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ABSTRACT This paper introduces the application of a reduced-order modeling technique for accurate
temperature monitoring in Power Electronics modules. The methodology involves coupling the Finite
Element Method with the radiosity equation to obtain a high-fidelity representation of the physical behavior
of the device. These models account also for surface-to-surface radiation, an aspect that can have a high
impact when the operating temperatures increase, and the components are close to each other, which is a
common scenario for high power density and compact modules. The Model Order Reduction is performed
via the Proper orthogonal decomposition, coupled with the Discrete Empirical Interpolation Method to
handle the nonlinearity introduced by the surface-to-surface radiation. This approach allows to reduce the
computation time with a limited effect on the accuracy of the prediction. The method is applied to reduce
the order of the thermal model of a DC-DC converter. Numerical and experimental results demonstrate the
approach’s effectiveness, showcasing high accuracy with minimal computation time and memory cost.

INDEX TERMS Discrete empirical interpolation method (DEIM), finite element method (FEM), model
order reduction (MOR), radiative heat transfer.

I. INTRODUCTION
The increase in power density, along with the desire to have
small-sized components, has led to increased compactness
of Power Electronics (PE) modules. This means that several
devices, some among them emitting heat, are near each other,
typically within an enclosure. In PE converters, compactness
is often achieved by increasing the switching frequency, thus
reducing the dimensions of the passive components [1], and
by packing them in close proximity [2]. Small-sized modules,
with high power density (like the one seen in Fig. 1), require
a high power heat dissipation, which may lead to dangerous
hot spots [3], [4]. High operating temperatures and switch-
ing frequencies are typical of power modules made with
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wide-band-gap semiconductors like silicon carbide (SiC) [5],
[6]. Developing thermal models for these high-power con-
verters is crucial, given their application across various
renewable technologies. These include electric vehicles and
trains, as well as inverters for photovoltaic (PV) systems [7].
Indeed, having an accurate thermal model is important dur-

ing the design and optimization of such components, where
several time-consuming simulations must be done to check
the reliability of the analyzed design, as the temperature is
one of the main causes of failure in electronics [8].

Furthermore, accurate thermal models for PE components
are crucial when implementing advanced control strategies,
such as those rooted inModel Predictive Control (MPC) tech-
niques [9]. These models can serve as soft sensors, providing
virtual measurements of quantities that are challenging to
probe [10], [11]. In this scenario, a computationally light
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model is desired, since real-time (or faster than real-time)
simulations of the model are required [12].

When developing such models, the impact of thermal
radiation is frequently disregarded due to its introduction
of non-linearity, which consequently renders the problem
more complex and challenging to resolve. This omission is
justified when operating temperatures remain low since the
portion of heat dissipated through radiation is insignificant
compared to conduction and convection [13]. However, this is
not the case for, e.g., high power density and compact module
applications, where the operating temperature is high. For
example, in an enclosure, heat dissipates from the component
primarily through conduction and thermal radiation [14].
This is particularly true when airflow is restricted, hindering
natural convection and thus making it ineffective for efficient
device cooling [15]. In [14], Dallago and Venchi performed
thermal simulations of a notebook that employed a fully
passive thermal solution. When simulating the model without
accounting for thermal radiation, the temperature of some
components increased up to 56% [14].
It is noteworthy that, when radiation is considered, two

phenomena exist: surface-to-ambient (s2a) radiation, where
the components exchange heat by radiation toward the
surrounding ambient with a presumed constant temperature,
and surface-to-surface (s2s) radiation, where different parts of
the components at different temperatures mutually exchange
heat [16]. This latter phenomenon contributes to the heating
of components placed in proximity to heat-dissipating ones.
Usually, because of their simplicity, thermal networks are
adopted to model PE components. However, in general,
thermal networks only allow for low-resolution temperature
monitoring [3], [17].
More accurate thermal models of electric components can

be obtained by using the finite element method (FEM), which
transforms the heat conduction problem into a large system of
equations. Coupling the FEMwith thermal radiation provides
an accurate but computationally expensive representation
of the phenomena. In particular, including s2a thermal
radiation makes the problem non-linear, and including s2s
radiation requires generating, storing, and operating with
dense matrices representing the non-local heat exchange
between different parts of the component, thus significantly
increasing the computational burden of the model [18], [19].

Projection-based Model Order Reduction (MOR) tech-
niques aim to simplify a Full Order Model (FOM) by
projecting its system matrices onto a lower-dimensional
subspace. This process results in a Reduced Order Model
(ROM), which retains the essential dynamics of the original
system while substantially reducing computation time and
memory requirements, with only a limited loss of accuracy.
Various MOR techniques can be employed to determine
the appropriate reduced basis for projecting the FOM. For
instance, techniques employing Krylov spaces methods, such
as ones based on the Lanczos and Arnoldi algorithms
[20], [21], [22], [23], derive the reduced basis by matching

the system’s response. Alternatively, Balanced Truncation
(BT) works by ‘‘balancing’’ the system, i.e. making it
equally observable and controllable, before truncating the
less significant modes [20]. While BT offers an a priori
error estimate, its computational complexity can become
prohibitive, primarily due to the need to solve Lyapunov
matrix equations. This can be addressed using low-rank
solvers for linear matrix equations [24], as done in [25].

Another effective approach to construct the projection
subspace is to employ the Proper Orthogonal Decomposition
(POD) algorithm [26]. POD is a method that aims at
separating the solution using only time and space, relying
on the truncated singular values decomposition of a matrix
containing snapshots of the solution; other approaches that
lead to separation of time, space, and possibly param-
eter variables are Reduced Basis (RB), and the Proper
Generalized Decomposition (PGD). Both approaches are
based on selected specific shape functions. The former uses
these to re-discretize the problem [27], whereas the latter
defines a suitable residual, which is then minimized by
an alternating optimization scheme [28]. The application
of Projection-based MOR techniques to non-linear or para-
metric models introduces additional challenges in achieving
a reduced representation. When the model’s parameter
dependence is affine, the state-space matrices of the ROM
can be expressed as a linear combination of smaller matrices,
which simplifies the reduction process. However, if the
parameter dependence is non-affine and/or the problem is
nonlinear, generating the ROM requires recreating the FOM
for each variation in the parameters, significantly increasing
computational complexity, rendering the approach unsuitable
for real-time computing on inexpensive hardware [29]. For
parametric problems, the low-order terms of a Taylor series
expansion can approximate an affine decomposition of the
system matrices. For nonlinear equations, the nonlinear term
may be selectively sampled and then interpolated, using
approaches such as the Empirical Interpolation Method
(EIM) [29], [30].

In the field of thermal modeling, MOR techniques
have proven effective in synthesizing accurate thermal
networks from numerical models of electronic compo-
nents, particularly using Krylov-based approaches such as
the Multi Point Moment Matching (MPMM) algorithm
[21], [22], [22], [23], [31]. These methods have also been
extended to manage parametric dependencies and nonlinear
thermal conductivity [32], [33], [34]. The main difficulty
of handling s2s radiation lies in the expensive calculation
of the nonlinear term. Existing techniques for reducing the
computational complexity of handling s2s radiation in FEM
models have primarily focused on mesh refinement and
block partitioning [19], [35], [36]. While these methods help
reduce the computational and memory cost of solving and
storing the FOM, they are still insufficient for enabling
real-time solutions on low-cost hardware, especially forMPC
applications.
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FIGURE 1. High-Current dual active bridge converter for an automotive
application [39].

To tackle this problem, we employ the POD coupled with
the Discrete Empirical Interpolation Method (DEIM) [37],
which is the discrete version of the EIM. The proposed
method is used to construct accurate and computationally
light ROMs of PE components, including all radiation effects.

A tailored DEIM approach, designed for the non-local
interactions of s2s radiation, is used with interpolation nodes
selected through column-pivoted QR factorization [38].
The method is employed to reduce the dimensions of the
nonlinear system of equations by combining projection and
interpolation, employing snapshots (i.e., temperature maps of
the model), to build a basis that is used to project, and thus
reduce, the original model.

The POD and DEIMwere selected both for their simplicity
and effectiveness in producing a ROM. Starting from a
time-domain simulation of the FOM, the ROM can be
built from an inexpensive truncated SVD of the snapshots,
followed by a pivoted QR decomposition. This combination
provides a robust framework for efficiently constructing
accurate ROMs. Although alternative techniques can be
employed to generate a projection basis for the FOM, the
primary contribution of this paper lies in the adaptation of the
DEIM approach to reduce the nonlinear and non-local term
introduced by s2s radiation. The remainder of the paper is
structured as follows. First, a summary of surface-to-surface
radiation, and its estimation using the radiosity method is pre-
sented in Section II. Section III discusses the approach used
to reduce the order of the model. After that, in Section IV, the
method is employed on a simple DC-DC converter (reported
in Fig. 4) to show that even for a simple device, radiation may
be relevant, and to prove the effectiveness of the reduction
strategy. Finally, the main conclusion of this paper is drawn in
Section V.

II. FORMULATION OF THE PROBLEM
A. PROPERTIES OF RADIATIVE SURFACES
When thermal radiation hits a surface it can either be
absorbed, reflected, or transmitted. This behavior is described
by introducing the absorptivity (α), the reflectivity (ρ), and
the transmissivity (τ ) coefficients, with sum equal to 1 [40].
For this study we restricted the problem to the case of opaque

FIGURE 2. Surface-to-surface radiation in an enclosure, adapted
from [41].

and diffuse surfaces only,meaning τ = 0 and a uniform rather
than specular reflection, a common assumption according to
the literature [35], [40], [41]. The reflectivity ρ is written as:

ρ = 1 − α. (1)

Considering the total hemispherical approximation the
dependence on temperature and wavelength (λ) of the
parameters is averaged out, moreover, by using Kirchhoff’s
law, ρ can be written in terms of the emissivity ϵ of
the surface, since ϵ = α [40]. The emissivity plays a
fundamental role in determining the specific power e emitted
from a blackbody through to the Stefan-Boltzmann law
e = ϵσT 4

s . The openings of the enclosure are treated as
surfaces at ambient temperature that do not reflect incoming
radiation, resulting in an equivalent reflectivity equal to
zero.

B. CONTINUOUS FORMULATION OF THE RADIOSITY
EQUATION
The energy exiting from a point r lying on an enclosure
0, called the radiosity u(r), is described by the radiosity
equation [41]:

u(r) − ρ(r)
∫

0

u(ξ)G(r, ξ)V (r, ξ)dξ = e(r), r, ξ ∈ 0,

(2)

where the second term on the left-hand-side is related to
the energy coming from all other points ξ in 0 reflected
from r through the reflection coefficient ρ(r). Particularly,
the reflected energy depends on the visibility factor V (r, ξ) ∈

[0, 1], and G(r, ξ) defined as:

G(r, ξ) =
(ξ − r) · nr (ξ − r) · nξ

π ||r − ξ||4

=
cos θr cos θξ

π ||r− ξ||2
. (3)

A graphical representation of geometrical quantities of (3)
is given in Fig. 2. The right hand side of (2) represents the
energy emitted from point r, i.e., e(r) = σϵ(r)T 4

r [42].
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C. DISCRETE FORMULATION OF THE RADIOSITY
EQUATION
To numerically solve (2), the boundary of the components
must be discretized into surface elements, such as triangles.
In this paper, to provide a tool that can be seamlessly
integrated with FEM software, we decided to use the same
FEMmesh of the heat conduction problem. The discrete form
factors are obtained by doing the integral average of (3) across
each couple of surface patches i, j [41], obtaining:

Fij =
1
Ai

∫
Ai

∫
Aj

cos θr cos θξ

π ||r− ξ||2
V (r, ξ)dAidAj. (4)

Fij represents the fraction of the radiation leaving the
element i that reaches element j, and represents quantitatively
how much two surface elements see each other. The form
factor matrix F =

{
Fij

}
was calculated by numerically

integrating (4) for all i < j. The elements in the diagonal are
zero, since the surface was discretized with flat triangles, and
the other form factors were obtained through the reciprocity
relation:

AiFij = AjFji, (5)

where Ai represents the area of triangle i [40].
For large models, the form factor computation could be a

bottleneck, and the hemicube algorithm [43] might provide a
more efficient approximation. The visibility factors V (r, ξ),
needed in (4) are instead obtained with an implementation of
the Ray-Triangle intersection algorithm [44]. The quantity of
interest is the net power flowing out of each surface triangle.
We now proceed to discretize the radiosity equation (2),
obtaining the vector u representing the outwards power of
each triangle [36]:

(I − (1 − ϵ)F)u = σ ϵT4, (6)

where ϵ represents the vector of the emissivity values of
each triangle, which was used to replace the reflectivity
in (2). It should be noted that T4 in this case represents
the element-wise fourth power of vector T , containing the
temperature of each surface element. We can then obtain
the net power flowing out of each surface triangle qnet. For
triangle i, this is the power flowing out from i, minus the
sum of the power that flows out of each triangle j which
is intercepted by i, and can be represented by the following
matrix equation [36]:

qnet = (I − F) [I − (1 − ϵ)F]−1 σ ϵT4
= DT4. (7)

D. COUPLING RADIOSITY WITH THE HEAT CONDUCTION
PROBLEM
To construct a model of the device under study, we used the
FEM approach applied to the heat conduction equation:

In � : ρc
∂T
∂t

= ∇ · (k∇T ) + Q, (8)

and coupled with the heat convection equation:

On ∂� : −k
∂T
∂n

= h(T − T∞). (9)

If thermal radiation is not considered, the FEM model is
given by:

Mẋ+ (S+H)x = q+ qconv. (10)

where M,S ∈ Rn×n are the mass and stiffness matrix, and
x ∈ Rn contains the temperature of each node of the mesh.
In (10), H and qconv derive from the discretization of the

convection boundary condition (9). Furthermore, q represents
the internal heat generation of components subject to joule
losses.

We now want to couple (10) with (7). The former is a
relationship between nodal temperatures x and nodal heat
fluxes q + qconv. Instead, equation (7) takes as an input
a vector containing the surface elements temperatures T ,
and returns qnet, i.e., the net heat flux due to radiation on
each surface element. To couple surface-to-surface radiation
with (10), we need to express it as a function of the nodal
temperature, and the net heat flux should be mapped into
nodes instead of surface elements. Matrix N is defined as the
operator performing the average of the nodal temperatures,
yielding the temperature of each triangle. The net radiation
on each element is mapped on the nodes through matrix
B = {Bli} =

∫
0i

φld0i, where φl is the basis function of
node l [42]. We can now express the radiation contribution in
each mesh node using:

qrad = BDT4
= GT4. (11)

Combining the radiation boundary condition (11) with the
original system of equations (10) returns the following system
of nonlinear equations:

Mẋ+ (S+H)x = q+ qconv + G (Nx)4 . (12)

E. SOLVING THE TIME-DEPENDENT PROBLEM
The FEM is described by local relationships between
quantities, in particular, the temperature in a node of the mesh
depends on the temperature of nearby ones. This provides
a large, but sparse system of equations that describes the
problem. Instead, the surface-to-surface radiation boundary
condition defines a non-local coupling between all surface
nodes. This makes matrixG dense, thus significantly increas-
ing the computational burden. Dense matrix operations,
combined with the fact that (12) is nonlinear in x make
the problem expensive to solve, especially for time domain
simulations.

One possibility is to solve for x the nonlinear problem (12)
at each time step of the problem, but to reduce the com-
putation time, we chose an approximate approach. Without
considering the effect of thermal radiation, we discretized the
resulting system using the Backward Euler Algorithm [45],
approximating the solution at each step via:

xk+1 ≈ xk + 1tf (xk+1, tk+1), (13)

where 1t is the time-step and f is obtained from (12) by
algebraic manipulations.

178120 VOLUME 12, 2024



M. Zorzetto et al.: Reduced Order Modeling for Thermal Simulations of Electric Components

FIGURE 3. MOR process: Elements in the red rectangle need to be performed only once in the offline phase. The blue rectangle represents obtaining new
outputs in the online phase.

The volumetric heat generation q and the convection
boundary condition qconv, have been replaced with the
product of an input matrix P times the input u. Both the state
vector and the input are functions of time.

Performing these operations, returned the following
relationship:

Edxk+1 = Adxk + Bduk+1, (14)

where:

Ed = M + 1t(S+H) (15)

Ad = M (16)

Bd = 1tP. (17)

Discretizing (12) using the Backward Euler method would
require moving the nonlinear G(Nx)4 term to the left-hand
side of (14), requiring the use of a nonlinear solver at each
time step. For this reason, considering the slow evolution of
the temperature w.r.t. the chosen time step, we opted for an
approximated solution. The nonlinear term was calculated
using the temperature distribution from the previous time
step, obtaining the following equation:

Edxk+1 = Adxk + Bduk+1 + G(Nxk )4. (18)

This approach was compared with the more accurate one
(i.e., by actually solving the non-linear problem at each time
step) on smaller problems but with similar dynamics. With
the chosen time step, the two methods are comparable (i.e.,
discrepancies below 0.1 % were obtained).

III. MODEL ORDER REDUCTION
To reduce the cost of simulating (18) which is a high
dimensional model, we look for a surrogate model with
a much lower state dimension r ≪ n. This is obtained
using the POD, combined with the DEIM [37] to handle the
nonlinearity of the system. More precisely, we perform the
following steps, presented also in Fig. 3:

1) We run the FOM for s different combinations of inputs
u and initial states. We collect the snapshot matrix
Ṽ ∈ Rn×nT s containing the solution of the FOM for all
inputs and for each nT timesteps. Analogously, we store
the matrix W̃ ∈ RnE×nT s containing the quantities

(Nxk )4 where nE is the number of elements in the finite
element mesh.

2) We extract matrices V ,W with r and rDEIM orthog-
onal columns spanning low-dimensional subspaces
approximating the ranges of Ṽ , W̃ , respectively. This
can be either done with a truncated SVD for mod-
erate n, or with a randomized rangefinder for larger
problems [46]; the latter only requires matrix-vector
multiplications of Ṽ and W̃ withO(r+ rDEIM) random
vectors.

To obtain the reducedmodel, we approximate x(t) ≈ Vx(r)(t)
and impose a Galerkin condition, which yields the r × r
nonlinear system; we discretize it by Backward Euler as we
did for the FOM, obtaining:

Erx
(r)
k+1 = Arx

(r)
k + Bruk+1 + VTG(NVx(r)k )4, (19)

where:

Er = VTEdV , Ar = VTAdV , Br = VTBd .

Evaluating the nonlinear term VTG(NVx(r)k )4 would require
assembling the full order solution. Hence, we further
approximate it with a DEIM approach as:

(NVx(r)k )4 ≈ Wyk , yk := (5TW )−1
[
5T (NVx(r)k )4

]
,

where 5 is a nE × rDEIM is a row-selection matrix
(i.e, it contains rDEIM columns of the nE × nE identity
matrix). These columns can be chosen with well-established
techniques that guarantee the invertibility of 5TW ; we use
the one based on the pivoted QR decomposition proposed
in [38]. Note that in view of the component-wise nature
of the nonlinearity, we have 5T (NVx(r)k )4 = (5TNVx(r)k )4.
Substituting this approximation in (19) yields:

Erx
(r)
k+1 = Arx

(r)
k + Bruk+1 + Gr (Nrx

(r)
k )4,

where the matrices:

Gr := VTGW (5TW )−1
∈ Rr×rDEIM ,

Nr := 5TNV ∈ RrDEIM×r

can be computed once and for all in the offline phase. The
reduced model is integrated with the same Backward Euler
scheme with explicit nonlinearity used for the FOM. In this
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FIGURE 4. Picture of the DC-DC converter with marked regions of interest.

FIGURE 5. Experimental setup.

framework, computing each step of the ROM costs O(r(r +

rDEIM)) flops, assuming that a Cholesky factorization of Er is
precomputed in the offline phase.

IV. NUMERICAL EXPERIMENTS
A. PRELIMINARY ANALYSIS
The proposed approach is applied to a simple DC-DC
converter (reported in Fig. 4) to show that even for a simple
device, radiation is relevant, and to prove the effectiveness of
the reduction strategy.

The DC-DC converter has been modeled using the Finite
ElementAnalysis (FEA) software COMSOLMultiphysics®.
The step-down converter used can operate with an input
voltage between 6−40V and an output voltage of 1.5−30V,
the device is covered with a plastic lid to resemble an
enclosure. The input was connected to a DC power supply
and the output to a variable resistor. The setup used for the
experiments can be seen in Fig. 5. Thermal pictures were
taken with a Flir T420 thermal camera, and capacitors and
heat sinks were covered with black electrical tape to provide
the same value of surface emissivity. Fig. 6a was taken with
the module in steady-state operating at the conditions seen in
Table 1. The unknown parameters of the numerical model
were fit using temperature measurements taken with the

TABLE 1. Operating conditions of the power converter.

TABLE 2. Comparison between steady-state measurements and
simulation of capacitors and MOSFETs surface temperatures ◦C.

thermal camera and the results were compared to the original
as seen in Fig. 6b.

The FEA model is a simplification of the real device,
considering heat generation in the components subject to
losses, and heat conduction with radiation and convection
boundary conditions. By disabling the surface-to-surface
and surface-to-ambient boundary conditions, we can see in
Fig. 6c that the temperature readings differ substantially from
the ones obtained with the more accurate model. It should
be noted that the thermal maps are presented all with the
same scale of Fig. 6c for ease of comparison. This simple
demonstration still shows that the effect of surface-to-surface
radiation is significant even for this simple component.
This can be verified quantitatively in Table 2, where the
measurements from the thermal camera are compared with
the surface averaged temperatures in locations of interest, i.e.,
capacitors and MOSFETs shown in Fig. 4. Table 2 shows
the impact of modeling surface-to-surface radiation on the
average temperature of passive components. The temperature
of the capacitors is greatly affected by the proximity of
the coil and the MOSFETs, consequently, they change
significantly if the s2s boundary condition is removed.

B. MODEL ORDER REDUCTION
The FEM model of the converter described in Section IV-A,
was then constructed by using proprietary numerical tools
developed in the MATLAB® environment. The resulting
system has one input corresponding to the total dissipated
power, which is then distributed in the heat-generating
regions of the device. The outputs represent the average
temperatures in volumes of interest of the device. The
matrices needed for radiosity were built as explained in
previous sections. In Fig. 7, the average temperature of
the left capacitor (Cleft in Fig. 4) subject to the input
power shown in Fig. 9 is depicted. Analogously, Fig. 8
shows the temperature evolution of the MOSFET (averaged
temperature). The model is first simulated without radiation,
then with both s2s and s2a, and finally by applying only
the s2a boundary condition, considering the total visibility
of the ambient for each radiating surface. Fig. 7 and Fig. 8
emphasize the different trajectories taken by the temperature,
further validating the impact of considering s2s radiation for
this device.
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FIGURE 6. Comparison between measurements and FEA simulations. Color bar in ◦C.

FIGURE 7. Temperature estimate in the left capacitor with and without
the contribution of thermal radiation.

FIGURE 8. Temperature estimate in the left MOSFET with and without the
contribution of thermal radiation.

To perform the MOR, snapshots must be computed, so the
FOM was run using the series of steps of input powers
shown in Fig. 9 with a time step of 1 second. Once the
snapshots are collected, selecting the number of singular
vectors for the POD and DEIM involves balancing model size
and accuracy. The decay of singular values in the snapshot
matrices provides an initial indication of the approach’s
effectiveness. A sharp decline suggests that a small number
of modes can capture most of the information in the dataset.

FIGURE 9. Input power during snapshots collection and ROM validation.

FIGURE 10. Normalized singular value decay of the first 50 singular
values of the POD and DEIM snapshot matrices.

As shown in Fig. 9, both the POD and DEIM snapshots
exhibit a significant drop in the first few singular values.

The singular value decay of the snapshot matrices provides
information about the reconstruction error of the snapshots,
but not about the ROM solution error [29]. The ROM
error was derived by testing it on new input data shown in
Fig. 9 using different numbers of POD and DEIM modes.
As presented in Fig. 11, the model improvement becomes
less and less significant as the number of modes increases.
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FIGURE 11. Root mean squared error between FOM and ROM
temperature prediction in the left mosfet as a function of the number of
POD and DEIM modes considered.

TABLE 3. Computation time and memory requirements comparison
between full and reduced order model.

TABLE 4. Root Mean Squared Error (RMSE) between ROM and FOM
temperature predictions.

FIGURE 12. Left capacitor temperature during validation.

Although using just three POD and DEIM modes provides
satisfactory results, the final ROM was built using 7 POD
and 6 DEIM modes to obtain a more accurate ROM. As
reported in Table 3, the number of states n was reduced
from 23619 to 7. The size sG of the radiation matrixG in (11)
was reduced from 23619× 29515 to 7× 6. The computation
time needed to run the simulation was reduced from 1 hr
52 min to less than 1 second, and the memory used to store
the matrices was reduced from 5332 MB to less than 4 kB.

The resulting model operates faster than real-time, making
it suitable for MPC applications, and incorporating s2s
and s2a radiation leads to a manageable 22% increase in

computation time compared to the linear ROM. As presented
in Fig.12, the temperature estimates from the ROM closely
align with those predicted by the FOM in both the low and
high temperature regions, where the effects of radiation are
more pronounced. Moreover, temperature curves in Fig. 7
and Fig. 8 demonstrate the accuracy of the reduction method
applied to both the linear model and the model that includes
only s2a radiation.

The ROM results were compared with those from the
FOM to assess any loss of accuracy. As shown in Table 4,
the ROM accurately predicts the temperature increase in
the components of interest, confirming the validity of the
approach.

V. CONCLUSION
AProper Orthogonal Decomposition (POD) coupled with the
Discrete Empirical Interpolation Method (DEIM) approach
has been applied to reduce the computational complexity
of the heat conduction problem coupled with the surface-
to-ambient and surface-to-surface radiation boundary condi-
tions [36], [38]. The same mesh used for the heat conduction
discretization is adopted to build the matrices needed for
surface-to-ambient and surface-to-surface radiation, and the
resulting model is then reduced. Thanks to the POD-
DEIM method, high-fidelity physics-based models, can be
seamlessly transformed into accurate Reduced Order Models
(ROMs). By using this technique, both the computation time
and memory needed to store the model of the device are
greatly reduced, while the prediction error of the reduced
order model is negligible. Finally, further improvements can
be also achieved by employing faster strategies to build the
radiosity matrix, in particular the calculation of the visibility
factor, the main bottleneck of the proposed method. More
efficient techniques can also take advantage of programmable
graphics hardware to accelerate computations [43]. Start-
ing from the proposed tool, future research will focus
on machine-learning approaches to further decrease the
complexity of deriving the reduced order model.
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