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1. Introduction

Random matrix theory, introduced by Wishart [1] about 90 years ago, investigates 
the properties of matrices whose entries are random variables. The quantities of interest 
range from the joint probability distribution of the matrix elements to the asymptotic 
behavior of its eigenvalues and singular values [2], and applications stretch from nuclear 
physics [3,4], wireless networks [5], and neuroscience [6] to numerical analysis [7,8] and 
number theory [9]. Random matrix theory is still a very active area of research [10]. 
We refer the interested reader to the survey by Edelman and Rao [7] for a general 
introduction to the topic, and to the monographs by Forrester [11] and Mehta [2] for a 
more complete discussion. The general mechanisms by which random matrix theory can 
be employed to solve practical problems are discussed by Edelman and Wang [12].

In applications, one is often interested in random matrices with a given structure. 
In quantum mechanics, for example, the energy levels of a system are described by the 
eigenvalue of its Hamiltonian, a Hermitian operator on an infinite-dimensional Hilbert 
space. By approximating this space by a Hilbert space of finite dimension, one can 
reduce the problem of finding the energy levels to that of solving a Hermitian eigenvalue 
problem. The true Hamiltonian, however, is typically not known, thus it is customary 
to make statistical assumptions on the distribution of its entries, enforcing only the 
symmetry of the operator. The distribution of the eigenvalues of random symmetric 
and Hermitian matrices has been extensively studied [2,13,14] and an algorithm for 
sampling the eigenvalues of uniformly distributed Hermitian matrices has been developed 
by Edelman, Sutton, and Wang [15].

Here we are interested in the orthogonal group O(n) = {Q ∈ Rn×n | QTQ = In} and 
in the unitary group U(n) = {U ∈ Cn×n | U∗U = In}, where In denotes the identity 
matrix of order n and AT and A∗ denote the transpose and the conjugate transpose 
of A, respectively. It is easy to prove that the determinant of an orthogonal or unitary 
matrix lies on the unit circle, and that the special orthogonal group SO(n) = {Q ∈
O(n) | detQ = 1} and the special unitary group SU(n) = {U ∈ U(n) | detU = 1} are 
subgroups of O(n) and U(n), respectively. O(n) is made of two connected components, 
the already mentioned SO(n) and one in which all matrices have determinant −1, which 
we denote by O−(n). Clearly, the latter is not a group.

Random unitary matrices find application in quantum physics where they are em-
ployed, for example, to model scattering matrices and Floquet operators [11, Section 2.1]. 
Random orthogonal matrices, on the other hand, are used in statistical mechanics to 
characterize the behavior of certain log-gas systems [11, Section 2.9].

For a group G, the measure μ such that μ(G) = 1 is a normalized left or right Haar 
measure if for any Q ∈ G and any measurable G ⊂ G it satisfies μ(QG) = μ(G) or 
μ(GQ) = μ(G), respectively. For compact Lie groups, it can be shown that the left and 
right measures are unique and coincide. Hence, since O(n), SO(n), U(n), and SU(n) are 
all compact Lie groups [16, Chapter 1], they have a unique normalized (left and right) 

Haar measure [17, § 58, § 60].
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We consider the problem of sampling efficiently the joint eigenvalue distribution of 
unitary (or orthogonal) matrices distributed according to the Haar measure. Numerically, 
this may be obtained by sampling matrices from the desired group uniformly, and then 
computing their eigenvalues by relying, for instance, on the QR iteration. The latter step 
requires O(n3) floating-point operations (flops) to sample the n eigenvalues of a matrix 
of order n. The key observation is that in order to accomplish this task it is not necessary 
to explicitly sample matrices from the corresponding group, but it suffices to understand 
the distribution of their Hessenberg forms, which we analyze in detail in Section 4. The 
main advantage of this approach is that unitary or orthogonal matrices in Hessenberg 
form can be diagonalized in O(n2) flops. We will exploit this to derive the algorithm 
discussed in Section 5, which has quadratic complexity and linear storage requirements.

The algorithm we propose can efficiently sample the joint distribution of the eigen-
values of Haar-distributed matrices from any of the Lie groups O(n), SO(n), U(n), and 
SU(n). In Section 6 we show that the empirical phase and spacing of eigenvalues sam-
pled by our algorithm follow the corresponding theoretical distributions for U(n), and 
then we explore empirically the distribution of the eigenvalues of matrices from the Haar 
distribution of SU(n), O(n), SO(n), and O−(n), for which fewer theoretical results are 
available.

Our starting point is an algorithm proposed by Stewart [18] for sampling random 
matrices from the Haar distribution of O(n). We recall this approach and the subse-
quent generalization to U(n), due to Diaconis and Shahshahani [19], in Section 3. This 
technique exploits an algorithm for the QR factorization based on Householder transfor-
mations, which we revise in Section 2.

These techniques require the sampling of O(n2) random variables, and need O(n2)
memory for storing the result. We provide an alternative and more compact formulation 
for the Hessenberg form obtained by the algorithms above, which requires the sampling 
of O(n) random variables and O(n) storage. We show that this formulation can be used 
to compute the eigenvalues in O(n2) floating-point operations by leveraging the unitary 
QR algorithm in [20].

The use of a condensed factorization for storing random matrices has been already 
explored, for instance, by Edelman and Ure [21], who sample unitary matrices by taking 
random Schur parameters [22]. Methods similar to the technique presented in this work 
might be obtained by representing the Hessenberg forms of unitary Haar-distributed 
matrices using Schur parameters, or similarly condensed forms such as CMV matrices 
[23], and then using a quadratic method to compute their eigenvalues [22,24–28].

The approach discussed here is based on the unitary QR algorithm in [20, Section 5], 
The latter can be seen as a special case of the rootfinding algorithm of Aurentz et al. [25], 
which has been proven to be backward stable and compares favorably with the methods 
above in terms of performance.

Finally, we introduce some notation. Throughout the manuscript, we use capital letters 
(A, B, . . . ) to denote matrices, lower case letters (u, v, . . . ) to denote vectors, and lower 

case Greek letters (α, β, . . . ) to denote scalars. We indicate the entries of matrices and 
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vectors using a subscript notation, so that aij denotes the entry in position (i, j) of the 
matrix A and vk refers to the kth element of the vector v. We use the same notation for 
random variables.

We denote by NR(μ, σ2) the Gaussian distribution centered at μ ∈ R with variance σ2, 
and by N (m,n)

R the distribution of m ×n random matrices with independently distributed 
Gaussian entries, that is,

X ∼ N (m,n)
R ⇐⇒ xij ∼ NR(0, 1), i = 1, . . . ,m, j = 1, . . . n.

The chi-squared distribution with k degrees of freedom, denoted by χ2
R(k), is the dis-

tribution of the sum of the squares of k independent Gaussian random variables, and is 
formally defined by

γ ∼ χ2
R(k) ⇐⇒ γ =

k∑
i=1

δ2
i , δi ∼ N (k,1)

R .

These are real-valued distributions. The complex counterpart of NR(μ, σ2) is denoted 
by NC(μ, σ2) and defined by

γ+iδ ∼ NC(μ, σ2) ⇐⇒ γ ∼ NR

(
Re(μ), σ

2

2

)
and δ ∼ NR

(
Im(μ), σ

2

2

)
, with γ ⊥⊥ δ,

where the notation γ ⊥⊥ δ indicates that the random variables γ and δ are independent. 
The distribution N (m,n)

C is defined as in the real case, and we can define the complex 
analogue of the χ2

R(k) distribution as

γ ∼ χ2
C(n− 1)(k) ⇐⇒ γ =

k∑
i=1

|δi|2, δi ∼ N (k,1)
C .

It is easy to prove that χ2
C(n − 1)(k) ∼ χ2

R(2k)/2.

2. Householder transformations and QR factorization

In this section we briefly recall some basic facts about Householder transformations, 
and discuss how they can be employed to compute the QR factorization of a square 
matrix.

Let v ∈ Cn be a nonzero vector. The matrix

P (v) = In − 2
‖v‖2

2
vv∗ (2.1)

is a Householder transformation. It is easy to verify that P (v) is unitary and Hermitian, 
and in particular is orthogonal and symmetric if the entries of v are real. This implies 
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that P (v)2 = In. Moreover, computing the action of P (v) on a vector requires only O(n)
flops, instead of the O(n2) flops that would be needed for a generic n × n matrix-vector 
product.

Householder transformations are a convenient tool to zero out the trailing entries of a 
nonzero vector u ∈ Cn. For instance, let θ1 = Arg u1, where Arg: C → (−π, π] denotes 
the principal value of the argument function. Then the matrix P (v) for v = u +eiθ1‖u‖2e1
is such that P (v)u = −eiθ1‖u‖2e1, where ei denotes the ith column of the identity matrix. 
In order to zero out only the last n − k components of u ∈ Cn×n, it suffices to consider 
the block matrix

P̂k(u) :=
[
Ik−1

P (v)

]
, v := uk:n + eiθk‖uk:n‖2e1, θk := Arg uk, (2.2)

where ui:j ∈ Cj−i+1 denotes the vectors that contains the entries of u from the ith to 
the jth inclusive.

Any matrix A ∈ Rn×n has the QR factorization A =: QR, where Q ∈ O(n) and 
R ∈ Rn×n is upper triangular [29, Theorem 5.2.1]. If A is nonsingular, this factorization 
is unique up to the sign of the diagonal entries of R. This result can be extended to 
complex matrices: any nonsingular matrix A ∈ Cn×n has a unique QR factorization 
A =: QR, where Q ∈ U(n) and R ∈ Cn×n is upper triangular with real positive entries 
along the diagonal [30, Theorem 7.2]. More generally, the QR factorization of a full-rank 
matrix is unique as long as the phases of the diagonal entries of R are fixed.

In many of the following proofs, it will be useful to assume that the matrix A under 
consideration has full rank. This is typically not restrictive, since rank-deficient matrices 
are a zero-measure set in N (n,n)

R and N (n,n)
C ; we will comment on this fact in further 

detail when needed.
We now explain how to compute efficiently the QR factorization of an n ×n complex 

matrix A by means of Householder reflections [29, Section 5.2.2]. The corresponding 
procedure for real matrices can be obtained by employing real Householder reflectors. 
Let the matrix A(0) := A be partitioned by columns as

A(0) =
[
A

(0)
1 · · · A

(0)
n

]
,

and let P̃1 := P̂1
(
A

(0)
1

)
. We obtain that

P̃1A
(0) =

[
r11 c
0 A(1)

]
, r11 = −eiθ

∥∥∥A(0)
1

∥∥∥, A(1) ∈ C(n−1)×(n−1), c ∈ C1×(n−1),

where θ denotes the complex sign of the top left element of the matrix A(0). If we apply 
this procedure recursively to the trailing submatrix A(1), after n − 1 steps we obtain

( )

P̃n−1 · · · P̃1A =: R, P̃k := P̂k A

(k−1)
1 , k = 1, . . . , n− 1, (2.3)
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where the Q := P̃1 · · · P̃n−1 is unitary and R is upper triangular. This algorithm produces 
the matrix R and the factors P̃i for i = 1, . . . , n − 1 in 4n3/3 flops [29, Section 5.2.2]. 
Computing the matrix Q explicitly requires an additional 4n3/3 flops [29, Section 5.1.6], 
but by exploiting the structure one can compute the action of Q on a vector or matrix 
with only n2 and n3 flops, respectively.

In order to normalize the factorization, note that if D is the diagonal matrix such 
that dii = −e−iθi where θi is defined as in (2.2), then the matrix DR has positive real 
entries along the diagonal. Therefore, the normalized factorization with positive diagonal 
entries in the upper triangular factor is:

A = Q̃R̃, R̃ := D∗R, Q̃ := P̃1 . . . P̃n−1D, D := − diag(eiθ1 , . . . , eiθn), (2.4)

where P̃1, . . . , P̃n−1 are as in (2.3).
A matrix H ∈ Cn×n is in upper Hessenberg form if hij = 0 when i > j+1. Any square 

matrix is unitarily similar to an upper Hessenberg matrix, that is, for any A ∈ Cn×n

there exists a matrix UA ∈ U(n) such that UAAU∗
A is an upper Hessenberg matrix.

3. The Haar measure and Stewart’s algorithm

Birkhoff and Gulati [31, Theorem 4] note that if the QR factorization A =: QR of an 
n × n matrix A ∼ N (n,n)

R is normalized so that the entries along the diagonal of R are 
all positive, then Q is distributed according to the Haar measure over O(n).

This observation suggests a straightforward method for sampling Haar distributed 
matrices from O(n). One can simply generate an n ×n real matrix A ∼ N (n,n)

R , compute 
its QR decomposition, and normalize it as discussed in Section 2. This procedure is 
easy to implement, since efficient and numerically stable routines for computing the QR 
factorization are available in most programming languages.

The computational cost of this technique can be approximately halved by comput-
ing the QR factorization implicitly. Stewart [18] proposes an algorithm that does not 
explicitly generate the random matrix A, but produces the transpose of the matrix 
Q in factored form as DP̃1 . . . P̃n−1, where P̃k := P̂k

(
x(k)) for some random vector 

x(k)
∼ N (n,1)

R , and D is an n ×n diagonal sign matrix whose entries are computed as on 
line 4 of Algorithm 3.1.

This algorithm readily generalizes to the complex case, as suggested by Diaconis 
and Shahshahani [19] and discussed in detail by Mezzadri [32]. In order to sample Haar-
distributed random matrices from U(n), it suffices to generate vectors with entries drawn 
from the standard complex normal distribution NC(0, 1), and replace the real sign func-
tion by its complex generalization ei Arg(z) for z ∈ C.

We outline this approach in Algorithm 3.1. The function Umult(X, F) computes 
the action of a Haar-distributed matrix from O(n) (if F = R) or U(n) (if F = C) on 
the rectangular matrix X ∈ Cn×m. In order to determine the computational cost of the 

algorithm, note that asymptotically only the two matrix-vector products and the matrix 
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Algorithm 3.1: Action of a matrix from the Haar distribution.
1 function Umult(X ∈ Cn×m, F ∈ {R, C})

Compute the matrix QX, where Q is an orthogonal (if F = R) or unitary (if F = C) matrix 
from the Haar distribution.

2 for k ← 2 to n do
3 v ∼ N (k,1)

F

4 dn−k+1 ← −ei Arg v1

5 u ← v − dn−k+1‖v‖2e1
6 u ← u/‖u‖2

7 X =:
[
X1
X2

] }n − k
}k

8 X ←
[

X1
X2 − (2u)(u∗X2)

]
9 z ∼ NF (0, 1)

10 return diag(d1, . . . , dn−1, −ei Arg z) · X

sum on line 8 are significant. Therefore, each iteration of the for loop starting on line 2
requires 4km flops, and the computational cost of Algorithm 3.1 is approximately 2n2m

flops.
In order to sample Haar-distributed matrices, it suffices to set X to In. In this case, the 

computational cost of the algorithm can be reduced by taking into account the special 
structure of A: the cost of line 8 drops to 4k2 flops per step, which yields an overall 
computational cost of 4n3/3 flops.

3.1. Sampling from the special groups

The ideas presented so far can be modified in order to sample matrices with prescribed 
determinant. Imposing that the determinant be 1 is of particular interest, as it implies 
sampling from the compact Lie groups SU(n) and SO(n). As discussed in the previous 
section, the QR factorization of a random matrix A can be used to sample matrices 
distributed according to the Haar measure over U(n) and O(n). An analogous result 
holds for the special groups, if the last diagonal entry of R is chosen so that detQ = 1.

Lemma 3.1. Let A ∼ N (n,n)
C (resp. A ∼ N (n,n)

R ) and let A =: QR be its QR factorization, 
where Q and R are chosen so that

rii ∈ {γ ∈ R : γ � 0}, rnn = det(A) ·

⎡⎣n−1∏
j=1

rjj

⎤⎦−1

,

whenever A is nonsingular. Then, Q is distributed according to the Haar measure over 
SU(n) (resp. SO(n)).

Proof. We consider the complex case first. Note that the set of rank deficient matrices 
has measure zero in N (m,n)

C ; therefore, the distribution of the unitary QR factor of such 

matrices is irrelevant for the distribution under consideration.
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When A is nonsingular, fixing the phases of the diagonal entries of R makes the QR 
factorization unique. Hence, the random variables qij, for i, j = 1, . . . , n are well-defined. 
In addition, the choice of the diagonal entries of R ensures that detR = detA and thus 
that detQ = 1.

In order to prove that Q is distributed according to the Haar measure over U(n), we 
need to show that it has the same distribution as PQ for any constant matrix P ∈ SU(n). 
For any such P , the matrix PA has the QR factorization PA =: (PQ)R.

Being independent Gaussian random variables, the entries of A are invariant under 
unitary transformations, thus PA has the same distribution as A. The triangular QR fac-
tor of PA is R, which necessarily satisfies the normalization constraints on the diagonal 
entries. Therefore, PQ has the same distribution as Q.

The proof for the real case is analogous and therefore omitted. �
The above result yields a method for sampling the Haar distribution of the special 

unitary and orthogonal groups. In the next sections, we discuss how to make this method 
efficient for sampling the corresponding eigenvalue distribution. The approach we propose 
can be used for both U(n) and O(n), and SU(n) and SO(n).

Remark 3.2. Note that the Haar distribution of SU(n) coincides with the Haar distribu-
tion of U(n) conditioned to the event detQ = 1. This is easily verified by checking that 
the latter measure is invariant under the action of elements in SU(n). This suggests that 
the above procedure can be further generalized and used to sample the probability μξ

obtained by conditioning μ with detQ = ξ for some ξ ∈ S1, where S1 = {ξ ∈ C : |ξ| = 1}
denotes the complex unit circle. If ξ 	= 1, these matrices do not form a group, but we 
can write

{Q ∈ U(n) | detQ = ξ} = {PQ̃ | Q̃ ∈ SU(n)},

where P is any constant matrix such that detP = ξ. Sampling the matrices in SU(n)
and then multiplying them by any fixed P yields the correct conditional probability 
distribution. More specifically, by choosing the diagonal matrix P = diag(1, . . . , 1, ξ)
we can readily adapt the algorithm discussed in the next section to sample unitary or 
orthogonal matrices with determinant ξ.

3.2. The eigenvalue distribution

Given a random matrix sampled according to one of the measures described so far, 
we are interested in describing the distribution of a generic eigenvalue. This can be 
computed as a marginal probability by integrating the joint eigenvalue distribution with 
respect to n − 1 variables. For U(n), the latter is known explicitly [2, Chapter 11], and 
can be used to prove that a generic eigenvalue is uniformly distributed over S1.

We are unaware of an analogous result for SU(n), and we could not find any references 

stating the expected distribution for a generic eigenvalue. Nevertheless, using the fact 



M. Fasi, L. Robol / Linear Algebra and its Applications 620 (2021) 297–321 305
that the eigenvalue distribution arises from Haar-distributed matrices, we can obtain the 
partial characterization in the following lemma. The well-known distribution for U(n) is 
for ease of comparison.

Lemma 3.3. Let μ and μ1 be the Haar distributions over U(n) and SU(n), respectively, 
and let Λμ and Λμ1 be the corresponding distributions for a generic eigenvalue. Then, 
Λμ is the uniform distribution over S1, and Λμ1 has a 2π

n -periodic phase, that is,

Λμ1(G) = Λμ1

(
e

2πi
n G

)
, for any measurable set G ⊂ S1. (3.1)

Proof. We start by considering the distribution of U(n). Recall that μ is invariant under 
left multiplication in U(n), and since ξI ∈ U(n) for any ξ ∈ S1, we have that Λμ is 
invariant under multiplication by ξ ∈ S1. Since S1 is a compact Lie group, Λμ must be 
its Haar measure, which is the uniform distribution.

We can use a similar argument for SU(n). Since ξI ∈ SU(n) for any ξ such that 
ξn = 1, we have that Λμ1 is invariant under multiplication by a root of unity, thus must 
be 2π

n -periodic as in (3.1). �
In Section 6 we will verify this claim experimentally in order to test the correctness 

of our implementation. In particular, we will find that Λμ is the uniform distribution, as 
expected, and that Λμ1 has the periodicity predicted by Lemma 3.3.

4. The Hessenberg form of Haar-distributed matrices

As mentioned in the introduction, the unitary QR algorithm of [20] cannot be applied 
directly to the representation of the upper Hessenberg form of a random matrix. In this 
section, first we show how to sample a factorization of the upper Hessenberg form of 
Haar-distributed matrices using only O(n) random variables, then we explain how to 
rewrite this factorization in a form that is suitable for computing the eigenvalues with 
core-chasing algorithms, which we briefly review in Section 5. The main result of this 
section is the following.

Theorem 4.1. Let w1, . . . , wn−1 ∈ C2 be independent random vectors such that

wj =
[
αj

βj

]
, αj ∼ NC(0, 1), β2

j ∼ χ2
C(n− j),

and let

H = P1 . . . Pn−1D ∈ Cn×n (4.1)
be the unitary Hessenberg matrix such that
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Pj = I − 2
‖vj‖2

2
vjv

∗
j , D = − diag(eiθ1 , . . . , eiθn), vj =

⎡⎢⎣ 0j−1
αj + eiθj‖wj‖2

βj

0n−j−1

⎤⎥⎦ , (4.2)

where θj = Argαj for j = 1, . . . , n − 1 and θn ∼ U(−π, π]. Then, the joint eigenvalue 
distribution of H is that of Haar-distributed unitary matrices of U(n).

Proof. In view of the discussion in Section 3, if Q is Haar distributed then

Q ∼ P̃1 . . . P̃n−1D, (4.3)

with P̃j defined as follows:

P̃j = P (vj) = I − 2
‖vj‖2 vjv

∗
j , vj :=

⎡⎣ 0j−1

u
[j]
1 + eiθj

∥∥u[j]
∥∥

2
u

[j]
2:n

⎤⎦ , u[j]
∼ N (n−j+1,1)

C ,

where θj = Arg
(
u

[j]
1
)
, and D is a diagonal matrix defined by djj = eiθj . In order to 

prove the claim we will reduce this matrix to upper Hessenberg form.
More specifically, we prove by induction on n that there exists a unitary matrix U

such that H ∼ UQU∗ is upper Hessenberg, and that Ue1 = e1. The latter property will 
be useful in the induction step. Throughout the proof, we will also repeatedly exploit 
the fact that if W is orthogonal then WP (v)W ∗ = P (Wv), which can be verified by a 
direct computation.

If n = 1, then Q and H are both diagonal matrices, and there is nothing to prove. If 
n = 2, then Q is already upper Hessenberg, and we may write it as

Q = P̃1D, P̃1 = I − 2
‖v1‖2 v1v

∗
1 , v1 :=

[
α1 + eiθ1

∥∥u[1]
∥∥

β1

]
, u[1] :=

[
α1
β1

]
.

With the matrix U = diag(1, e−iθ), where θ := Arg(β1), we can perform the similarity 
transformation

UQU∗ = UP̃1DU∗ = UP̃1U
∗D = P (Uv1)D, Uv1 =

[
α1 + eiβ1

∥∥u[1]
∥∥

|β1|

]
.

We now observe that |β1|2 ∼ χ2
C(1) and 

∥∥u[1]
∥∥

2 =
∥∥[ α1

|β1|
]∥∥

2, which implies that P (Uv1)
and P1 have the same distribution. Moreover, the matrix U thus constructed satisfies 
Ue1 = e1.

For the inductive step, assume that the statement holds for matrices of order n − 1, 
and consider Q as in (4.3). If P̃1 = I− 2

‖v1‖2 v1v
∗
1 , we can construct a Householder reflector 
U1 such that U1e1 = e1, and
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U1v1 = U1

[
α1 + eiθ1

∥∥u[1]
∥∥

u
[1]
2:n

]
=

⎡⎣α1 + eiθ1
∥∥u[1]

∥∥∥∥u[1]
2:n

∥∥
2

0n−2

⎤⎦ . (4.4)

We note that U1 can be chosen so to be independent of P̃2, . . . , P̃n−1, as it depends only 
on u[1]. We can then consider the similarity

U1QU∗
1 = U1P̃1U

∗
1U1P̃2 . . . P̃n−1DU∗

1 ,

where U1P̃1U
∗
1 = I − 2

‖v1‖2U1v1(U1v1)∗ ∼ P1 in view (4.4), and 
∥∥u[1]

2:n
∥∥2

2 ∼ χ2
C(n − 1). 

We now factorize D as

D :=

⎡⎢⎢⎣
1

d2
. . .

dn

⎤⎥⎥⎦
⎡⎢⎢⎣
d1

1
. . .

1

⎤⎥⎥⎦ = D̂D1,

and note that U1D1 = D1U1 thanks to Ue1 = e1. Therefore we can write

U1QU∗
1 ∼ P1U1P̃2 . . . P̃n−1D̂U∗

1D1 = P1

[
1

Q̂

]
D1.

We observe that since U1 is independent of P̃2 . . . P̃n−1 and D̂, Q̂ is Haar distributed in 
U(n − 1). By inductive hypothesis, there exists an (n − 1) × (n − 1) unitary matrix Û
which satisfies Ûe1 = e1 and is such that

ÛQ̂Û∗ = P̂2 . . . P̂n−1D̂, Pj ∼

[
1

P̂j

]
, j = 2, . . . , n− 1.

The property Ûe1 = e1 implies that 
[

1
Û

]
commutes with both P1 and D1, and we can 

write [
1

Û

]
U1QU∗

1

[
1

Û∗

]
∼ P1

[
1

Û

] [
1

Q̂

] [
1

Û∗

]
D1

= P1P2 . . . Pn−1D̂D1 = P1P2 . . . Pn−1D,

which concludes the proof. �
The analogue of Theorem 4.1 for real matrices is obtained by replacing the first element 

of wj by αj ∼ NR(0, 1) and by sampling θn uniformly from the set {0, π}. The result 
can be easily modified in order to sample the joint eigenvalues distribution of matrices 
from the Haar measure over SU(n) and SO(n): setting

d = (−1)n−1
n−1∏

d
nn

i=1
ii
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guarantees that detH = 1, while Lemma 3.1 ensures that the matrices are sampled 
according to the Haar measure.

Remark 4.2. In a similar way, we may set the last diagonal entry of D to obtain detQ = ξ, 
for any ξ ∈ S1. According to Remark 3.2, this procedure samples the Haar distribution 
conditioned on the event detQ = ξ.

5. Computing the eigenvalues of upper Hessenberg unitary matrices

By Theorem 4.1, any random upper Hessenberg unitary matrix H can be described 
by O(n) parameters by using the factored form (4.1).

The computation of the eigenvalues of unitary upper Hessenberg matrices was first 
considered by Gragg [22], and later investigated by numerous authors, see for in-
stance [33–35]. Here, in particular, we are interested in the approach proposed by 
Aurentz, Mach, Vandebril, and Watkins [20]. This algorithm, briefly described in Sec-
tion 5.2, is implemented in eiscor [24], a Fortran 90 package for the solution of eigenvalue 
problems by core-chasing methods available on GitHub.1 The software computes the 
eigenvalues of the Hessenberg matrix

H = G1 · · ·Gn−1D, (5.1)

where the unitary matrices G1, . . . , Gn−1 are plane rotations of the form

Gj =

⎡⎢⎣Ij−1

Ĝj

In−j−1

⎤⎥⎦ , Ĝj =
[

cj sj
−sj cj

]
, cj ∈ C, sj ∈ R. (5.2)

Because of its special structure, the matrix Gj in (5.2) is said to be “essentially 2 ×2”, 
and the 2 × 2 matrix Ĝj is called a core block. In principle, the core chasing algorithm 
in [20] could be applied to any factorization of H involving only “essentially 2 × 2” 
unitary matrices, even though the particular implementation described in [24] involves 
only the special family of plane rotations. In practice, however, the key operation in 
the QR algorithm—the so-called turnover—has to be implemented with care in order 
to ensure backward stability. In order to leverage the analysis done for rotations of the 
form (5.2), it is thus convenient to refactorize H given in the form (4.1) as a product of 
the form (5.1).

This section is structured as follows. First, we show how to refactorize a representation 
in terms of 2 ×2 Householder transformations into one consisting only of plane rotations 
with real sines. Then we briefly recall the main ideas underlying the unitary QR algorithm 
implemented in eiscor.
1 https://github .com /eiscor /eiscor.
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5.1. Refactorizing core transformations

The assumption that all core blocks in the factorization of the Hessenberg matrix H
be plane rotations with real sines is not restrictive, as it is always possible to rewrite H

as a product of the form (5.1). This refactorization can be performed by noting that any 
2 × 2 unitary matrix U can be written as

U =
[

c s
−s c

] [
d1

d2

]
,

{
c = u11e

iθ,

s = −u21e
iθ,

θ = Arg(u21). (5.3)

where the diagonal entries are given by

d1 = e−iθ|u11|2 + eiθu2
21, d2 = eiθ(u11u22 − u21u12).

The procedure above can be performed in a backward stable manner, as it coincide with 
the computation of the QR decomposition of U [24].

In addition, the product of a plane rotation with real sines G and a unitary diagonal 
2 × 2 matrix D can be refactorized so to swap the order of the two operations. In fact, 
there exist a unitary 2 ×2 diagonal matrix D̃ and a plane rotation with real sines G̃ such 
that GD = D̃G̃. This property is easy to verify, and represents the foundation of most 
core-chasing algorithms [24]. Combining these two observations gives the following.

Lemma 5.1. Let H ∈ Cn×n be a unitary upper Hessenberg matrix factored as in (4.1). 
Then, there exist G1, . . . , Gn−1 ∈ Cn×n unitary plane rotations with real sines and 
D̃ ∈ Cn×n unitary diagonal such that

H = G1 . . . Gn−1D̃. (5.4)

This refactorization can be computed in O(n) flops.

Proof. The proof is by induction on n. For n = 2 we have that H = P1D, and the 
refactorization can be performed directly by relying on (5.3). If n > 2, then there exist 
a plane rotation G1 ∈ Cn×n as in (5.2) and a unitary diagonal matrix

D1 :=
[
α

β
In−2

]
, α, β ∈ S1,

such that P1 = G1D1. Since the matrix 
[
d11

In−1

]
commutes with D1, P2, . . . , Pn−1, we 

can write

H = G1

[
αd11

]
P̃2P3 · · ·Pn−1D̃, P̃2 :=

[1
β

]
P2,
In−1 In−2
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where d̃ij = 1 if i = j = 1 and d̃ij = dij otherwise. We note that this refactorization has 
the form H = G1

[
αd1

1

] [ 1
H̃

]
, where H̃ has the same structure as H but order n − 1. 

The inductive hypothesis yields 
[

1
H̃

]
= G2 . . . Gn−1

[ 1
D′

]
, which gives

H = G1G2 . . . Gn−1D̃, D̃ :=
[
αd11

D′

]
.

This procedure provides an algorithm for refactoring H from the form (4.1) to the 
form (5.4). Noting that each step requires O(1) flops, for a total of O(n) flops for the 
complete refactorization, concludes the proof. �
5.2. Computing the eigenvalues of unitary Hessenberg matrices

We have described how to generate unitary upper Hessenberg matrices whose joint 
eigenvalue distribution follows the Haar measure, and we have shown how to write it in 
the factored form (5.4).

In order to compute the spectrum of H in the form (5.4) in O(n2) flops, we rely on 
the method proposed in [20], which belongs to the family of core-chasing algorithms [24]. 
Here we provide a high-level overview of this technique, and refer the interested reader 
to the original paper [20] for a detailed discussion.

With the term core transformation we indicate an essentially 2 × 2 unitary matrix 
such as, for example, a plane rotation. The factorization (5.4) is an example of a matrix 
expressed as product of n −1 core transformation and a diagonal matrix. In this particular 
case, the facotrization can also be used to give a compact representation of H that uses 
only O(n) parameters, as opposed to the O(n2) that would be necessary if all the entries 
of H were explicitly stored. Each core transformation acts on a pair of adjacent indices. 
The matrix Gj in (5.2), for example, acts on the indices j and j + 1.

The standard single-shift bulge chasing QR algorithm works as follows. Given an 
upper Hessenberg matrix H, we determine a first core transformation Q1 acting on the 
indices 1 and 2 such that Q1(H−ρI)e1 = αe1. The parameter ρ is the shift, and has to be 
carefully chosen in order to ensure fast convergence and robustness of the method [36]. 
The implementation considered here uses a Wilkinson shift, which is projected onto S1

as the matrix H is unitary [20].
We use the core transformation Q1 to compute Q1HQ∗

1, which is not upper Hessenberg 
having a nonzero element in position (3, 1). Another core transformation Q2 acting on the 
indices 2 and 3 is used to restore the upper Hessenberg structure and obtain Q2Q1HQ∗

1. 
The similarity Q2Q1HQ∗

1Q
∗
2, however, yields a matrix that is not upper Hessenberg 

because of a nonzero element in position (4, 2), and the process is repeated until the 
nonzero element, the so-called bulge, is eliminated from the last row of the matrix. The 
focus on the nonzero element that breaks the upper Hessenberg structure and is “chased 
to the bottom” until it disappears from the matrix, justifies the name bulge-chasing QR

used for this algorithm.
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Core-chasing algorithms have a similar formulation, and indeed are mathematically 
equivalent [24], but do not handle the entries of the matrix directly, as we now explain.

An upper Hessenberg matrix can always be written as H = QR, where R is upper 
triangular and Q = G1 . . . Gn−1 is the product of unitary plane rotations. The core-
chasing step starts by computing a core transformation Q1 such that Q1(H − ρI)e1 is a 
scalar multiple of e1. Keeping H = QR in factored form, the similarity transformation 
with Q1 gives

Q1HQ∗
1 = Q1 G1 . . . Gn−1R︸ ︷︷ ︸

H

Q∗
1.

We now make the following two key observations.

• Given an upper triangular matrix R and a core transformation Q1, it is always 
possible to find another upper triangular matrix R̃ and core transformation Q̃1 such 
that RQ1 = Q̃1R̃. Using the terminology of core-chasing algorithms, the computation 
of Q̃1 and R̃ from Q1 and R is a passthrough operation, and can be represented 
pictorially as

.

• Given the matrices Gi and Ki acting on the ith and i + 1st indices, and Ji+1 acting 
on the i + 1st and the i + 2nd indices, the product GiJi+1Ki can be refactorized as 
G̃i+1J̃iK̃i+1, where G̃i+1 and K̃i+1 act on the i +1st and i +2nd indices, and J̃i acts 
on the ith and i +1st indices. Similarly, this operation can be represented pictorially 
as

= .

In the context of core-chasing algorithms, it is more natural to reinterpret the refac-
torization above as moving the rightmost core transformation to the left, which can 
be displayed as

.

Clearly, all the rotations involved in the step above change, but from the point of 
view of the structure, it is as if only one rotation had moved. This operation is called 

turnover.
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With this notation, we can rephrase the factorization obtained after introducing the core 
transformation Q1 as

Q1HQ∗
1 =

R
= R̃

. (5.5)

In the rightmost factorization, we have first fused the top-left rotations, and then used 
the passthrough and turnover to take the rotation that was on the right to the left. If we 
call this new core transformation Q2, we can now perform the similarity transformation 
Q2Q1HQ∗

1Q
∗
2 and obtain the matrix

Q2Q1HQ∗
1Q

∗
2 = R̃

.

The structure of this matrix is similar to that of Q1HQ∗
1, in (5.5), but the rightmost 

core transformation has moved down one step. Indeed, it now acts on indices 2 and 3
instead of 1 and 2. Carrying on this process will move it further down, until it is fused 
at the bottom. At the very end, the core transformation will hit the bottom rotation in 
the sequence G1 . . . Gn−1, and they will be fused together. This completes the chasing, 
and is mathematically equivalent to chasing the bulge into the bottom-right corner.

There are a few more technical details to address in order to obtain a complete algo-
rithm. One key point is how to detect deflations, that is, eigenvalues that have converged. 
In the usual bulge-chasing setting, we monitor subdiagonal elements, setting them to zero 
as soon as they become “small enough”. For core-chasing algorithms, we observe that a 
subdiagonal element is small if and only if the corresponding rotation in the sequence 
G1 . . . Gn−1 is close to the identity. In fact, this technique is often more accurate than 
the customary criterion in practice [24].

The main computational step in this process is the refactorization RQ1 = Q̃1R̃, which 
requires O(n) flops in general. Therefore, a single core-chasing step requires O(n2) flops, 
and O(n3) flops will be necessary to compute the eigenvalues of a generic Hessenberg 
matrix, if about O(n) steps are required for the QR iteration to converge. All the other 
operations require only O(1) flops, and contribute only a low-order term to the total 
cost.

However, if H is unitary to begin with, then so is the upper triangular matrix R. As 
upper triangular unitary matrices must be diagonal, the passthrough operation can be 
performed in O(1) flops, making the cost of the QR algorithm quadratic instead of cubic 
in n. For a more detailed analysis, we refer the reader to the paper where the algorithm 

was first introduced [20].
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Algorithm 5.1: Sample the joint distribution of random matrices.
1 function SampleEigs(n ∈ N, F ∈ {R, C}, ξ ∈ F)

Sample eigenvalues of orthogonal (if F = R) or unitary (if F = C) matrices. If ξ �= 0, the 
determinant of the sampled matrices has the same phase as ξ. If ξ = 0, the matrices are 
sampled from O(n) (if F = R) or U(n) (if F = C).

2 δ ← 1
3 for k ← 1 to n − 1 do
4 v1 ∼ NF (0, 1)
5 v2 ∼

√
χ2

R(n − k)
6 dk ← −ei Arg v1

7 v1 ← v1 − dk‖v‖2

8 U ←
[
δ

1

] (
I − 2

‖v‖2
vv∗)

9 ϕ ← ei Arg u21

10 ck ← ϕ u11
11 sk ← −ϕ u21

12 dk ← dk(ϕ |u11|2 + ϕ u2
21)

13 δ ← ϕ detU

14 if ξ �= 0 then
15 dn ← ei Arg ξ−i Arg

( ∏n−1
j=1 dj

)
16 else
17 z ← NF (0, 1)
18 dn ← −ei Arg z

19 return UnitaryQR(c, s, d)

5.3. Sampling the eigenvalues of random unitary and orthogonal matrices

The approach underlying the discussion in Sections 4 and 5 is summarized in Algo-
rithm 5.1.

The function SampleEigs samples the joint distribution of orthogonal or unitary 
matrices from a specific distribution determined by the value of third parameter ξ. If 
ξ is 0, then the function samples the eigenvalues of Haar distributed matrices from 
the orthogonal group, if F = R, or from the unitary group, if F = C. If ξ 	= 0, the 
algorithm samples the eigenvalue distribution of matrices whose determinant has the 
same phase as ξ. We recall that these matrices form a group only if ξ = 1, in which case 
the algorithm samples the eigenvalue distribution of Haar-distributed matrices from the 
special orthogonal group SO(n), if F = R, or special unitary group SU(n), if F = C.

In order to achieve this, we note that for H in (5.4), we have that detH = detD = eiθ

for some θ ∈ (−π, π], since the determinant of plane rotations is 1. Therefore, once the 
first n − 1 entries of D are chosen, it suffices to choose dn = ei Arg ξ−i Arg

(∏n−1
j=1 dj

)
, which 

ensures that detD = ei Arg ξ. In the pseudocode, the function UnitaryQR denotes a call 
to the eiscor routine, which computes the eigenvalues of a product of plane rotations 
of the form (5.2).

The computational cost of the algorithm can be determined by noticing that each step 
of the for loop on line 3 requires only a constant number of operations, which implies 
that the whole preprocessing taking place between line 2 and line 18 requires only O(n)

flops.
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6. Experimental results

In this section we first validate the new algorithm experimentally, and then compare 
its performance with that of the naïve method for sampling the joint eigenvalues dis-
tribution of Haar-distributed unitary matrices. The experiments were run in MATLAB 
9.8.0 (R2020a) Update 4 on a GNU/Linux machine equipped with an Intel Xeon E5-2640 
v3 CPU running at 2.60GHz.

In our tests we compare the following implementations.

• samplemat, an algorithm that generates a Haar-distributed unitary matrix by calling 
the function Umult in Algorithm 3.1 on the identity matrix, and then computes its 
eigenvalues by using the built-in MATLAB function eig.

• sampleeig, an implementation of Algorithm 5.1 that exploits the eiscor package 
to run the QR algorithm on the unitary matrix in factored form.

Our implementations of samplemat and sampleeig are available on GitHub.2 For 
reproducibility, the repository also includes the scripts we used to run the tests reported 
here.

6.1. Unitary matrices

We start by considering the joint distribution of the eigenvalues of Haar-distributed 
matrices in U(n) and SU(n).

Fig. 1 reports the phase distribution and the spacing of the eigenvalues of 1,000,000 
unitary matrices of order 10 sampled from the unitary group (top row) and from the 
special unitary group (bottom row) using sampleeig. The histograms in the four plots 
are normalized so that the total area of the columns is one. In this way, the histograms 
can be interpreted as empirical probability densities and can be compared directly with 
the probability density functions they are expected to match.

Let eiθ1 , . . . , eiθn be the eigenvalue of the matrix A ∈ U(n) normalized so that for 
i between 1 and n the phase θi lies in the interval [0, 2π). The histogram in Fig. 1a 
shows the distribution of the phases of the 10,000,000 sampled eigenvalues, whereas the 
dashed line indicates the probability density function of the uniform distribution over the 
interval [0, 2π). As the eigenvalues of unitary matrices lie on the unit circle, our results 
show that the eigenvalues sampled by the procedure are uniformly distributed.

Next we investigate the statistical correlation among the eigenvalues sampled by
sampleeig. In Fig. 1b we plot the probability density function of the normalized distance 
between pairs of consecutive eigenvalues, defined by

ζi := n

2π (θi+1 − θi), θn+1 := θ1, i = 1, . . . , n,
2 https://github .com /numpi /random -unitary -matrices.
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Fig. 1. Phase (left) and spacing (right) distribution of the eigenvalues of 1,000,000 random unitary matrix of 
order 10 sampled from the unitary group (top) and from the special unitary group (bottom) using sampleeig. 
The dashed lines represent the uniform distribution over the interval [0, 2π) (left) and the Wigner surmise 
in (6.1) (right).

where the eigenvalues are ordered so that θ1 � · · · � θn. In this case the dashed line rep-
resents the theoretical spacing distribution of Haar-distributed unitary matrices, known 
as Wigner surmise [2, Section 1.5]

p(ζ) = πζ

2 exp
(
−π

4 ζ
2
)
. (6.1)

The empirical distribution of the sampled eigenvalues matches closely the theoretical 
one, confirming that the matrices whose eigenvalues sampleeig samples are in fact Haar 
distributed.

To the best of our knowledge, the probability distribution for the phase and spacing of 
Haar-distributed matrices in the special unitary group are not known in closed form, but 
we can use sampleeig to obtain a relative frequency distribution based on 10,000,000 
samples. The results in Fig. 1c and Fig. 1d suggest that the phase of the eigenvalues of 

these matrices is not uniformly distributed, but the spacing appears to be the same as 



3

for Haar-distributed matrices in U(n), as the empirical distribution matches the Wigner 
surmise in (6.1).

We note that the invariance under multiplication by elements in SU(n) implies that Q
and diag(ξ, . . . , ξ)Q must have the same distribution for any ξ such that ξn = 1, and the 
phase of the density of the eigenvalue distribution needs to be 2π/n-periodic, as proven 
in Lemma 3.3. This is clearly visible in Fig. 1c.

6.2. Orthogonal matrices

The joint eigenvalue probability density functions for SO(n) and O−(n) are reported 
explicitly in [11, Section 2.6] and [37,38]. The corresponding joint eigenvalue distribution 
for the orthogonal group can be obtained easily, since a matrix in O(n) belongs with 
equal probability to SO(n) or O−(n). The eigenvalue distribution for such matrices can 
be obtained integrating out n − 1 variables and are defined in terms of the diagonal 
correlation kernel of the process [39]. However, excluding the case of unitary matrices, 
such expressions are not easy to evaluate; in most cases the limiting distribution for large 
n can be explicitly determined, and is typically the uniform distribution over S1.

We can use sampleeig to get the empirical distribution of the phase and spacing of 
the eigenvalues of these matrices. In Fig. 2, we report the relative frequency distribution 
of the phase and spacing of 1,000,000 random matrices of order 10 sampled from the 
orthogonal group (top row), from the special orthogonal group (middle row), and from 
the set of orthogonal matrices with determinant −1 (bottom row). In Fig. 3 we report 
the same data for matrices of order 9, as the behavior of these distributions changes 
dramatically depending on the parity of n.

The distribution of phase and spacing for the eigenvalues of matrices sampled from 
O(n) appears identical for both matrix dimensions we consider. In particular, we note 
that in Fig. 2a and Fig. 3a there is a mass of probability corresponding to the eigenvalues 
1 and −1, which is a consequence of the fact that the eigenvalues of real matrices always 
appear in conjugate pairs. Therefore, if n is even then matrices with determinant −1
must always have both eigenvalues 1 and −1 (see Fig. 2e), whereas if n is odd then all 
matrices with determinant 1 must have the eigenvalue 1 (see Fig. 3c) and all those with 
determinant −1 must have the eigenvalue −1 (see Fig. 3e).

6.3. Timings and computational complexity

Now we compare the performance of our MATLAB implementations of sampleeig
and samplemat. Fig. 4 shows the time, in seconds, required by the two algorithms to 
sample the eigenvalues of matrices of order n between 2 and 215. For matrices of order 
up to 16, sampleeig is slightly slower than samplemat; this is due to the fact that 
normalizing the rotations amounts to a large portion of the overall execution time of the 

a

16 M. Fasi, L. Robol / Linear Algebra and its Applications 620 (2021) 297–321
lgorithm.
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Fig. 2. Phase (left) and spacing (right) distribution of the eigenvalues of 1,000,000 random orthogonal 
matrix of order 10 sampled from the orthogonal group (top), the special orthogonal group (middle), and 
the connected component of the orthogonal group that contains only matrices with negative determinant 
(bottom) using sampleeig. The dashed lines in the right column represent the Wigner surmise in (6.1).
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Fig. 3. Phase (left) and spacing (right) distribution of the eigenvalues of 1,000,000 random orthogonal 
matrix of order 9 sampled from the orthogonal group (top), the special orthogonal group (middle), and 
the connected component of the orthogonal group that contains only matrices with negative determinant 
(bottom) using sampleeig. The dashed lines in the right column represent the Wigner surmise in (6.1).
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Fig. 4. Time tn (in seconds) required by sampleeig and samplemat to sample the eigenvalues of matrices of 
order n between 2 and 215. The tests for samplemat have been performed only for n up to 213.

As the computational cost of this operation scales linearly, however, its contribution 
becomes negligible as n grows: for matrices of order 32 and above the execution time 
grows much faster for samplemat than for sampleeig. This is expected, since the two 
algorithms have cubic and quadratic computational cost, respectively.

7. Conclusions

We have presented a method for sampling the joint distribution of the eigenvalues of 
Haar-distributed orthogonal and unitary matrices. The two ingredients of our approach 
are a technique for sampling the upper Hessenberg form of Haar-distributed matrices, 
and an algorithm for computing the eigenvalues of an n × n upper Hessenberg unitary 
or orthogonal matrix in O(n2) flops.

Our experimental results show that the new technique is more efficient than the naïve 
method that first samples a matrix from the Haar distribution and then computes its 
eigenspectrum numerically. We used this algorithm to investigate experimentally the 
distribution of the phase and spacing of the eigenvalues of Haar-distributed matrices 
from SU(n), O(n), SO(n), and O−(n), groups for which these distributions are not 
known explicitly.
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