000 × 1000 and has condition
number about 5 · 105. The singular values of the true solution X are reported as well

vec−1( f (M)vec(F)) obtained using Algorithm 1 with U ⊗ V orthonormal basis
of UR ⊗ VR = RK�(A, UF , Ψ

[a,b]
� )⊗RK�(BT , VF , Ψ

[a,b]
� ). Then,

‖X − X�‖2 ≤ 16γ�,κ f (0+)ρ
�
2[a,b]‖F‖2.

Proof If f (z) is aLaplace–Stieltjes function,wemayexpress the errormatrix X−X� as
follows:

X − X� =
∫ ∞

0

[
e−t A Fet B −Ue−t A�U∗FV et B� V ∗]μ(t) dt,

where A� = U∗AU and B� = V ∗BV . Adding and subtracting the quan-
tity Ue−t A�U∗Fet B yields the following inequalities:

‖X − X�‖2 ≤
∫ ∞

0
‖e−t A F −Ue−t A� (U∗F)‖2‖et B‖2μ(t) dt

+
∫ ∞

0
‖et BT

FT − V et BT
� (V ∗FT )‖2‖e−t A�‖2μ(t) dt

≤ 16γ�,κ

∫ ∞

0
μ(t) dt · ρ

�
2[a,b]‖F‖2

where in the last step we used Corollary 2 for both addends. ��
Example 1 To test the proposed projection spaces we consider the same matrix A of
Example 3.6.1, and we evaluate the function ϕ1 toM = I ⊗ A+ A⊗ I , applied to a
vector v = vec(F), where F is a random rank 1 matrix, generated by taking the outer
product of two unit vectors with normally distributed entries. The results are reported
in Fig. 5.
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4.3 Convergence bounds for Cauchy–Stieltjes functions of matrices with
Kronecker structure

As already pointed out in Sect. 3, evaluating a Cauchy–Stieltjes function requires a
space which approximates uniformly well the shifted inverses of the matrix argument
under consideration. When considering a matrix M = I ⊗ A − BT ⊗ I which is
Kronecker structured, this acquires a particular meaning.

In fact, relying on the integral representation (3) of f (z) we obtain:

f (M)v =
∫ ∞

0
μ(t)(t I +M)−1vec(F) dt =

∫ ∞

0
μ(t)Xt dt,

where Xt := vec−1((t I +M)−1vec(F)) solves the matrix equation

(t I + A) X j − X j B = F . (16)

Therefore, to determine a good projection space for the function evaluation, we should
aim at determining a projection space where these parameter dependent Sylvester
equations can be solved uniformly accurate. We note that, unlike in the Laplace–
Stieltjes case, the evaluation of the resolvent does not split into the evaluation of the
shifted inverses of the factors, and this does not allow to apply Theorem 1 for the
factors A and B.

Apossible strategy to determine an approximation space is usingpolynomialKrylov
subspacesKm(t I+A, UF )⊗Km(BT , VF ) for solving (16) at a certain point t . Thanks
to the shift invariance of polynomial Krylov subspaces, all these subspaces coincide
with UP ⊗ VP = Km(A, UF ) ⊗ Km(BT , VF ). This observation is at the core of the
strategy proposed in [8], which makes use of UP ⊗VP in Algorithm 1. This allows to
use the convergence theory for linear matrix equations to provide error bounds in the
Cauchy–Stieltjes case, see [8, Section 6.2].

Since rational Krylov subspaces are usually more effective in the solution of
Sylvester equations, it is natural to consider their use in place UP ⊗VP . However, they
are not shift invariant, and this makes the analysis not straightforward. Throughout
this section, we denote by U ⊗ V the orthonormal basis of the tensorized rational
Krylov subspace

UR ⊗ VR := RK�(A, UF , Ψ )⊗RK�(BT , VF , Ξ) (17)

where Ψ := {ψ1, . . . , ψ�} and Ξ := {ξ1, . . . , ξ�} are the prescribed poles. We define
the following polynomials of degree (at most) �:

p(z) :=
�∏

j=1,ψ j �=∞
(z − ψ j ), q(z) :=

�∏
j=1,ξ j �=∞

(z − ξ j ) (18)

and we denote by A� = U∗AU , B� = V ∗BV the projected (�k × �k)-matrices,
where k is the number of columns of UF and VF .

123



Rational Krylov for Stieltjes matrix functions… 261

In Sect. 4.3.1, we recall and slightly extend some results about rational Krylov
methods for Sylvester equations i.e., the case f (z) = z−1. This will be the building
block for the convergence analysis of the approximation of Cauchy–Stieltjes functions
in Sect. 4.3.2.

4.3.1 Convergence results for Sylvester equations

Algorithm 1 applied to f (z) = z−1 coincides with the Galerkin projection method for
Sylvester equations [28], whose error analysis can be found in [3]; the results in that
paper relate the Frobenius norm of the residual to a rational approximation problem.
We state a slightly modified version of Theorem 2.1 in [3], that enables to bound the
residual in the Euclidean norm. The proof is reported in the “Appendix 1”.

Theorem 4 Let A,−B be Hermitian positive definite with spectrum contained in
[a, b] and X� be the approximate solution returned by Algorithm 1 using f (z) =
z−1 and the orthonormal basis U ⊗ V of UR ⊗ VR = RK�(A, UF , Ψ ) ⊗
RK�(BT , VF , Ξ), then

‖AX� − X� B − F‖2 ≤ (1+ κ)max{θ�(IA, IB, Ψ ), θ�(IB, IA, Ξ)}‖F‖2.

Remark 5 Using the mixed norm inequality ‖AB‖F ≤ ‖A‖F‖B‖2, one can state the
bound in the Frobenius norm as well:

‖AX (�)
G − X (�)

G B − F‖F ≤ (1+ κ)

√
θ2� (IA, IB , Ψ )+ θ2� (IB, IA, Ξ) · ‖F‖F ,

which is tighter than the one in [3].

For our analysis, it is more natural to bound the approximation error of the exact
solution X , instead of the norm of the residual. Since the residual is closely related
with the backward error of the underlying linear system, bounding the forward error
‖X − X�‖2 causes the appearances of an additional condition number.

Corollary 6 If X� is the approximate solution of the linear matrix equation AX−X B =
F returned by Algorithm 1 as in Theorem 4, then

‖X� − X‖2 ≤ a + b

2a2 max{θ�(IA, IB , Ψ ), θ�(IB, IA, Ξ)}‖F‖2

Proof We note that X�− X solves the Sylvester equation A(X�− X)− (X�− X)B =
R, where R := AX� − X� B − F verifies ‖R‖2 ≤ (1+ κ)

max{θ�(IA, IB , Ψ ), θ�(IB, IA, Ξ)}‖F‖2, thanks to Theorem 4. In view of [21, The-
orem 2.1] ‖X� − X‖2 is bounded by 1

2a ‖R‖2. ��

4.3.2 Error analysis for Cauchy–Stieltjes functions

In view of Eq. 16, the evaluation of Cauchy–Stieltjes function is closely related to
solving (in a uniformly accurate way) parameter-dependent Sylvester equations. This
connection is clarified by the following result.
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Theorem 5 Let f (z) be a Cauchy–Stieltjes function, A,−B be Hermitian positive
definite with spectrum contained in [a, b] and X� be the approximate evaluation
of f (z) returned by Algorithm 1 using the orthonormal basis U ⊗ V of the sub-
space UR ⊗ VR = RK�(A, UF , Ψ )⊗RK�(BT , VF , Ξ). Then,

‖X−X�‖2 ≤ f (2a)·(1+κ)·‖F‖2·max
t≥0

[
max

{
θ�(IA, IB − t, Ψ ), θ�(IB, IA + t, Ξ)

}]
,

(19)
where κ = b

a and θ�(·, ·, ·) is as in Definition 5.

Proof Applying the definition of f (M) we have f (M)vec(F) = ∫∞
0 (t I +

M)−1vec(F)μ(t) dt . We note that, for any t ≥ 0, the vector vec(Xt ) := (t I +
M)−1vec(F) is such that Xt solves the Sylvester equation (t I + A)Xt − Xt B = F .
Then, we can write X as X = ∫∞0 Xtμ(t) dt .

Let us consider the approximation UYt V ∗ to Xt obtained by solving the projected
Sylvester equation (t I +U∗AU )Yt − Yt (V ∗BV ) = U∗FV , and Y = ∫∞0 Ytμ(t) dt .
We remark that RK�(A, UF , Ψ ) = RK�(t I + A, UF , Ψ + t).

Then, relying on Corollary 6, we can bound the error Rt := ‖Xt −UYt V ∗‖2 with

Rt ≤ C(t) ·max {θ� (IA + t, IB, Ψ + t) , θ� (IB, IA + t, Ξ)} ‖F‖2,

where C(t) := 2(t+a+b)

(t+2a)2
. Making use of Lemma 3(i) we get:

Rt ≤ C(t) ·max {θ� (IA, IB − t, Ψ ) , θ� (IB, IA + t, Ξ)}︸ ︷︷ ︸
:=Θ�(t)

‖F‖2.

An estimate for the error on X is obtained by integrating Rt :

‖X − X�‖2 ≤
∫ ∞

0
μ(t)

2(t + a + b)‖F‖2
(t + 2a)2

Θ�(t)dt

≤ (1+ κ)‖F‖2
∫ ∞

0

μ(t)

t + 2a
Θ�(t)dt

≤ f (2a) · (1+ κ) · ‖F‖2 ·max
t≥0 Θ�(t),

where we used that the function 2(t+a+b)
t+2a is maximum over [0,∞] at t = 0. ��

Inspired by Theorem 4, we look at the construction of rational functions that make
thequantities θ�(IA, IB−t, Ψ ) and θ�(IB, IA+t, Ξ) small. Ifwe chooseΞ = −Ψ then
(19) simplifies to

‖X − X�‖2 ≤ f (2a) · (1+ κ) · ‖F‖2 ·max
t≥0 θ�(IA, IB − t, Ψ ), (20)

because θ�(IA, IB − t, Ψ ) = θ�(IA,−IA − t, Ψ ) = θ�(−IA, IA + t,−Ψ ) =
θ�(IB, IA + t,−Ψ ), in view of Lemma 3(iii).
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Similarly to the analysis done for Cauchy–Stieltjes function for a generic matrix A,
we may consider a Möbius transform that maps the Zolotarev problem involving
the point at infinity in a more familiar form. More precisely, we aim at mapping
the set [−∞,−a] ∪ [a, b] into [−1,−ã] ∪ [̃a, 1]—for some ã ∈ (0, 1). Then, we
make use of Theorem 3 and Lemma 3(iii) to provide a choice of Ψ that makes the
quantity θ�(IA, IB − t, Ψ ) small, independently of t .

Lemma 5 The Möbius transformation

T (z) := Δ+ z − b

Δ− z + b
, Δ :=

√
b2 − a2,

maps [−∞,−a] ∪ [a, b] into [−1,−ã] ∪ [̃a, 1], with ã := Δ+a−b
Δ−a+b . The inverse

map T (z)−1 is:

T−1(z) := (b +Δ)z + b −Δ

1+ z
.

In addition, we have ã−1 ≤ 2b/a, and therefore ρ[̃a,1] ≤ ρ[a,2b].

Proof The proof can be easily obtained following the same steps of Lemma 4. As in
that case, the overestimate introduced by the inequality ρ[̃a,1] ≤ ρ[a,2b] is negligible
in practice (see Remark 3). ��

In light of the previous result, we consider Theorem 5 with the choice of poles

Ψ = Ψ
[a,b]
C2,�

:= T−1(Ψ [̃a,1]
� ), Ξ = −Ψ

[a,b]
C2,�

, (21)

where Ψ
[̃a,1]
� indicates the set of optimal poles and zeros—provided by Theorem 3—

for the domain [−1, ã] ∪ [̃a, 1]. This yields the following.
Corollary 7 Let f (z) be a Cauchy–Stieltjes function with density μ(t), A,−B be
Hermitian positive definite with spectrum contained in [a, b] and X� the approximate
evaluation of f (z) returned by Algorithm 1 using the orthonormal basis U ⊗ V of
the subspace RK�(A, UF , Ψ

[a,b]
C2,�

))⊗RK�(BT , VF ,−Ψ
[a,b]
C2,�

)), where Ψ
[a,b]
C2,�

is as in
(21). Then,

‖X − X�‖2 ≤ 4 · f (2a) · (1+ κ) · ‖F‖2 · ρ�[a,2b], ρ[a,2b] := exp

(
− π2

log
( 8b

a

)
)

.

Proof By setting IA = I , IB = −I in the statement of Theorem 5 we get (20), so that
we just need the bound

θ�(IA, IB − t, T−1(Ψ [̃a,1]
� ))

= θ�(IA,−IA − t, T−1(Ψ [̃a,1]
� )) ≤ θ�(IA, [−∞,−a], T−1(Ψ [̃a,1]

� ))
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Fig. 6 Convergence history of the different projection spaces for the evaluation of M− 1
2 v with the Kro-

necker structured matrixM = I ⊗ A+ A⊗ I , where A is of size 1000× 1000 and has condition number
about 5 · 105. The singular values of the true solution X and the bound given in Theorem 7 are reported as
well

= θ�([̃a, 1], [−1,−ã], Ψ [̃a,1]
� ) ≤ 4ρ�[̃a,1],

where the first inequality follows from Lemma 3(ii) and the last equality from
Lemma 3(iii) applied with the map T (z). The claim follows combining this inequality
ρ[̃a,1] ≤ ρ[a,2b] from Lemma 5. ��
Example 2 We consider the same matrix A of Example 3.6.2, and we evaluate the
inverse square root of M = I ⊗ A + A ⊗ I , applied to a vector v = vec(F),
where F is a random rank 1 matrix, generated by taking the outer product of two unit
vectors with normally distributed entries.

We note that, in Fig. 6, the bound from Corollary 7 accurately predicts the asymp-
totic convergence rate, even though it is off by a constant; we believe that this is due to
the artificial introduction of (1+κ) in the Galerkin projection bound, which is usually
very pessimistic in practice [3].

4.4 Low-rank approximability of X

The Kronecker-structured rational Krylov method that we have discussed provides a
practical way to compute the evaluation of the matrix function under consideration.
However, it can be used also theoretically to predict the decay in the singular values
of the computed matrix X , and therefore to describe its approximability properties in
a low-rank format.

4.4.1 Laplace–Stieltjes functions

In the Laplace–Stieltjes case, we may employ Corollary 5 directly to provide an
estimate for the decay in the singular values.

Theorem 6 Let f (z) be a Laplace–Stieltjes function and M = I ⊗ A − BT ⊗
I where A,−B are Hermitian positive definite with spectra contained in [a, b]. Then,
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if vec(X) = f (M)vec(F), with F = UF V T
F of rank k, we have

σ1+�k(X) ≤ 16γ�,κ f (0+)ρ
�
2[a,b]‖F‖2.

Proof We note that the approximation X� obtained using the rational Krylov method
with the poles given by Corollary 5 has rank (at most) �k, and ‖X − X�‖2 ≤
16γ�,κ f (0+)ρ

�
2[a,b]. The claim follows by applying the Eckart–Young theorem. ��

4.4.2 Cauchy–Stieltjes functions

In the case of Cauchy–Stieltjes function, the error estimate in Corollary 7 would
provides a result completely analogue to Theorem 6. However, the bound obtained
this way involves the multiplicative factor 1 + κ; this can be avoided relying on an
alternative strategy.

The idea is to consider the close connection between the rational problem (10)
and the approximate solution returned by the factored Alternating Direction Implicit
method (fADI) [3,5,6]. More specifically, for t ≥ 0 let us denote with Xt , the solution
of the shifted Sylvester equation

(t I + A)Xt − Xt B = UF V ∗
F . (22)

In view of (16), Xt is such that X = ∫∞
0 Xtμ(t)dt . Running fADI for � iterations,

with shift parameters T−1(Ψ [̃a,1]
� ) = {α1, . . . , α�} and T−1(−Ψ

[̃a,1]
� ) = {β1, . . . , β�},

provides an approximate solution X ADI
� (t) of (22) such that its column and row span

belong to the spaces

UADI
� (t) = RK(A, UF , {α1 − t, . . . , α� − t}), VADI

� = RK(BT , VF , {β1, . . . , β�}).

Note that the space VADI
� does not depend on t because the right coefficient of (22)

does not depend on t . If we denote by UADI
� (t) and VADI

� orthonormal bases for
these spaces, we have XADI

� (t) = UADI
� (t)YADI

� (t)(VADI
� )∗, and using the ADI error

representation [3,5] we obtain ‖Xt − XADI
� (t)‖2 ≤ ‖Xt‖2ρ�[a,2b].

In particular, X ADI
� (t) is a uniformly good approximation of Xt having rank (at

most) �k and its low-rank factorization has the same right factor ∀t ≥ 0.

Theorem 7 Let f (z) be a Cauchy–Stieltjes function and X = vec−1( f (M)vec(F)),
withM := I⊗ A−BT ⊗ I , where A,−B are Hermitian positive definite with spectra
contained in [a, b]. Then the singular values σ j (X) of the matrix X verifies:

σ1+�k(X) ≤ 4 f (2a)ρ�[a,2b]‖F‖2.

Proof Let us define X̂� :=
∫∞
0 XADI

� (t)μ(t)dt = ∫∞0 UADI
� (t)μ(t)dt ·YADI

� (VADI
� )T .

Since VADI
� does not depend on t we can take it out from the integral, and there-

fore X̂� has rank bounded by �k. Then, applying the Eckart–Young theorem we have
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the inequality

σ1+�s(X) ≤ ‖X − X̂�‖2 ≤
∫ ∞

0
‖Xt − XADI

� (t)‖2μ(t)dt ≤ 4
∫ ∞

0
ρ�[a,2b]‖Xt‖2μ(t)dt

≤ 4
∫ ∞

0

μ(t)

(t + 2a)
dt ρ�[a,2b]‖F‖2 = 4 f (2a)ρ�[a,2b]‖F‖2.

��

5 Conclusions, possible extensions and open problems

We have presented a pole selection strategy for the rational Krylov methods when
approximating the action of Laplace–Stieltjes and Cauchy–Stieltjes matrix functions
on a vector. The poles have been shown to provide a fast convergence rate and explicit
error bounds have been established. The theory of equidistributed sequences has been
used to obtained a nested sequence of poles with the same asymptotic convergence
rate. Then, the approach presented in [8] that addresses the case of a matrix argument
with a Kronecker sum structure has been extended to use rational Krylov subspaces.
We have proposed a pole selection strategy that ensures a good exponential rate of
convergence of the error norm. From the theoretical perspective we established decay
bounds for the singular values of vec−1( f (I ⊗ A − BT ⊗ I )vec(F)) when F is
low-rank. This generalizes the well known low-rank approximability property of the
solutions of Sylvester equations with low-rank right hand side. Also in the Kronecker
structured case, it has been shown that relying on equidistributed sequences is an
effective practical choice.

There are some research lines that naturally stem from this work. For instance, we
have assumed for simplicity to be working with Hermitian positive definite matrices.
This assumption might be relaxed, by considering non-normal matrices with field of
values included in the positive half plane. Designing an optimal pole selection for
such problems would require the solution of Zolotarev problems on more general
domains, and deserves further study. In addition, since the projected problem is also
non-normal, the fast diagonalization approach for the evaluation proposed in Sect. 4.1
might not be applicable or stable, and therefore an alternative approach would need
to be investigated.
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Proof of Theorem 4

According to [3, Theorem 2.1], the residue R := AX� − X� B − F can be written3

as ρ = ρ12 + ρ21, with

ρ12 = U · r G
B (A�)

−1 · F · r G
B (B) ρ21 = r G

A (A) · F · r G
A (B�)

−1V ∗,

where r G
A (z) := det(z I − A�)/p(z), and r G

B (z) = det(z I − B�)/q(z), with p(z), q(z)
defined as in (18). In addition, it is shown that ρ12 = UU∗ρ(I − V V ∗) and ρ21 =
(I −UU∗)ρV V ∗.

Moreover, the proof of [3, Theorem 2.1] shows that, for any choice of (�, �)-
rational function rB(x) with poles z1, . . . , z�, we can further decompose ρ12 as ρ12 =
U (J1 − J2), where

J1 = 1

2π i

∫
ΓA

(z I − A�)
−1U∗F · rB(B)

rB(z)
V ∗dz,

J2 = SA�,B

(
− 1

2π i

∫
ΓA

(z I − A�)
−1U∗FV (z I − B�)

−1 rB(B�)

rB(z)
V ∗dz

)
,

with SA,B(X) := AX − X B and ΓA a path encircling once the interval IA but not IB .
With a direct integration we get

J1 = rB(A�)
−1U∗F · rB(B)V ∗,

whichyields‖J1‖2 ≤ ‖F‖2·‖rB(A�)
−1‖2‖rB(B�)‖2. Let B̃ := V B�V ∗−c(I−V V ∗).

Then,4

SA�,B̃(S−1A�,B(J2))

= SA�,B̃

(
− 1

2π i

∫
ΓA

(z I − A�)
−1U∗FV (z I − B�)

−1 rB(B�)

rB(z)
V ∗dz

)

= − 1

2π i

∫
ΓA

(A� − z I )(z I − A�)
−1U∗FV (z I − B�)

−1 rB(B�)

rB(z)
V ∗dz

− 1

2π i

∫
ΓA

(z I − A�)
−1U∗FV (z I − B�)

−1(z I − B�)
rB(B�)

rB(z)
V ∗dz

= 1

2π i

∫
ΓA

U∗FV (z I − B�)
−1 rB(B�)

rB(z)
V ∗dz

− 1

2π i

∫
ΓA

(z I − A�)
−1U∗FV

rB(B�)

rB(z)
V ∗dz

3 In the original statement of [3, Theorem 2.1] the residual is decomposed in three parts; the missing term
is equal to zero whenever the projection subspace contains the right hand side, which is indeed our case.
4 The matrix B̃ is not used in the original proof of [3], which contains a minor typo. There, the opera-
tor SA�,B̃ is replaced by SA�,B�

which does not have compatible dimensions.
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= − 1

2π i

∫
ΓA

(z I − A�)
−1U∗FV

rB(B�)

rB(z)
V ∗dz = −rB(A�)

−1U∗FV rB(B�)V ∗,

where we used that V ∗ B̃ = B�V ∗ and that the integral on the path ΓA of (z I −
B�)

−1/rB(z) vanishes. Notice that ‖SA,B(X)‖2 ≤ (‖A‖2 + ‖B‖2)‖X‖2 and
‖S−1A,B(X)‖2 ≤ ‖X‖2/mini, j |λi (A) − λ j (B)| [21, Theorem 2.1]. We get ‖J2‖2 ≤
κ‖rB(A�)

−1‖2‖rB(B�)‖2‖F‖2 and consequently

‖ρ12‖ ≤ ‖J1‖2 + ‖J2‖2 ≤ (1+ κ) ‖rB(A�)
−1‖2‖rB(B�)‖2‖F‖2.

Taking theminimum over all (�, �)-rational functions with polesΞ provides ‖ρ12‖2 ≤
(1+κ)θ�(IB, IA, Ξ)‖F‖2.Analogously one obtains the similar estimate for ρ21 swap-
ping the role of A and B. Since ρ12 and ρ21 have orthonormal rows and columns, we
have ‖ρ12 + ρ21‖2 = max{‖ρ12‖2, ‖ρ21‖2}, which concludes the proof.

Bounding an inverse Laplace transform

The proof of Theorem 1 requires to bound the infinity norm of an inverse Laplace
transform of a particular rational function, given in Lemma 2. The purpose of this
appendix is to provide the details of its proof, that uses elementary arguments even
though it is quite long.

Let us consider the following functions, usually called sine integral functions, that
will be useful in the following proofs:

Si(x) :=
∫ x

0

sin(t)

t
dt, si(x) :=

∫ ∞

x

sin(t)

t
dt .

It is known that si(x)+Si(x) = π
2 , and that 0 ≤ Si(x) ≤ 1.852 (see [1, Section 6.16]),

and therefore |si(x)| ≤ π
2 . We will need the following result, which involved integral

of the sinc function by some particular measure.

Lemma 6 Let g(t) be a decreasing and positive C1 function over an interval [0, γ ].
Then, the following inequality holds:

∣∣∣∣
∫ γ

0

sin(s)g(s)

s
ds

∣∣∣∣ ≤ 1.852 · g(0).

Proof Integrating by parts yields I = Si(s)g(s)
∣∣∣γ
0
− ∫ γ

0 Si(s)g′(s) ds. The first term

is equal to Si(γ )g(γ ), which can be bounded by 1.852 · g(γ ). The second part can be
bounded in modulus with

∣∣∣∣
∫ γ

0
Si(s)g′(s) ds

∣∣∣∣ ≤ −max[0,γ ] |Si(s)| ·
∫ γ

0
g′(s) ds = (g(0)− g(ν))max[0,ν] |Si(s)|,
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where we have used that g′(s) is negative, so |g′(s)| = −g′(s). Combining the two
inequalities we have

|I | ≤ 1.852 · g(γ )+ 1.852 · (g(0)− g(γ )) = 1.852 · g(0).

��
Given a set of positive real points γ j enclosed in a interval [a, b]with a > 0, we define
the rational function

r̂(s) := 1

s

p(s)

p(−s)
. (23)

Note that r̂(s) has poles enclosed in the negative half-plane which ensures that
limt→∞ L−1 [̂r(s)] = 1. In particular L−1 [̂r(s)] is bounded on R+. We are now ready
to prove Lemma 2.

Proof of Lemma 2 We write the inverse Laplace transform as follows:

f (t) = 1

2π i
lim

T→∞

∫ iT

−iT
r̂(s)est ds.

The integration path needs to be chosen to keep all the poles on its left, including zero.
Therefore, we choose the path γε that goes from −iT to −iε, follows a semicircular
path around 0 on the right, and then connects iε to iT . It is sketched in the following
figure:

−iT

iT

−iε
iε

Splitting the integral in the three segments we obtain the formula:

f (t) = 1

2π i

∫
∂ B(0,ε)∩C+

r̂(s)est ds + lim
T→∞

(
1

2π i

∫ iε

−iT
r̂(s)est ds + 1

2π i

∫ iT

iε
r̂(s)est ds

)
. (24)

Concerning the first term, it is immediate to see that the integrand uniformly converges
to the 1/s for ε → 0, and therefore the first terms goes to 1

2 for ε small. We now focus
on the second part.

We can rephrase the ratio of polynomials defining r(s) as follows:

p(s)

p(−s)
=

�∏
j=1

γ j − s

γ j + s
, γ j ∈ [a, b], 0 < a < b.
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Then, we note that the above ratio restricted to the points of the form is yields a
complex number of modulus one, that must have the form p(is)

p(−is) = eiθ(s), where

θ(s) := arg

(
p(is)

p(−is)
)
=

�∑
j=1

arg(γ j − is)− arg(γ j + is) = −2
�∑

j=1
atan

(
s

γ j

)
∈ [−�π, �π ].

In particular, lims→∞ θ(s) = −�π and for s > 0 it holds

�π + θ(s) =
�∑

j=1
2

(
π

2
− atan

(
s

γ j

))
=

�∑
j=1

2

(∫ ∞

0

1

1+ x2
dx −

∫ s
γ j

0

1

1+ x2
dx

)
(25)

= 2
�∑

j=1

∫ ∞
s

γ j

1

1+ x2
dx ≤ 2

�∑
j=1

∫ ∞
s

γ j

1

x2
dx = 2

∑�
j=1 γ j

s
≤ 2�b

s
. (26)

This allows to rephrase the integrals of (24) in the more convenient form

1

2π i

∫ iT

iε
r̂(s)est ds = 1

2π i

∫ T

ε

i · r̂(is)eist ds = (−1)�
2π i

∫ T

ε

ei(st+θ(s))

s
ds.

Since we are summing the integral between [ε,∞] and [−∞, ε] we can drop the odd
part of the integrand, and rewrite their sum as follows:

(−1)�
2π i

∫ T

ε

ei(st+θ(s))

s
ds + (−1)�

2π i

∫ ε

−T

ei(st+θ(s))

s
ds = (−1)�

π

∫ T

ε

sin(st + θ(s))

s
ds.

The above integral is well-defined even if we let ε → 0, we can can take the limit
in (24) which yields exactly the value 1

2 for the first term, and we have reduced the

problem to estimate f (t) = 1
2 + (−1)�

π

∫∞
0

sin(st+θ(s))
s ds. To bound the integral, we

split the integration domain in three parts:

1

π

∫ ∞

0

sin(st + θ(s))

s
ds = 1

π

∫ ν

0

sin(st + θ(s))

s
ds

︸ ︷︷ ︸
I1

+ 1

π

∫ ξ

ν

sin(st + θ(s))

s
ds

︸ ︷︷ ︸
I2

+ 1

π

∫ ∞

ξ

sin(st + θ(s))

s
ds

︸ ︷︷ ︸
I3

,

where we choose ν = a tan( π
4� ) and ξ = 4�b. For later use, we note that aπ

4� ≤ ν ≤ a
�
.

Concerning I1, we can further split the integral as I1 = 1
π

∫ ν

0
sin(st) cos(θ(s))

s ds +
1
π

∫ ν

0
cos(st) sin(θ(s))

s ds. Note that |θ(s)| ≤ 2s
∑�

j=1 γ−1j , which can be obtained mak-
ing use of the inequality |atan(t)| ≤ |t |. We can bound the second integral term as
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follows:

1

π

∣∣∣∣
∫ ν

0

cos(st) sin(θ(s))

s
ds

∣∣∣∣ ≤ 1

π

∫ ν

0

cos(st)|θ(s)|
s

ds ≤ ν
1

π

�∑
j=1

γ−1j ≤ 1

π
,

where we have used ν ≤ a
�
and

∑�
j γ−1j ≤ �

a . The first part can be bounded making
use of Lemma 6, by introducing the change of variable y = st , which yields

1

π

∫ ν

0

sin(st) cos(θ(s))

s
ds = 1

π

∫ tν

0

sin(y) cos(θ(y/t))

y
dy.

Note that on [0, tν] the function cos(θ(y/t)) is indeed decreasing, thanks to our choice

ofν, and therefore the above canbebounded inmodulus by 1
π

∣∣∣∫ tν
0

sin(y) cos(θ(y/t))
y dy

∣∣∣ ≤
1.852

π
, where we have used that cos(θ(0)) = 1, and applied Lemma 6.

Concerning I2 we have

|I2| =
∣∣∣∣ 1π
∫ ξ

ν

sin(st + θ(s))

s
ds

∣∣∣∣ ≤ 1

π

∫ ξ

ν

1

s
ds = 1

π
log

(
ξ

ν

)
≤ 1

π
log

(
16�2b

aπ

)

Concerning I3, we perform the same splitting for a since of a sum that we had for I1,
yielding

I3 = 1

π

∫ ∞

ξ

sin(st) cos(θ(s))

s
ds

︸ ︷︷ ︸
I4

+ 1

π

∫ ∞

ξ

cos(st) sin(θ(s))

s
ds

︸ ︷︷ ︸
I5

.

By using (26) we have that ∀s ∈ [ξ,∞):

cos(θ(s)) = cos(−�π + ϕ(s)) = (−1)� cos(ϕ(s)), 0 ≤ ϕ(s) ≤ 2�b

s
.

Using the Lagrange expression for the residual of the Taylor expansion we
get cos(ϕ(s)) =︸︷︷︸

ψ∈[0,ϕ(s)]
1− sin(ψ(s))ϕ(s). This enables bounding I4 as follows:

|I4| = 1

π

∣∣∣∣
∫ ∞

ξ

sin(st) cos(θ(s))

s
ds

∣∣∣∣ ≤ 1

π

∣∣∣∣
∫ ∞

ξ

sin(st)

s
ds

∣∣∣∣
+ 1

π

∫ ∞

ξ

∣∣∣∣ sin(st) sin(ψ(s))ϕ(s)

s

∣∣∣∣ ds

≤ 1

π

∣∣∣∣
∫ ∞

ξ

sin(st)

s
ds

∣∣∣∣+ 1

π

∫ ∞

ξ

2�b

s2
ds = 1

π

(
|si(ξ)| + 2kb

ξ

)
≤ 1

2

+ 2�b

ξπ
≤ 1

2
+ 1

2π
.
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Analogously, for bounding I5, we remark that by using (26) we have that ∀s ∈ [ξ,∞):

sin(θ(s)) = sin(−�π + ϕ(s)) = (−1)� sin(ϕ(s)), 0 ≤ ϕ(s) ≤ 2�b

s
.

Hence,

|I5| ≤ 1

π

∣∣∣∣
∫ ∞

ξ

cos(st) sin(θ(s))

s
ds

∣∣∣∣ ≤ 1

π

∫ ∞

ξ

| sin(ϕ(s))|
s

ds

≤ 1

π

∫ ∞

ξ

|ϕ(s)|
s

ds ≤ 2kb

ξπ
≤ 1

2π
.

Combining all these inequalities, we have

‖ f (t)‖L∞(R+) ≤ 1

2
+ 1

π
+ 1.852

π
+ 1

π
log

(
16�2

b

aπ

)

+ 1

2
+ 1

π
≤ 2.23+ 2

π
log

(
4� ·

√
b

πa

)
.

��
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