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1. Introduction

Random matrix theory, introduced by Wishart [1] about 90 years ago, investigates
the properties of matrices whose entries are random variables. The quantities of interest
range from the joint probability distribution of the matrix elements to the asymptotic
behavior of its eigenvalues and singular values [2], and applications stretch from nuclear
physics [3,4], wireless networks [5], and neuroscience [6] to numerical analysis [7,8] and
number theory [9]. Random matrix theory is still a very active area of research [10].
We refer the interested reader to the survey by Edelman and Rao [7] for a general
introduction to the topic, and to the monographs by Forrester [11] and Mehta [2] for a
more complete discussion. The general mechanisms by which random matrix theory can
be employed to solve practical problems are discussed by Edelman and Wang [12].

In applications, one is often interested in random matrices with a given structure.
In quantum mechanics, for example, the energy levels of a system are described by the
eigenvalue of its Hamiltonian, a Hermitian operator on an infinite-dimensional Hilbert
space. By approximating this space by a Hilbert space of finite dimension, one can
reduce the problem of finding the energy levels to that of solving a Hermitian eigenvalue
problem. The true Hamiltonian, however, is typically not known, thus it is customary
to make statistical assumptions on the distribution of its entries, enforcing only the
symmetry of the operator. The distribution of the eigenvalues of random symmetric
and Hermitian matrices has been extensively studied [2,13,14] and an algorithm for
sampling the eigenvalues of uniformly distributed Hermitian matrices has been developed
by Edelman, Sutton, and Wang [15].

Here we are interested in the orthogonal group O(n) = {Q € R™*" | QTQ = I,,} and
in the unitary group U(n) = {U € C**™ | U*U = I,,}, where I,, denotes the identity
matrix of order n and AT and A* denote the transpose and the conjugate transpose
of A, respectively. It is easy to prove that the determinant of an orthogonal or unitary
matrix lies on the unit circle, and that the special orthogonal group SO(n) = {Q €
O(n) | det @ = 1} and the special unitary group SU(n) = {U € U(n) | detU = 1} are
subgroups of O(n) and U(n), respectively. O(n) is made of two connected components,
the already mentioned SO(n) and one in which all matrices have determinant —1, which
we denote by O~ (n). Clearly, the latter is not a group.

Random unitary matrices find application in quantum physics where they are em-
ployed, for example, to model scattering matrices and Floquet operators [11, Section 2.1].
Random orthogonal matrices, on the other hand, are used in statistical mechanics to
characterize the behavior of certain log-gas systems [11, Section 2.9].

For a group G, the measure p such that u(G) = 1 is a normalized left or right Haar
measure if for any Q € G and any measurable G C G it satisfies u(QG) = u(g) or
w(GQ) = pu(G), respectively. For compact Lie groups, it can be shown that the left and
right measures are unique and coincide. Hence, since O(n), SO(n), U(n), and SU(n) are
all compact Lie groups [16, Chapter 1], they have a unique normalized (left and right)
Haar measure [17, § 58, § 60].



M. Fasi, L. Robol / Linear Algebra and its Applications 620 (2021) 297-321 299

We consider the problem of sampling efficiently the joint eigenvalue distribution of
unitary (or orthogonal) matrices distributed according to the Haar measure. Numerically,
this may be obtained by sampling matrices from the desired group uniformly, and then
computing their eigenvalues by relying, for instance, on the QR iteration. The latter step
requires O(n?) floating-point operations (flops) to sample the n eigenvalues of a matrix
of order n. The key observation is that in order to accomplish this task it is not necessary
to explicitly sample matrices from the corresponding group, but it suffices to understand
the distribution of their Hessenberg forms, which we analyze in detail in Section 4. The
main advantage of this approach is that unitary or orthogonal matrices in Hessenberg
form can be diagonalized in O(n?) flops. We will exploit this to derive the algorithm
discussed in Section 5, which has quadratic complexity and linear storage requirements.

The algorithm we propose can efficiently sample the joint distribution of the eigen-
values of Haar-distributed matrices from any of the Lie groups O(n), SO(n), U(n), and
SU(n). In Section 6 we show that the empirical phase and spacing of eigenvalues sam-
pled by our algorithm follow the corresponding theoretical distributions for U(n), and
then we explore empirically the distribution of the eigenvalues of matrices from the Haar
distribution of SU(n), O(n), SO(n), and O~ (n), for which fewer theoretical results are
available.

Our starting point is an algorithm proposed by Stewart [18] for sampling random
matrices from the Haar distribution of O(n). We recall this approach and the subse-
quent generalization to U(n), due to Diaconis and Shahshahani [19], in Section 3. This
technique exploits an algorithm for the QR factorization based on Householder transfor-
mations, which we revise in Section 2.

These techniques require the sampling of O(n?) random variables, and need O(n?)
memory for storing the result. We provide an alternative and more compact formulation
for the Hessenberg form obtained by the algorithms above, which requires the sampling
of O(n) random variables and O(n) storage. We show that this formulation can be used
to compute the eigenvalues in O(n?) floating-point operations by leveraging the unitary
QR algorithm in [20].

The use of a condensed factorization for storing random matrices has been already
explored, for instance, by Edelman and Ure [21], who sample unitary matrices by taking
random Schur parameters [22]. Methods similar to the technique presented in this work
might be obtained by representing the Hessenberg forms of unitary Haar-distributed
matrices using Schur parameters, or similarly condensed forms such as CMV matrices
[23], and then using a quadratic method to compute their eigenvalues [22,24-28].

The approach discussed here is based on the unitary QR algorithm in [20, Section 5],
The latter can be seen as a special case of the rootfinding algorithm of Aurentz et al. [25],
which has been proven to be backward stable and compares favorably with the methods
above in terms of performance.

Finally, we introduce some notation. Throughout the manuscript, we use capital letters
(A, B, ...) to denote matrices, lower case letters (u, v, ...) to denote vectors, and lower
case Greek letters («, 8, ...) to denote scalars. We indicate the entries of matrices and
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vectors using a subscript notation, so that a;; denotes the entry in position (7, 7) of the
matrix A and vy refers to the kth element of the vector v. We use the same notation for
random variables.

We denote by Ng(p, 0?) the Gaussian distribution centered at y € R with variance o2,
and by Nﬂém’") the distribution of m xn random matrices with independently distributed

Gaussian entries, that is,
X~ N = 2y ~ NR(0,1),  i=1,...,m, j=1,...n.

The chi-squared distribution with &k degrees of freedom, denoted by x&(k), is the dis-
tribution of the sum of the squares of k independent Gaussian random variables, and is
formally defined by

k
K,
yexh(k) =y =D02 s~ NG

=1

These are real-valued distributions. The complex counterpart of Ng(u,0?) is denoted
by Nc (i,0?) and defined by

2 2
Y410 ~ Ne(p, 0%) <= v~ Ng (Re(u), %) and § ~ Ny (Im(,u), %), with v 1L 4,

where the notation v Il § indicates that the random variables v and § are independent.
The distribution Ném’n) is defined as in the real case, and we can define the complex
analogue of the x& (k) distribution as

k
Yok - D) = =I5 S~ N
=1

It is easy to prove that x&(n — 1)(k) ~ x& (2k)/2.
2. Householder transformations and QR factorization

In this section we briefly recall some basic facts about Householder transformations,
and discuss how they can be employed to compute the QR factorization of a square
matrix.

Let v € C™ be a nonzero vector. The matrix

Pw)=1, - izvv* (2.1)
o]l

is a Householder transformation. It is easy to verify that P(v) is unitary and Hermitian,
and in particular is orthogonal and symmetric if the entries of v are real. This implies
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that P(v)® = I,,. Moreover, computing the action of P(v) on a vector requires only O(n)
flops, instead of the O(n?) flops that would be needed for a generic n x n matrix-vector
product.

Householder transformations are a convenient tool to zero out the trailing entries of a
nonzero vector u € C™. For instance, let 6, = Argu;, where Arg: C — (—m, 7] denotes
the principal value of the argument function. Then the matrix P(v) for v = u+e'% ||u,eq
is such that P(v)u = —e'%1||ul|,e1, where e; denotes the ith column of the identity matrix.
In order to zero out only the last n — k components of v € C™*", it suffices to consider
the block matrix

~

Iy i
Py(u) :== { k=1 P(v)} , Vi= Uk +e9’“||u;€;n||261, O = Arguy, (2.2)

where u;.; € CJI—#*1 denotes the vectors that contains the entries of « from the ith to
the jth inclusive.

Any matrix A € R™"” has the QR factorization A =: QR, where Q € O(n) and
R € R™*™ is upper triangular [29, Theorem 5.2.1]. If A is nonsingular, this factorization
is unique up to the sign of the diagonal entries of R. This result can be extended to
complex matrices: any nonsingular matrix A € C™*™ has a unique QR factorization
A =: QR, where Q € U(n) and R € C™*™ is upper triangular with real positive entries
along the diagonal [30, Theorem 7.2]. More generally, the QR factorization of a full-rank
matrix is unique as long as the phases of the diagonal entries of R are fixed.

In many of the following proofs, it will be useful to assume that the matrix A under
consideration has full rank. This is typically not restrictive, since rank-deficient matrices
are a zero-measure set in Nﬂ({b’n) and N((:"’n) ; we will comment on this fact in further
detail when needed.

We now explain how to compute efficiently the QR factorization of an n x n complex
matrix A by means of Householder reflections [29, Section 5.2.2]. The corresponding
procedure for real matrices can be obtained by employing real Householder reflectors.
Let the matrix A(®) := A be partitioned by columns as

A0 =40 A0,
and let ]51 = 131 (A(lo)). We obtain that

= T C i
PAO = [ (1)1 A(l)] ; riy = —elf

‘A?)H’ AW ¢ cr=Dx(=1) e clxn-1),

where 6 denotes the complex sign of the top left element of the matrix A, If we apply
this procedure recursively to the trailing submatrix A, after n — 1 steps we obtain

Po1---PIA=R, P:=F(AF ), k=1,..n-1, (2.3)
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where the Q) := 161 e .ﬁn,l is unitary and R is upper triangular. This algorithm produces
the matrix R and the factors P; for i = 1,...,n — 1 in 4n3/3 flops [29, Section 5.2.2].
Computing the matrix Q explicitly requires an additional 4n3/3 flops [29, Section 5.1.6],
but by exploiting the structure one can compute the action of () on a vector or matrix
with only n? and n> flops, respectively.

In order to normalize the factorization, note that if D is the diagonal matrix such
that di; = —e % where 6; is defined as in (2.2), then the matrix DR has positive real
entries along the diagonal. Therefore, the normalized factorization with positive diagonal
entries in the upper triangular factor is:

A=QR, R:=D*R, Q:=P...P,_1D, D:=— diag(e'®, ... e, (2.4)

where }51, ce Ign,l are as in (2.3).

A matrix H € C"*" is in upper Hessenberg form if h;; = 0 when ¢ > j+1. Any square
matrix is unitarily similar to an upper Hessenberg matrix, that is, for any A € C"*"
there exists a matrix Uy € U(n) such that U, AU} is an upper Hessenberg matrix.

3. The Haar measure and Stewart’s algorithm

Birkhoff and Gulati [31, Theorem 4] note that if the QR factorization A =: QR of an
n X n matrix A ~ NH(R”’”) is normalized so that the entries along the diagonal of R are
all positive, then @ is distributed according to the Haar measure over O(n).

This observation suggests a straightforward method for sampling Haar distributed
matrices from O(n). One can simply generate an n X n real matrix A ~ Nﬂé"’n), compute
its QR decomposition, and normalize it as discussed in Section 2. This procedure is
easy to implement, since efficient and numerically stable routines for computing the QR
factorization are available in most programming languages.

The computational cost of this technique can be approximately halved by comput-
ing the QR factorization implicitly. Stewart [18] proposes an algorithm that does not
explicitly generate the random matrix A, but produces the transpose of the matrix
Q@ in factored form as Dﬁl . ..ﬁn_l, where ﬁk = I3k (x(k)) for some random vector
k) ~ /\/']I(Kn’l)7 and D is an n X n diagonal sign matrix whose entries are computed as on
line 4 of Algorithm 3.1.

This algorithm readily generalizes to the complex case, as suggested by Diaconis
and Shahshahani [19] and discussed in detail by Mezzadri [32]. In order to sample Haar-
distributed random matrices from U (n), it suffices to generate vectors with entries drawn
from the standard complex normal distribution N¢ (0, 1), and replace the real sign func-
tion by its complex generalization e!4¢(%) for z € C.

We outline this approach in Algorithm 3.1. The function UMULT(X, F) computes
the action of a Haar-distributed matrix from O(n) (if F = R) or U(n) (if F = C) on
the rectangular matrix X € C™*™. In order to determine the computational cost of the
algorithm, note that asymptotically only the two matrix-vector products and the matrix
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Algorithm 3.1: Action of a matrix from the Haar distribution.
1 function UmuLr(X € C**™,F € {R,C})

Compute the matrix QX, where Q is an orthogonal (if F = R) or unitary (if F = C) matrix
from the Haar distribution.

2 for k < 2 to n do
3 v NNE(-k'l)
4 dn_pi1 ¢ —elArg v
5 U 4= v — dn_pt1l|v]e1
6 u = u/llull,

_. [X1]}n—k
T X= [X2] Yk

X1

8 | X [Xg - (2u)(u*X2)]
9 z NN]F(O,l)
10 return diag(dy, ..., dp_1, —€' Argz) - X

sum on line 8 are significant. Therefore, each iteration of the for loop starting on line 2
requires 4km flops, and the computational cost of Algorithm 3.1 is approximately 2n2m
flops.

In order to sample Haar-distributed matrices, it suffices to set X to I,. In this case, the
computational cost of the algorithm can be reduced by taking into account the special
structure of A: the cost of line 8 drops to 4k? flops per step, which yields an overall
computational cost of 4n3/3 flops.

3.1. Sampling from the special groups

The ideas presented so far can be modified in order to sample matrices with prescribed
determinant. Imposing that the determinant be 1 is of particular interest, as it implies
sampling from the compact Lie groups SU(n) and SO(n). As discussed in the previous
section, the QR factorization of a random matrix A can be used to sample matrices
distributed according to the Haar measure over U(n) and O(n). An analogous result
holds for the special groups, if the last diagonal entry of R is chosen so that det @ = 1.

Lemma 3.1. Let A ~ J\/'((:n’n) (resp. A ~ Nﬁé"’n)) and let A =: QR be its QR factorization,
where Q) and R are chosen so that
-1

n—1
ri €Ly Ry 20}, rpp=det(A)- | []ris|
j=1

whenever A is nonsingular. Then, Q is distributed according to the Haar measure over

SU(n) (resp. SO(n)).

Proof. We consider the complex case first. Note that the set of rank deficient matrices
has measure zero in /\/'(ém’n); therefore, the distribution of the unitary QR factor of such
matrices is irrelevant for the distribution under consideration.
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When A is nonsingular, fixing the phases of the diagonal entries of R makes the QR
factorization unique. Hence, the random variables g;;, for 4,5 = 1,...,n are well-defined.
In addition, the choice of the diagonal entries of R ensures that det R = det A and thus
that det Q = 1.

In order to prove that @ is distributed according to the Haar measure over U(n), we
need to show that it has the same distribution as PQ) for any constant matrix P € SU(n).
For any such P, the matrix PA has the QR factorization PA =: (PQ)R.

Being independent Gaussian random variables, the entries of A are invariant under
unitary transformations, thus PA has the same distribution as A. The triangular QR fac-
tor of PA is R, which necessarily satisfies the normalization constraints on the diagonal
entries. Therefore, PQ has the same distribution as Q.

The proof for the real case is analogous and therefore omitted. O

The above result yields a method for sampling the Haar distribution of the special
unitary and orthogonal groups. In the next sections, we discuss how to make this method
efficient for sampling the corresponding eigenvalue distribution. The approach we propose
can be used for both U(n) and O(n), and SU(n) and SO(n).

Remark 3.2. Note that the Haar distribution of SU(n) coincides with the Haar distribu-
tion of U(n) conditioned to the event det @ = 1. This is easily verified by checking that
the latter measure is invariant under the action of elements in SU(n). This suggests that
the above procedure can be further generalized and used to sample the probability ue
obtained by conditioning u with det Q = ¢ for some ¢ € S, where S = {¢ € C : |¢| = 1}
denotes the complex unit circle. If £ # 1, these matrices do not form a group, but we
can write

{QeUm) | detQ =&} ={PQ | Q € SU(n)},

where P is any constant matrix such that det P = £. Sampling the matrices in SU(n)
and then multiplying them by any fixed P yields the correct conditional probability
distribution. More specifically, by choosing the diagonal matrix P = diag(1,...,1,&)
we can readily adapt the algorithm discussed in the next section to sample unitary or
orthogonal matrices with determinant &.

3.2. The eigenvalue distribution

Given a random matrix sampled according to one of the measures described so far,
we are interested in describing the distribution of a generic eigenvalue. This can be
computed as a marginal probability by integrating the joint eigenvalue distribution with
respect to n — 1 variables. For U(n), the latter is known explicitly [2, Chapter 11], and
can be used to prove that a generic eigenvalue is uniformly distributed over S*.

We are unaware of an analogous result for SU(n), and we could not find any references
stating the expected distribution for a generic eigenvalue. Nevertheless, using the fact
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that the eigenvalue distribution arises from Haar-distributed matrices, we can obtain the
partial characterization in the following lemma. The well-known distribution for U(n) is
for ease of comparison.

Lemma 3.3. Let p1 and py be the Haar distributions over U(n) and SU(n), respectively,
and let A, and A,, be the corresponding distributions for a generic eigenvalue. Then,
Ay, is the uniform distribution over St, and Ay, has a 2%—per’iodic phase, that is,

A (G) =Ay, (e = g), for any measurable set G C S*. (3.1)

Proof. We start by considering the distribution of U(n). Recall that u is invariant under
left multiplication in U(n), and since (I € U(n) for any & € S', we have that A, is
invariant under multiplication by £ € S'. Since S! is a compact Lie group, A, must be
its Haar measure, which is the uniform distribution.

We can use a similar argument for SU(n). Since {1 € SU(n) for any & such that
&" =1, we have that A, is invariant under multiplication by a root of unity, thus must
be 2Z-periodic as in (3.1). O

In Section 6 we will verify this claim experimentally in order to test the correctness
of our implementation. In particular, we will find that A, is the uniform distribution, as
expected, and that A, has the periodicity predicted by Lemma 3.3.

4. The Hessenberg form of Haar-distributed matrices

As mentioned in the introduction, the unitary QR algorithm of [20] cannot be applied
directly to the representation of the upper Hessenberg form of a random matrix. In this
section, first we show how to sample a factorization of the upper Hessenberg form of
Haar-distributed matrices using only O(n) random variables, then we explain how to
rewrite this factorization in a form that is suitable for computing the eigenvalues with
core-chasing algorithms, which we briefly review in Section 5. The main result of this
section is the following.

Theorem 4.1. Let wy, ..., w,_1 € C? be independent random vectors such that

and let

H:.Pl...Pn,lDG(Cnxn (41)

be the unitary Hessenberg matriz such that
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Oj_l
2 X . i, 6, o + €% ||lw; |,
Pj=1—-——=vvj, D=—diag(e™,...,e""), v;= 3, ,  (4.2)
ol J
Op—j—1

where §; = Arga; for j =1,...,n—1 and 0, ~ U(—m,n]. Then, the joint eigenvalue
distribution of H is that of Haar-distributed unitary matrices of U(n).

Proof. In view of the discussion in Section 3, if @) is Haar distributed then

Q~P,...P,_1D, (4.3)
with ﬁj defined as follows:
P 0j=1
Pj=P(vj)=1- U5 vy = m +ela ||u HQ ) ubl NN(énﬂH’l)’
vl ol

where 0; = Arg( [J]), and D is a diagonal matrix defined by d;; = el% . In order to
prove the claim we will reduce this matrix to upper Hessenberg form.

More specifically, we prove by induction on n that there exists a unitary matrix U
such that H ~ UQU™ is upper Hessenberg, and that Ue; = e;. The latter property will
be useful in the induction step. Throughout the proof, we will also repeatedly exploit
the fact that if W is orthogonal then W P(v)W* = P(Ww), which can be verified by a
direct computation.

If n =1, then @ and H are both diagonal matrices, and there is nothing to prove. If
n = 2, then @ is already upper Hessenberg, and we may write it as

- - i0
Q= P.D, P =1I- Lz vt vy = {041 +e 1||u[1]“] ’ W= |:041:| ‘
o | ! &

With the matrix U = diag(1,e™1%), where 6 := Arg(f;), we can perform the similarity
transformation

UQU* = UB,DU* = UB\U*D = P(Un)D,  Uuvy = [0‘1 + ‘T“?'H“ H

We now observe that |31]? ~ x&(1) and ||u H2 = H[Iﬁl ]

,» Which implies that P(Uvy)
and P; have the same distribution. Moreover, the matrix U thus constructed satisfies
Uey = e;.

For the inductive step, assume that the statement holds for matrices of order n — 1,
and consider @ as in (4.3). If P, = I —
U;p such that Uje; = ey, and

ﬁvlv}‘, we can construct a Householder reflector
1
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101 |],,[1]
+ elfh (1] art+e ||u H
Uyor = U |:OZ1 z[Ql]Hu ||] = ||u[21:]nH2 ) (4.4)
m 0n72

We note that U; can be chosen so to be independent of 132, e ,ﬁn,l, as it depends only
on ulll. We can then consider the similarity

U,QU; = Uy PLUULP, ... P, DU;,

where Uy PLU; = I — ﬁUﬂ/l(Uﬂq)* ~ Py in view (4.4), and ||u[21n||; ~ x&(n —1).
We now factorize D as
1 dq
D= 5 .. | =DDu,
' dn, ' 1

and note that Uy D1 = D,U; thanks to Ue; = e;. Therefore we can write

= 5 5 1
U\QUf ~ PiULP, ... P,y DU Dy = P, [ @} D,

We observe that since U; is independent of ]52 . ]571,1 and ﬁ, Cj is Haar distributed in
U(n — 1). By inductive hypothesis, there exists an (n — 1) x (n — 1) unitary matrix U
which satisfies Ue; = e; and is such that

~ s ~ ~ = 1
UQU*ZPQPn_lD, PJN|: ﬁ:|, ]:2,,7’),—1
J

The property U e; = e implies that [1 ﬁ} commutes with both P; and D;, and we can

R R S | el A

=PP,...P,_1DDy = P,P,...P,_1D,

write

which concludes the proof. O

The analogue of Theorem 4.1 for real matrices is obtained by replacing the first element
of w; by aj ~ Ng(0,1) and by sampling 6,, uniformly from the set {0,7}. The result
can be easily modified in order to sample the joint eigenvalues distribution of matrices
from the Haar measure over SU(n) and SO(n): setting

n—1
dnn = (71)n71 H dn
=1
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guarantees that det H = 1, while Lemma 3.1 ensures that the matrices are sampled
according to the Haar measure.

Remark 4.2. In a similar way, we may set the last diagonal entry of D to obtain det QQ = &,
for any & € S!. According to Remark 3.2, this procedure samples the Haar distribution
conditioned on the event det ) = €.

5. Computing the eigenvalues of upper Hessenberg unitary matrices

By Theorem 4.1, any random upper Hessenberg unitary matrix H can be described
by O(n) parameters by using the factored form (4.1).

The computation of the eigenvalues of unitary upper Hessenberg matrices was first
considered by Gragg [22], and later investigated by numerous authors, see for in-
stance [33-35]. Here, in particular, we are interested in the approach proposed by
Aurentz, Mach, Vandebril, and Watkins [20]. This algorithm, briefly described in Sec-
tion 5.2, is implemented in eiscor [24], a Fortran 90 package for the solution of eigenvalue
problems by core-chasing methods available on GitHub.! The software computes the
eigenvalues of the Hessenberg matrix

H=G,---G,_1D, (5.1)
where the unitary matrices Gy, ..., G,,_1 are plane rotations of the form

Infjfl

Because of its special structure, the matrix G; in (5.2) is said to be “essentially 2 x 27,
and the 2 x 2 matrix @j is called a core block. In principle, the core chasing algorithm
in [20] could be applied to any factorization of H involving only “essentially 2 x 27
unitary matrices, even though the particular implementation described in [24] involves
only the special family of plane rotations. In practice, however, the key operation in
the QR algorithm—the so-called turnover—has to be implemented with care in order
to ensure backward stability. In order to leverage the analysis done for rotations of the
form (5.2), it is thus convenient to refactorize H given in the form (4.1) as a product of
the form (5.1).

This section is structured as follows. First, we show how to refactorize a representation
in terms of 2 x 2 Householder transformations into one consisting only of plane rotations
with real sines. Then we briefly recall the main ideas underlying the unitary QR algorithm
implemented in eiscor.

b https://github.com/eiscor/eiscor.
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5.1. Refactorizing core transformations

The assumption that all core blocks in the factorization of the Hessenberg matrix H
be plane rotations with real sines is not restrictive, as it is always possible to rewrite H
as a product of the form (5.1). This refactorization can be performed by noting that any
2 x 2 unitary matrix U can be written as

i0
e s||di C=upev, o __
U= [—S E:| |: d2:| s {S _ 7u21610’ 0= AI‘g(UQl). (53)
where the diagonal entries are given by
di = e Ougr|? + eu3y, dy = € (ur1usz — ug1ur2).

The procedure above can be performed in a backward stable manner, as it coincide with
the computation of the QR decomposition of U [24].

In addition, the product of a plane rotation with real sines G and a unitary diagonal
2 x 2 matrix D can be refactorized so to swap the order of the two operations. In fact,
there exist a unitary 2 x 2 diagonal matrix D and a plane rotation with real sines G such
that GD = DG. This property is easy to verify, and represents the foundation of most
core-chasing algorithms [24]. Combining these two observations gives the following.

Lemma 5.1. Let H € C™*" be a unitary upper Hessenberg matriz factored as in (4.1).
Then, there exist G1, ..., Gn_1 € C"™ ™ unitary plane rotations with real sines and
D € C™*"™ unitary diagonal such that

H=G;...Gy_1D. (5.4)
This refactorization can be computed in O(n) flops.

Proof. The proof is by induction on n. For n = 2 we have that H = P; D, and the
refactorization can be performed directly by relying on (5.3). If n > 2, then there exist
a plane rotation G; € C™*™ as in (5.2) and a unitary diagonal matrix

[0
D1 = ﬂ 5 a,ﬁ (S 817
In72

such that P; = G1D;. Since the matrix {d“ In_l] commutes with Dy, Ps, ..., P,_1, we
can write

1
H=G, [adn In1:|P2P3"'Pn1D7 Py =
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where (Zj =1lifi=j=1and ci-j = d;; otherwise. We note that this refactorization has
the form H = G; [O‘dl 1] [1 ﬁ], where H has the same structure as H but order n — 1.

The inductive hypothesis yields {1 »ﬁ} =Gs...Gp1 [1 D ], which gives

H=GGy...Gp1D, Do [adu D’]'

This procedure provides an algorithm for refactoring H from the form (4.1) to the
form (5.4). Noting that each step requires O(1) flops, for a total of O(n) flops for the
complete refactorization, concludes the proof. 0O

5.2. Computing the eigenvalues of unitary Hessenberg matrices

We have described how to generate unitary upper Hessenberg matrices whose joint
eigenvalue distribution follows the Haar measure, and we have shown how to write it in
the factored form (5.4).

In order to compute the spectrum of H in the form (5.4) in O(n?) flops, we rely on
the method proposed in [20], which belongs to the family of core-chasing algorithms [24].
Here we provide a high-level overview of this technique, and refer the interested reader
to the original paper [20] for a detailed discussion.

With the term core transformation we indicate an essentially 2 x 2 unitary matrix
such as, for example, a plane rotation. The factorization (5.4) is an example of a matrix
expressed as product of n—1 core transformation and a diagonal matrix. In this particular
case, the facotrization can also be used to give a compact representation of H that uses
only O(n) parameters, as opposed to the O(n?) that would be necessary if all the entries
of H were explicitly stored. Each core transformation acts on a pair of adjacent indices.
The matrix G; in (5.2), for example, acts on the indices j and j + 1.

The standard single-shift bulge chasing QR algorithm works as follows. Given an
upper Hessenberg matrix H, we determine a first core transformation (Q; acting on the
indices 1 and 2 such that Q1(H —pl)e; = aey. The parameter p is the shift, and has to be
carefully chosen in order to ensure fast convergence and robustness of the method [36].
The implementation considered here uses a Wilkinson shift, which is projected onto S*
as the matrix H is unitary [20].

We use the core transformation @1 to compute Q1 HQ7, which is not upper Hessenberg
having a nonzero element in position (3, 1). Another core transformation Q3 acting on the
indices 2 and 3 is used to restore the upper Hessenberg structure and obtain Q2Q1 HQ7.
The similarity Q2Q1HQ7]Q5, however, yields a matrix that is not upper Hessenberg
because of a nonzero element in position (4,2), and the process is repeated until the
nonzero element, the so-called bulge, is eliminated from the last row of the matrix. The
focus on the nonzero element that breaks the upper Hessenberg structure and is “chased
to the bottom” until it disappears from the matrix, justifies the name bulge-chasing QR
used for this algorithm.
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Core-chasing algorithms have a similar formulation, and indeed are mathematically
equivalent [24], but do not handle the entries of the matrix directly, as we now explain.

An upper Hessenberg matrix can always be written as H = QR, where R is upper
triangular and @Q = G;...G,—1 is the product of unitary plane rotations. The core-
chasing step starts by computing a core transformation Q1 such that Q1(H — pl)e; is a
scalar multiple of e;. Keeping H = QR in factored form, the similarity transformation
with Qq gives

OHQ =Q1Gy...G,_1RQT.
— ——

H

We now make the following two key observations.

e Given an upper triangular matrix R and a core transformation i, it is always
possible to find another upper triangular matrix R and core transformation Ql such
that RQ1 = Q1 R. Using the terminology of core-chasing algorithms, the computation
of @1 and R from @1 and R is a passthrough operation, and can be represented

~.

e Given the matrices G; and K; acting on the ith and ¢ + 1st indices, and J; 1 acting
on the ¢ + 1st and the ¢ + 2nd indices, the product G;J; 1 K; can be refactorized as
éiHJNJNQH, where CNJiH and INQH act on the 7+ 1st and ¢ + 2nd indices, and jl acts
on the ith and i + 1st indices. Similarly, this operation can be represented pictorially

pictorially as

as

C K:EK

C G

In the context of core-chasing algorithms, it is more natural to reinterpret the refac-
torization above as moving the rightmost core transformation to the left, which can

E}E/BE’

Clearly, all the rotations involved in the step above change, but from the point of

be displayed as

view of the structure, it is as if only one rotation had moved. This operation is called
turnover.
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With this notation, we can rephrase the factorization obtained after introducing the core
transformation @1 as

QUHQ; = : =" ENCE)
i

In the rightmost factorization, we have first fused the top-left rotations, and then used

the passthrough and turnover to take the rotation that was on the right to the left. If we
call this new core transformation ()2, we can now perform the similarity transformation
Q2Q1HQ7Q5 and obtain the matrix

C
Q21 HQIQ5 = [: [: z

e

The structure of this matrix is similar to that of Q1 HQ7, in (5.5), but the rightmost
core transformation has moved down one step. Indeed, it now acts on indices 2 and 3
instead of 1 and 2. Carrying on this process will move it further down, until it is fused
at the bottom. At the very end, the core transformation will hit the bottom rotation in
the sequence G ...G,_1, and they will be fused together. This completes the chasing,
and is mathematically equivalent to chasing the bulge into the bottom-right corner.

There are a few more technical details to address in order to obtain a complete algo-
rithm. One key point is how to detect deflations, that is, eigenvalues that have converged.
In the usual bulge-chasing setting, we monitor subdiagonal elements, setting them to zero
as soon as they become “small enough”. For core-chasing algorithms, we observe that a
subdiagonal element is small if and only if the corresponding rotation in the sequence
G1...Gp_1 is close to the identity. In fact, this technique is often more accurate than
the customary criterion in practice [24].

The main computational step in this process is the refactorization RQ, = Qvl }NB, which
requires O(n) flops in general. Therefore, a single core-chasing step requires O(n?) flops,
and O(n3) flops will be necessary to compute the eigenvalues of a generic Hessenberg
matrix, if about O(n) steps are required for the QR iteration to converge. All the other
operations require only O(1) flops, and contribute only a low-order term to the total
cost.

However, if H is unitary to begin with, then so is the upper triangular matrix R. As
upper triangular unitary matrices must be diagonal, the passthrough operation can be
performed in O(1) flops, making the cost of the QR algorithm quadratic instead of cubic
in n. For a more detailed analysis, we refer the reader to the paper where the algorithm
was first introduced [20].
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Algorithm 5.1: Sample the joint distribution of random matrices.
1 function SaMPLEEIGS(n € N, F € {R,C},¢ € F)

Sample eigenvalues of orthogonal (if F = R) or unitary (if F = C) matrices. If £ # 0, the
determinant of the sampled matrices has the same phase as £. If £ = 0, the matrices are
sampled from O(n) (if F = R) or U(n) (if F = C).

2 6+ 1
3 for Kk < 1 ton—1do

v1 ~ NF(0,1)
5 va ~ 4 /xk(n — k)
6 dp +— 7eiArgv1
7 vy — v1 — di||v]y

) 2 *

8 U «+ [ 1] (], Tol; VY )
N o el AreTE
10 Ck < @YUl
11 Sk < —pu21
12 di, = die(@ |un|® + pu3y)
13 | 6« @ detU

14 if £ # O then
i Arge—iArg (1172} d)

15 | d, < e

16 else

17 z <+ Ng(0,1)
18 dy  —eihre

19 return UNITARYQR(c, s, d)

5.8. Sampling the eigenvalues of random unitary and orthogonal matrices

The approach underlying the discussion in Sections 4 and 5 is summarized in Algo-
rithm 5.1.

The function SAMPLEEIGS samples the joint distribution of orthogonal or unitary
matrices from a specific distribution determined by the value of third parameter £. If
& is 0, then the function samples the eigenvalues of Haar distributed matrices from
the orthogonal group, if F = R, or from the unitary group, if F = C. If £ # 0, the
algorithm samples the eigenvalue distribution of matrices whose determinant has the
same phase as £&. We recall that these matrices form a group only if £ = 1, in which case
the algorithm samples the eigenvalue distribution of Haar-distributed matrices from the
special orthogonal group SO(n), if F = R, or special unitary group SU(n), if F = C.

In order to achieve this, we note that for H in (5.4), we have that det H = det D = &'
for some 6 € (—m, 7|, since the determinant of plane rotations is 1. Therefore, once the
first n — 1 entries of D are chosen, it suffices to choose d,, = ¢! AT8¢~14A18 (= dj), which
ensures that det D = e/ 2™8¢_In the pseudocode, the function UNITARYQR denotes a call
to the eiscor routine, which computes the eigenvalues of a product of plane rotations
of the form (5.2).

The computational cost of the algorithm can be determined by noticing that each step
of the for loop on line 3 requires only a constant number of operations, which implies
that the whole preprocessing taking place between line 2 and line 18 requires only O(n)
flops.
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6. Experimental results

In this section we first validate the new algorithm experimentally, and then compare
its performance with that of the naive method for sampling the joint eigenvalues dis-
tribution of Haar-distributed unitary matrices. The experiments were run in MATLAB
9.8.0 (R2020a) Update 4 on a GNU/Linux machine equipped with an Intel Xeon E5-2640
v3 CPU running at 2.60GHz.

In our tests we compare the following implementations.

e samplemat, an algorithm that generates a Haar-distributed unitary matrix by calling
the function UMULT in Algorithm 3.1 on the identity matrix, and then computes its
eigenvalues by using the built-in MATLAB function eig.

e sampleeig, an implementation of Algorithm 5.1 that exploits the eiscor package
to run the QR algorithm on the unitary matrix in factored form.

Our implementations of samplemat and sampleeig are available on GitHub.? For
reproducibility, the repository also includes the scripts we used to run the tests reported
here.

6.1. Unitary matrices

We start by considering the joint distribution of the eigenvalues of Haar-distributed
matrices in U(n) and SU(n).

Fig. 1 reports the phase distribution and the spacing of the eigenvalues of 1,000,000
unitary matrices of order 10 sampled from the unitary group (top row) and from the
special unitary group (bottom row) using sampleeig. The histograms in the four plots
are normalized so that the total area of the columns is one. In this way, the histograms
can be interpreted as empirical probability densities and can be compared directly with
the probability density functions they are expected to match.

Let ¢l ..., e be the eigenvalue of the matrix A € U(n) normalized so that for
i between 1 and n the phase 6; lies in the interval [0,27). The histogram in Fig. la
shows the distribution of the phases of the 10,000,000 sampled eigenvalues, whereas the
dashed line indicates the probability density function of the uniform distribution over the
interval [0,27). As the eigenvalues of unitary matrices lie on the unit circle, our results
show that the eigenvalues sampled by the procedure are uniformly distributed.

Next we investigate the statistical correlation among the eigenvalues sampled by
sampleeig. In Fig. 1b we plot the probability density function of the normalized distance
between pairs of consecutive eigenvalues, defined by

n
Z:—HZ 791', Gn :—9, ‘*17--'77%
Gi=5 (i1 —6;) +1 1 !

2 https://github.com/numpi/random-unitary-matrices.
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Fig. 1. Phase (left) and spacing (right) distribution of the eigenvalues of 1,000,000 random unitary matrix of
order 10 sampled from the unitary group (top) and from the special unitary group (bottom) using sampleeig.
The dashed lines represent the uniform distribution over the interval [0, 27) (left) and the Wigner surmise
in (6.1) (right).

where the eigenvalues are ordered so that 1 < --- < 6,. In this case the dashed line rep-
resents the theoretical spacing distribution of Haar-distributed unitary matrices, known
as Wigner surmise [2, Section 1.5]

p(Q) = Texp (- 1¢). (6.1)
The empirical distribution of the sampled eigenvalues matches closely the theoretical
one, confirming that the matrices whose eigenvalues sampleeig samples are in fact Haar
distributed.

To the best of our knowledge, the probability distribution for the phase and spacing of
Haar-distributed matrices in the special unitary group are not known in closed form, but
we can use sampleeig to obtain a relative frequency distribution based on 10,000,000
samples. The results in Fig. 1c and Fig. 1d suggest that the phase of the eigenvalues of
these matrices is not uniformly distributed, but the spacing appears to be the same as
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for Haar-distributed matrices in U(n), as the empirical distribution matches the Wigner
surmise in (6.1).

We note that the invariance under multiplication by elements in SU (n) implies that Q
and diag(¢, .. ., £)Q must have the same distribution for any & such that €™ = 1, and the
phase of the density of the eigenvalue distribution needs to be 27 /n-periodic, as proven
in Lemma 3.3. This is clearly visible in Fig. lc.

6.2. Orthogonal matrices

The joint eigenvalue probability density functions for SO(n) and O~ (n) are reported
explicitly in [11, Section 2.6] and [37,38]. The corresponding joint eigenvalue distribution
for the orthogonal group can be obtained easily, since a matrix in O(n) belongs with
equal probability to SO(n) or O~ (n). The eigenvalue distribution for such matrices can
be obtained integrating out n — 1 variables and are defined in terms of the diagonal
correlation kernel of the process [39]. However, excluding the case of unitary matrices,
such expressions are not easy to evaluate; in most cases the limiting distribution for large
n can be explicitly determined, and is typically the uniform distribution over S'.

We can use sampleeig to get the empirical distribution of the phase and spacing of
the eigenvalues of these matrices. In Fig. 2, we report the relative frequency distribution
of the phase and spacing of 1,000,000 random matrices of order 10 sampled from the
orthogonal group (top row), from the special orthogonal group (middle row), and from
the set of orthogonal matrices with determinant —1 (bottom row). In Fig. 3 we report
the same data for matrices of order 9, as the behavior of these distributions changes
dramatically depending on the parity of n.

The distribution of phase and spacing for the eigenvalues of matrices sampled from
O(n) appears identical for both matrix dimensions we consider. In particular, we note
that in Fig. 2a and Fig. 3a there is a mass of probability corresponding to the eigenvalues
1 and —1, which is a consequence of the fact that the eigenvalues of real matrices always
appear in conjugate pairs. Therefore, if n is even then matrices with determinant —1
must always have both eigenvalues 1 and —1 (see Fig. 2e), whereas if n is odd then all
matrices with determinant 1 must have the eigenvalue 1 (see Fig. 3¢) and all those with
determinant —1 must have the eigenvalue —1 (see Fig. 3e).

6.3. Timings and computational complexity

Now we compare the performance of our MATLAB implementations of sampleeig
and samplemat. Fig. 4 shows the time, in seconds, required by the two algorithms to
sample the eigenvalues of matrices of order n between 2 and 2'°. For matrices of order
up to 16, sampleeig is slightly slower than samplemat; this is due to the fact that
normalizing the rotations amounts to a large portion of the overall execution time of the
algorithm.
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Fig. 2. Phase (left) and spacing (right) distribution of the eigenvalues of 1,000,000 random orthogonal
matrix of order 10 sampled from the orthogonal group (top), the special orthogonal group (middle), and
the connected component of the orthogonal group that contains only matrices with negative determinant
(bottom) using sampleeig. The dashed lines in the right column represent the Wigner surmise in (6.1).
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Fig. 3. Phase (left) and spacing (right) distribution of the eigenvalues of 1,000,000 random orthogonal
matrix of order 9 sampled from the orthogonal group (top), the special orthogonal group (middle), and
the connected component of the orthogonal group that contains only matrices with negative determinant
(bottom) using sampleeig. The dashed lines in the right column represent the Wigner surmise in (6.1).
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Fig. 4. Time t,, (in seconds) required by sampleeig and samplemat to sample the eigenvalues of matrices of
order n between 2 and 2'°. The tests for samplemat have been performed only for n up to 2'2.

As the computational cost of this operation scales linearly, however, its contribution
becomes negligible as n grows: for matrices of order 32 and above the execution time
grows much faster for samplemat than for sampleeig. This is expected, since the two
algorithms have cubic and quadratic computational cost, respectively.

7. Conclusions

We have presented a method for sampling the joint distribution of the eigenvalues of
Haar-distributed orthogonal and unitary matrices. The two ingredients of our approach
are a technique for sampling the upper Hessenberg form of Haar-distributed matrices,
and an algorithm for computing the eigenvalues of an n x n upper Hessenberg unitary
or orthogonal matrix in O(n?) flops.

Our experimental results show that the new technique is more efficient than the naive
method that first samples a matrix from the Haar distribution and then computes its
eigenspectrum numerically. We used this algorithm to investigate experimentally the
distribution of the phase and spacing of the eigenvalues of Haar-distributed matrices
from SU(n), O(n), SO(n), and O~ (n), groups for which these distributions are not
known explicitly.
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