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Abstract. In the past decade, tensors have shown their potential as valuable tools for various
tasks in numerical linear algebra. While most of the research has been focusing on how to compress a
given tensor in order to maintain information as well as reducing the storage demand for its allocation,
the solution of linear tensor equations is a less explored venue. Even if many of the routines available
in the literature are based on alternating minimization schemes (ALS), we pursue a different path
and utilize Krylov methods instead. The use of Krylov methods in the tensor realm is not new.
However, these routines often turn out to be rather expensive in terms of computational cost, and ALS
procedures are preferred in practice. We enhance Krylov methods for linear tensor equations with
a panel of diverse randomization-based strategies which remarkably increase the efficiency of these
solvers, making them competitive with state-of-the-art ALS schemes. The up-to-date randomized
approaches we employ range from sketched Krylov methods with incomplete orthogonalization and
structured sketching transformations to streaming algorithms for tensor rounding. The promising
performance of our new solver for linear tensor equations is demonstrated by many numerical results.
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1. Introduction. In the past decade, linear tensor equations of the form

\scrA x= b,(1.1)

where \scrA is an operator acting on \BbbR n1\times \cdot \cdot \cdot \times nd and x, b are tensors of appropriate
dimensions, have come up as very useful tools for describing the discrete problems
stemming from a large setting of diverse applications. For instance, in quantum
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A2802 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

chemistry [26, 29] and financial mathematics [46, 48], high-order, possibly stochastic
and parametric integral and partial differential equations (PDEs) need to be solved.
The discretization of these problems often leads to equations of the form (1.1); see,
e.g., [2] and the references therein. Similarly, (1.1) can be used to model problems in
imaging [23] and deep neural networks [21] as well.

In spite of the large range of application settings where (1.1) can be met, only
a handful of efficient solvers for its solution have been proposed in the literature.
Most of them build on (alternating) optimization schemes [14, 15, 24] with AMEn
[12] and DMRG [34] being two of the most prominent representatives in this class of
solvers. In [4], a multigrid procedure for (1.1) is proposed, whereas in [11], a tensor-
based implementation of the generalized minimal residual (GMRES) method [40] is
presented and further studied in [10]. The numerical performance of some of these
routines on multicore architectures has been recently investigated in [38].

In this paper, we assume that all the quantities in (1.1) are given in the tensor-
train (TT) format [32]. Indeed, this is one of the most suitable formats for representing
(very) high-dimensional problems. Many of the procedures we are going to employ
are tailored to this tensor format. However, the whole machinery we present here can
be probably adapted to other formats as well.

The aim of this work is to significantly improve over the TT-GMRES method
presented in [11] by enhancing it with several randomization-based techniques devel-
oped in previous years in numerical linear algebra. TT-GMRES is a TT formulation
of the classic GMRES method. In particular, the basis vectors of the constructed
Krylov subspace are represented in terms of TT-tensors, and TT-arithmetic is adopted
throughout the iterative scheme. The computational cost of any operation involving
TT-tensors depends linearly on the number of modes d of the terms at hand but at
least quadratically on their tensor rank; see [32, section 4]. Therefore, maintaining a
small TT-rank during all the TT-GMRES iterations is crucial to obtain an affordable
numerical scheme. Unfortunately, both the application of the linear operator \scrA in
(1.1) and the orthogonalization step within TT-GMRES remarkably increase the TT-
rank of the basis vectors. A low-rank truncation is thus performed after each of these
steps to maintain the TT-ranks under control; see [11] and section 2.3 for further
details. As with most Krylov methods in a low-rank (tensor) setting, the need to deal
with repeated truncations can severely affect the performance of the overall Krylov
method; see, e.g., [35, 44] for details and analysis on some low-rank Krylov methods.

We show that randomization can be a strong ally in this setting. First, we design
a TT variant of the so-called sketched GMRES (sGMRES) [31]. This allows us to
perform only a partial, incomplete reorthogonalization of the basis TT-vectors, with
a consequent reduction in their TT-ranks, but still avoiding a drastic delay in the
convergence of the underlying Krylov scheme. In addition to remarkably decreasing
the overall computational efforts, the incomplete reorthogonalization step allows us
to avoid storing the whole basis at all. While all the basis TT-vectors are clearly
not necessary during the partial orthogonalization step, we show that their allocation
can be avoided also to retrieve the final solution. In particular, we store and utilize
only sketches of the basis vectors thanks to the employment of streaming low-rank
approximation schemes [25, 43]. Notice that this is in contrast with different state-of-
the-art Krylov-based procedures employing incomplete orthogonalization where the
final solution is often retrieved by a so-called two-pass strategy; namely, a second
Arnoldi step is performed at the end of the iterative procedure.

All these different tools and ideas have a nontrivial interplay that we analyze in
detail, especially from a computational point of view. We will show that our novel
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2803

method is competitive and often more efficient than state-of-the-art linear solvers for
(1.1). On the other hand, the many diverse techniques we adopt make the derivation
of sharp convergence bounds on the overall routine rather tricky, and we thus leave
this challenging yet important aspect to be studied elsewhere.

Here is a synopsis of the paper. Section 2 provides some background material. In
particular, we recall the general framework of sGMRES for (standard) linear systems,
the TT-format, and TT-GMRES in sections 2.1, 2.2, and 2.3, respectively. The main
contribution of this paper is illustrated in section 3, where we derive a sketched version
of TT-GMRES (TT-sGMRES). All the randomization-based enhancements we equip
TT-sGMRES with are presented in the following subsections. As with any Krylov
technique applied to poorly conditioned systems, our novel randomization-enhanced
TT-sGMRES also needs to be preconditioned to get a fast convergence in terms of
number of iterations. This aspect is discussed in section 4. In section 5, a panel of
diverse numerical results illustrates the potential of our procedure when compared
with different state-of-the-art techniques. The paper ends with some conclusions in
section 6.

2. Background. In this section, we provide a concise description of two essential
ingredients for the construction of sketched TT-GMRES---the sGMRES method and
TT-GMRES---together with the main aspects of the TT-format. We only describe
what is necessary for this paper, and we refer the reader to [5, 45] for further details
on the former and to [11] for the latter.

2.1. Randomized sketching and GMRES. GMRES [40] is a classic itera-
tive scheme for the numerical solution of large-scale, nonsymmetric systems of linear
equations. Given a matrix A\in \BbbR n\times n and a vector b\in \BbbR n, the algorithm approximates
the solution to the linear system Ax= b. In particular, starting from an initial guess
x0, a solution xk of the form

xk = x0 + Vkyk(2.1)

is sought. The columns of the matrix Vk = [v1, . . . , vk] \in \BbbR n\times k form an orthonormal
basis of the kth Krylov subspace

\scrK k(A,r0) = span\{ r0,Ar0, . . . ,A
k - 1r0\} ,(2.2)

where r0 = b - Ax0 denotes the initial residual. The vector yk \in \BbbR k in (2.1) solves the
least squares problem

yk = argminy\| AVky - r0\| 2.(2.3)

If the basis Vk is constructed by the full Arnoldi method, namely, an Arnoldi
method where a full orthogonalization of the basis vectors is performed, then the
celebrated Arnoldi relation holds true, i.e.,

AVk = Vk+1Hk = VkHk + hk+1,kvk+1e
T
k ,(2.4)

where Hk \in \BbbR (k+1)\times k collects the orthonormalization coefficients and Hk \in \BbbR k\times k is
its principal square submatrix; see, e.g., [39].

Thanks to orthogonality of Vk, the computation of yk in (2.3) simplifies as

yk = argminy\| AVky - r0\| 2 = argminy\| Hky - \beta e1\| 2, \beta = \| r0\| 2.(2.5)
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A2804 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

Moreover, the current residual norm \| Axk  - b\| 2 can be cheaply computed; see, e.g.,
[39, Proposition 6.9]. GMRES terminates whenever \| Axk  - b\| 2 satisfies a certain
threshold condition. Otherwise, the Krylov subspace (2.2) is expanded by computing
a new basis vector, and the scheme continues iteratively.

Many of the practical features and theoretical properties of GMRES depend on
the orthogonality of the Krylov basis Vk. However, maintaining the orthogonality of
Vk often becomes a bottleneck in practical computations unless convergence is fast.

Several strategies have been proposed over the years to mitigate this issue. A
standard approach is to restart either explicitly [39, section 6.5.6] or implicitly by
deflated restarting [30]. Another option to lower the computational cost of the or-
thogonalization step is to perform an incomplete orthogonalization; namely, the new
basis vector vk is explicitly orthogonalized only with respect to a certain number \ell 
of previously computed vi's; see, e.g., [39, section 6.5.7]. A strategy with a different
flavor is preconditioning, where the original problem is implicitly transformed into a
problem for which GMRES converges in fewer iterations. Reducing the number of
iterations clearly lowers the cost of the orthogonalization as well. However, select-
ing the right preconditioner may be tricky and problem dependent and its application
time consuming. While these approaches all share similar goals, they are often applied
independently of each other. In the following, we will show that for tensor equations
of the form (1.1), it is often sensible to integrate the aforementioned techniques to
attain a very efficient solution scheme.

At this point, we focus on the incomplete orthogonalization GMRES scheme. For
this GMRES variant, the basis Vk is no longer orthogonal. However, the Arnoldi
relation (2.4) still holds, and the vector yk may still be computed as

yk = argminy\| Hky - \beta e1\| 2.(2.6)

Nevertheless, due the nonorthogonality of the basis, yk \not = argminy\| AVky  - r0\| 2.
It is well known that this drawback often leads to a delay in the convergence of the
solution scheme in general. However, in the recent literature, it has been shown that
when combined with sketching techniques, GMRES with incomplete orthogonalization
is often able to retrieve the rate of convergence of the fully orthogonal procedure; see
[31].

The integration of sketching and GMRES with incomplete orthogonalization,
called sGMRES, makes use of oblivious subspace embeddings (OSEs) as sketching
matrices. In particular, given a k-dimensional subspace \scrV k, a linear transformation
S \in \BbbR s\times n, with s > k, is a subspace embedding with distortion \varepsilon \in [0,1) for \scrV k if, for
any v \in \scrV k, we have

(1 - \varepsilon )\| v\| 22 \leq \| Sv\| 22 \leq (1 + \varepsilon )\| v\| 22;(2.7)

see, e.g., [13, 42, 49]. Notice that the sketching matrix induces the semidefinite inner
product xTSTSy. It can be shown that this is indeed an actual inner product on the
space \scrV k for which S is an \varepsilon -subspace embedding; see, e.g., [3, section 3.1].

In our case, the space \scrV k corresponds to the Krylov subspace (2.2), which is clearly
not known a priori. Therefore, we will need to employ OSEs in our work. These are
particular transformations S that can be constructed by solely knowing the dimen-
sion of the subspace to be embedded and such that (2.7) holds with high probability.
Common choices for OSEs are, e.g., Gaussians for their theoretical guarantees or sub-
sampled trigonometric transforms since they allow for fast application; see, e.g., [20].
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2805

Algorithm 2.1. sGMRES.

Input: Matrix A\in \BbbR n\times n, right-hand side b\in \BbbR n, initial guess x0 \in \BbbR n,
maximum basis dimension maxit, sketching S \in \BbbR s\times n, incomplete
orthogonalization parameter \ell , tolerance tol.
Output: Approximate solution xk such that \| S(Axk  - b)\| \leq \| Sb\| \cdot tol

1: Set r0 = b - Ax0, V1 = v1 = r0/\| r0\| , W0 = []
2: for k= 1, . . . ,maxit do
3: Compute \widetilde v=Avk
4: Update Wk = [Wk - 1, S\widetilde v]
5: for i=max\{ 1, k - \ell + 1\} , . . . , k do
6: Set \widetilde v= \widetilde v - vihi,k, where hi,k = \widetilde vT vi
7: end for
8: Set hk+1,k = \| \widetilde v\| and vk+1 = \widetilde v/hk+1,k

9: Compute yk as the solution to (2.9)
10: if \| Wkyk  - Sr0\| \leq \| Sb\| \cdot tol then
11: Go to line 15
12: end if
13: Set Vk+1 = [Vk, vk+1]
14: end for
15: Set xk = x0 + Vkyk

In [31], the authors integrate sketching and GMRES by replacing the selection of
yk in (2.3) by the following condition:

yk = argminy\| SAVky - Sr0\| 2,(2.8)

where the basis Vk of the Krylov subspace is computed by an Arnoldi scheme with
incomplete orthogonalization. Due to the lack of an Arnoldi-like relation for the
sketched quantities in (2.8), in [31], the authors compute yk by performing

yk = (SAVk)
\dagger Sr0.(2.9)

In Algorithm 2.1, we report the overall sGMRES algorithm.

2.2. TT decomposition. A tensor \scrT of size n1\times n2\times \cdot \cdot \cdot \times nd is in the TT-format
if it can be written elementwise as

\scrT [i1, . . . , id] =

r1\sum 
\ell 1=1

\cdot \cdot \cdot 
rd - 1\sum 

\ell d - 1=1

C1[1, i1, \ell 1]C2[\ell 1, i2, \ell 2] . . .Cd[\ell d - 1, id,1].(2.10)

The third-order tensors C\mu of size r\mu  - 1 \times n\mu \times r\mu are the TT-cores (where r0 =
rd = 1). By using MATLAB notation, relation (2.10) can be written compactly as a
product of d matrices (where the first and last matrices collapse to a row and column
vector, respectively) as follows:

\scrT [i1, . . . , id] =C1[1, i1, :]C2[:, i2, :] . . .Cd[:, id,1].

In order to establish the notation, we briefly recall the basic operations on tensors
that will be used in the next sections.
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A2806 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

Unfoldings. The unfolding \scrT \leq \mu is one of the many ways to matricize a tensor;

it is a matrix of size
\prod \mu 

k=1 nk \times 
\prod d

k=\mu +1 nk obtained from merging the first \mu modes
of \scrT into row indices and the last d - \mu modes into column indices. A particular case
of unfolding is the vectorization, where we transform a tensor \scrT into a vector with
all its entries. This is equivalent to considering \scrT \leq d. We will implicitly make use of
this tool when discussing GMRES in the TT format.

Interface matrices. Each unfolding can be factorized in a low-rank fashion as
C\leq \mu C

T
>\mu , where

C\leq \mu 
\in \BbbR (n1\cdot \cdot \cdot n\mu )\times r\mu and C>\mu \in \BbbR (n\mu +1\cdot \cdot \cdot nd)\times r\mu .

These are sometimes called interface matrices.
The tuple (r1, . . . , rd - 1) is called the TT-representation rank of the TT defined in

(2.10), and it determines the complexity of working with a TT-tensor. For instance,
storing a tensor in TT-format requires storing the O(dnr2) entries of its TT-cores,
where n := max\mu (n\mu ) and r \approx r\mu for all \mu = 1, . . . , d.1 Any tensor can be trivially
written in the TT-format by choosing the TT-representation ranks sufficiently large.
The TT-representation rank of a particular tensor \scrT is by no means unique, but there
exists a (entrywise) minimal value which is called the TT-rank of \scrT . The minimal
value for r\mu equals the matrix rank of \scrT \mu . In the rest of the paper, will not distinguish
between TT-rank and TT-representation rank and simply call (r1, . . . , rd - 1) the TT-
rank of the tensor \scrT once relation (2.10) is satisfied for some cores C\mu .

When dealing with vectors in TT-format, to simplify the matrix-vector products,
it is preferable to write matrices in the TT operator format.

A matrix A of size m\times n = (m1 \times \cdot \cdot \cdot \times md)\times (n1 \times \cdot \cdot \cdot \times nd) is in the operator
TT-format if it can be written elementwise as

A[i1, . . . , id, j1, . . . , jd] =D1[1, i1, j1, :]D2[:, i2, j2, :] . . .Dd[:, id, jd,1].(2.11)

Then, given a vector v in TT-format with cores Ck's, to compute the cores G1, . . . ,Gd

of y=Av, it is possible to act on each core separately. In formulas,

Gk[(\ell k - 1, \alpha k - 1), ik, (\ell k, \alpha k)] =
\sum 
jk

Dk[\alpha k - 1, ik, jk, \alpha k]Ck[\ell k - 1, jk, \ell k].

As we can see, the TT-ranks of the MatVec are bounded by the product of the TT-
ranks of the matrix and the vector. In iterative schemes like GMRES, several appli-
cations of \scrA are required; without rounding, this unavoidably leads to the TT-ranks
becoming too large. Hence, a tensor-rounding procedure, or compression, is needed. A
given tensor \scrT is approximated by another tensor \widetilde \scrT with minimal possible TT-ranks
(r1, . . . , rd - 1) with a prescribed accuracy \varepsilon (or a fixed maximal TT-rank R) if

\| \scrT  - \widetilde \scrT \| F \leq \varepsilon \| \scrT \| F (or rk \leq R).

A quasi-optimal \widetilde \scrT can be obtained by the TT-SVD algorithm [32] with \scrO (dnr3) com-
plexity. This is based on performing QR decomposition and truncated SVDs of the
interface matrices, exploiting the low-rank structure. Cheaper (and at the same time

1For the sake of readability, we will often make the simplifying assumption that all TT-ranks
can be estimated by a single scalar r and the dimensions n\mu by n\mu \approx n. This will make writing
computational complexities much easier. General results can usually be recovered by replacing terms
such as drj with

\sum d
\mu =1 r

j
\mu and analogously for the n\mu 's.
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2807

slightly less accurate) alternatives are available [1, 25, 32, 43] and are often based on
randomization.

In this work, we will focus on streamable and randomized rounding schemes,
i.e., algorithms that allow us to find a low-rank representation of a sum of tensors
\scrT (1) + . . .+ \scrT (m) by performing preliminary contractions of the tensors \scrT (k) and re-
constructing the low-rank approximation of their sum at a later stage. This choice
will bring benefits in both speed and accuracy and will be discussed in further detail
in section 3.5.

2.3. TT-GMRES. TT-GMRES [11] is an extension of GMRES aimed at solv-
ing tensor equations of the form (1.1) in TT format. The main distinction from
the classic GMRES is in the representation of the basis ``vectors"" vk's, which are
now given as TT-vectors. Moreover, TT-GMRES sees the incorporation of rounding
steps throughout the process to maintain the TT-ranks of the vk's within a specified
threshold.

In [11], a truncation strategy based on the theory of inexact GMRES [45] is
suggested. Heuristically, employing this procedure often keeps the TT-ranks under
control. However, there is no clear theoretical link between this strategy and the
growth of the ranks. Further exploration and insights in this direction would un-
doubtedly yield valuable contributions to the field. Similarly, the truncations taking
place after the Gram--Schmidt cycle can potentially destroy the orthogonality of the
basis making the analysis even trickier. This issue has been studied in [35] in the case
of low-rank Krylov methods for multiterm matrix equations.

In Algorithm 2.2, we report the overall TT-GMRES scheme. In lines 4 and 6,
Round(\scrT , \theta ) denotes the TT-SVD from [32] that performs a \theta -accurate low-rank
truncation of the tensor \scrT .

Thanks to the theory of inexact Arnoldi [45], the roundings in lines 4 and 6 can
be made more aggressive as the method converges, which helps to maintain the basis
vectors of moderate ranks. Nevertheless, the full orthogonalization step makes the
overall procedure extremely time consuming in general. This is one of the reasons why
TT-GMRES is not commonly employed for the solution of (1.1), and ALS procedures
are often preferred. In the following sections, we propose a sketched variant of TT-
GMRES which, when equipped with a series of other randomization-based tools, turns
out to be competitive with respect to state-of-the-art ALS schemes; see section 5.

3. TT-sGMRES. The previous sections provided the necessary tools and the-
oretical background to facilitate the understanding of the sketched TT-sGMRES
method, which we present here.

The structure of this section is as follows. In Algorithm 3.2, we begin by outlining
the pseudocode for adapting the sGMRES algorithm to the TT-format, akin to the
TT-GMRES approach given in Algorithm 2.2. The algorithm fundamentally expands
on sGMRES [31], adapting it to the TT-format similarly to how TT-GMRES in [11]
builds on the GMRES method. This simple generalization is not competitive with
state-of-the art methods; hence, we delve into a series of refinements and techniques
for its efficient implementation that will turn it into a practical algorithm. In particu-
lar, we propose different techniques that exploit randomization to reduce the growth
of the ranks, the memory requirements, and the cost of reorthogonalization; these
techniques also reduce the cost and improve the stability of forming the final solution.
Algorithm 3.3 summarizes these refinements in a detailed implementation.
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A2808 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

Algorithm 2.2. TT-GMRES.

Input: Tensor \scrA \in \BbbR n1\times ...\times nd , right-hand side b, initial guess x0 in TT-format,
maximum basis dimension maxit, tolerance tol.
Output: Approximate solution xk such that \| \scrA xk  - b\| \leq \| b\| \cdot tol

1: Set r0 = b - \scrA x0, \beta = \| r0\| , V1 = v1 = r0/\beta 
2: for k= 1, . . . ,maxit do
3: Set \eta k = 1/\| rk - 1\| 
4: Compute \widetilde v = Round(\scrA vk, \eta k \cdot tol)
5: for i= 1, . . . , k do
6: Set \widetilde v = Round(\widetilde v - vihi,k, \eta k \cdot tol), where hi,k = \widetilde vT vi
7: end for
8: Set hk+1,k = \| \widetilde v\| and vk+1 = \widetilde v/hk+1,k

9: Compute yk as the solution to (2.6)
10: Compute \| rk\| = \| Hkyk  - \beta e1\| 
11: if \| rk\| \leq \| b\| \cdot tol then
12: Go to line 18
13: end if
14: Set Vk+1 = [Vk, vk+1]
15: end for
16: Set xk = x0

17: for i= 1, . . . , k do
18: xk = Round(xk + vi \cdot (eTi yk), \eta i\cdot tol)
19: end for

Algorithm 3.2. TT-sGMRES, vanilla version.

Input: Tensor \scrA \in \BbbR n1\times ...\times nd , right-hand side b, initial guess x0 in TT-format,
maximum basis dimension maxit, tolerance tol, sketching S, incomplete
orthogonalization parameter \ell .
Output: Approximate solution xk such that \| S(\scrA xk  - b)\| \leq \| Sb\| \cdot tol

1: Set r0 = b - \scrA x0, \beta = \| r0\| V1 = v1 = r0/\beta , W0 = []
2: for k= 1, . . . ,maxit do
3: Compute \widetilde v = Round(\scrA vk, \nu k \cdot tol)  \triangleleft Choose \nu k as in section 3.2
4: Update Wk = [Wk - 1, S\widetilde v]
5: for i=max\{ 1, k - \ell + 1\} , . . . , k do
6: hi,k = \widetilde vT vi
7: Set \widetilde v = Round(\widetilde v - vihi,k, \eta k \cdot tol)  \triangleleft Choose \eta k as in section 3.2
8: end for
9: Set hk+1,k = \| \widetilde v\| and vk+1 = \widetilde v/hk+1,k

10: Compute yk as the solution to (2.9)
11: if \| Wkyk  - Sr0\| \leq \| Sb\| \cdot tol then
12: Go to line 18
13: end if
14: Set Vk+1 = [Vk, vk+1]
15: end for
16: Set xk = x0

17: for i= 1, . . . , k do
18: xk = Round(xk + vi \cdot (eTi yk), \eta i \cdot tol)
19: end for
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2809

3.1. Choice of structured sketchings. The first aspect we discuss is the
choice of the sketching S \in \BbbR s\times \prod d

k=1 nk . Notice that this transformation maps vectors
in TT-format into standard vectors of \BbbR s. Therefore, no operations with sketched
quantities, such as the computation of yk in line 10, involve tensor arithmetic.

Due to the huge number of columns, using Gaussian transformations or subsam-
pled trigonometric transforms for S is prohibitively expensive and highlights the need
for structure embeddings that exploit the TT structure of the vectors.

There are two natural ways to sketch a vector in TT-format, one based on the
Kronecker product of matrices and the other based on the Khatri--Rao product. In
particular, given a set of matrices S1, . . . Sd with Sk \in \BbbR sk\times nk and a TT-vector \scrT with
core tensors Ck \in \BbbR rk\times nk\times rk+1 , if we define S\otimes := S1 \otimes . . . \otimes Sd, then the product
S\otimes \scrT can be easily computed, as it results in a TT-vector with cores Dk =Ck \times 2 Sk.
In other words, the product is distributed across the cores, providing an exponential
speedup in the computation. Notice that the transformation S\otimes maps vectors of
length

\prod d
i=1 ni into vectors of length s=

\prod d
i=1 si.

A different option is to draw matrices Sk with the same number of rows and to
opt for S\odot = S1 \odot \cdot \cdot \cdot \odot Sd, where \odot denotes the row-wise Khatri--Rao product; i.e.,
the jth row of S\odot is the Kronecker product of the jth rows of the matrices Sk's. The
advantage of this second operator is that its application on a TT-vector still splits
across the cores, reducing the embedding cost; this computational gain comes at a
minimal cost in embedding power [22]. For this reason, in our algorithms, we opt
for Khatri--Rao sketchings. Motivated by the work in [8], we choose the Sk's to be
distributed as Gaussian embeddings. Specifically, each Sk is a Gaussian matrix with
i.i.d. entries following \scrN (0, s - 1/d) for appropriate scaling.

The selection of s will be discussed in detail in section 3.6.

3.2. Truncation policy. One of the aspects that plays an important role in
making Algorithm 3.2 competitive is the selection of the truncation tolerance for
the rounding steps. Indeed, this must be able to avoid an excessive growth of the
TT-ranks.

Algorithm 3.2 sees two main sources of rank growth: the application of \scrA in line
3 and the linear combinations of the basis vectors which occur both in the orthog-
onalization phase (line 7) and in the construction of the final solution (line 18). In
[11], the author suggests truncating the resulting tensors using the TT-SVD after each
of these operations. In particular, as noted in [11], the truncation taking place right
after the matrix-vector product \scrA vk can be interpreted as an inexact application of \scrA 
to vk. Therefore, in principle, the theory of inexact Krylov methods can be employed
to select suitable truncation parameters which do not jeopardize the convergence of
the overall scheme. The inexact GMRES method has been thoroughly examined by
Simoncini and Szyld [45], who introduce a progressively relaxed truncation policy.
They prove that the accuracy in the application of \scrA can be decreased gradually dur-
ing the iterations. In particular, if \sigma min(\scrA ) denotes the smallest singular value of \scrA ,
then in [45], the authors suggest employing an iteration-dependent tolerance of the
form

\nu k =
\sigma min(\scrA )

maxit \cdot \| rk - 1\| 
.(3.1)

In [11], a similar value for the truncation in the rounding procedure is chosen.
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A2810 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

Notice that decreasing the accuracy in the application of \scrA is equivalent to per-
forming more aggressive low-rank truncations in our context. This is a rather crucial
point, as the TT-rank of the basis vectors vk increases with k, and being able to
significantly reduce it in later iterations is thus extremely beneficial.

The proofs in [45] strongly rely on the orthogonality of the basis Vk. However,
the truncation taking place after the Gram--Schmidt step (line 7 in Algorithm 3.2)
may potentially destroy the orthogonality of the basis, also in case of a full orthogo-
nalization. This drawback should not get overlooked in general. On the other hand,
the basis Vk constructed by TT-sGMRES is nonorthogonal by construction, as we
perform only an incomplete orthogonalization. Therefore, the truncation in line 7
only affects the local orthogonality of Vk.

In our extensive numerical testing, we experimented with different parameters of
the form (3.1), possibly including the conditioning of the basis at the denominator as
well. However, it turned out that in our context, it is good practice to not truncate
the vector \widetilde vk in line 3 of Algorithm 3.2. Indeed, to have a reliable sketching procedure,
the update of Wk in line 4 should not involve any truncated quantities so that the
computation of yk in (2.9) is coherent with the original, sketched least squares problem
(2.8) and not related to a nearby problem. See also section 3.4 for a similar discussion
in the case of whitening.

On the other hand, to maintain the TT-ranks of the basis vectors under control,
along with selecting small values of \ell (see section 3.4), we perform a truncation step in
line 7 of Algorithm 3.2. In particular, the simple strategy of using a constant tolerance
\eta k \equiv \eta for large \eta seems to provide the best trade-off between efficiency (the TT-ranks
remain small) and rate of convergence (no remarkable delays have been observed). For
all the numerical results reported in section 5, we employed 0.1\leq \eta \leq 0.3.

There are a few cases, in particular when dealing with preconditioned GMRES,
which we discuss in detail in section 4, where this truncation policy is not enough
to maintain the TT-rank under control. When this happens, we introduce a further
parameter maxrank, and in the truncation phase, we use it as a cap on the TT-
ranks of the basis vectors. This can be done easily within the TT-SVD (performing
truncated SVDs in all modes) as well as in the randomized schemes that we discuss in
section 3.3. This action may cause the generated subspace to deviate from the Krylov
subspace, losing some theoretical guarantee over the convergence. However, this does
not necessarily imply that convergence is lost. For instance, our experiments show
that this strategy is very effective when the application of \scrA leads to an excessive
growth of the ranks. Most important, there is no loss of accuracy in the projected
and true solution because we ensure that the action of the operator is sketched before
performing the rounding.

3.3. Randomized approximation of sums in TT-format. As already men-
tioned, the rounding procedure and the partial orthogonalization in line 7 of Algo-
rithm 3.2 allow us to mitigate the growth of the TT-ranks due to performing linear
combinations of basis vectors. The most immediate way to implement this operation
is to perform a rounding after each summation in line 7. However, this strategy would
lead to computing up to \ell extra rounding steps with an excessive increment in the
computational efforts. A similar observation applies to the final reconstruction of the
solution vector in line 18.

In this section, we propose to exploit recently developed randomization tech-
niques to reduce these costs. Our approach builds on the algorithms described in
[1, 25]. These algorithms are generalizations of randomized low-rank matrix approxi-
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2811

mation schemes to the tensor realm and provide a significant reduction in computation
compared to deterministic algorithms. These approaches are particularly effective for
rounding or approximating sums of multiple tensors.

The standard deterministic algorithm for TT-rounding is the TT-SVD [32] and
requires first iteratively orthogonalizing the TT-cores of the input TT-format. Other
approaches incorporating randomization have been proposed, such as the randomize-
then-orthogonalize approach in [1], which circumvents this orthogonalization step by
applying the randomized SVD algorithm [20] to unfoldings of the full tensor and
leveraging the TT-format through the use of Gaussian TT-DRMs (DRM stands for
``dimension reduction matrix""; see Definition 3.1), or a two-sided variant based on
generalized Nystr\"om [1]. The latter has been extended in [25] to general sketchings
and is the algorithm that we will exploit in this work. Crucially, the implementa-
tion presented in [25], called streaming tensor-train approximation (STTA), has the
advantage of being streamable; namely, it requires operating with the tensor \scrA only
once. This feature will be particularly important in our setting, as shown later.

Definition 3.1 (random Gaussian TT-tensor). Given a set of target TT-ranks
\{ \ell k\} , a random Gaussian TT-tensor \scrL \in \BbbR n1\times \cdot \cdot \cdot \times nd is such that each core tensor
\scrT \scrL ,k \in \BbbR \ell k - 1\times nk\times \ell k is filled with random, independent, normally distributed entries
with mean 0 and variance 1/(\ell k - 1nk\ell k) for 1\leq k\leq d.

The strength of TT-DRMs is in their ability to reduce the cost of computing
partial contractions. In particular, the \mu th right partial contraction of a TT-tensor
\scrT \in \BbbR n1\times \cdot \cdot \cdot \times nd of ranks t1, . . . , td - 1 with \mu th right interface matrix C>\mu and a Gauss-
ian TT-DRM \scrR \in \BbbR n1\times \cdot \cdot \cdot \times nd of ranks r1, . . . , rd - 1 with \mu th right interface matrix X>\mu 

is the t\mu \times r\mu matrix R\mu = CT
>\mu X>\mu . Analogously, the \mu th left partial contractions

of \scrT and a Gaussian TT-DRM \scrL \in \BbbR n1\times \cdot \cdot \cdot \times nd and ranks \ell 1, . . . , \ell d - 1 is the \ell \mu \times t\mu 
matrix L\mu = Y T

\leq \mu C\leq \mu .
Partial contractions are particularly appealing objects, as they can be computed

by exploiting the TT structure of the problem, making the computations of the sketch-
ings very cheap. Moreover, having the partial contractions at hand is sufficient to
recover the STTA of a tensor.

The STTA algorithm consists of three phases: the generation phase, the sketching
phase, and the recovery phase. In the generation phase, we draw the sketchings,
specifically Gaussian TT-DRMs in this case. During the sketching phase, we compute
the partial contractions mentioned above. Finally, in the recovery phase, we recover
the STTA approximant. Below is a summary of the fundamental steps. For more
details, refer to [25].

Given a tensor \scrT \in \BbbR n1\times \cdot \cdot \cdot \times nd in TT-format, with ranks t1, . . . , td - 1 and tar-
get ranks r1, . . . , rd - 1, the STTA algorithm in the generation phase draws random
matrices

X>\mu \in \BbbR (n\mu +1\cdot \cdot \cdot nd)\times r\mu and Y\leq \mu \in \BbbR (n1\cdot \cdot \cdot n\mu )\times \ell \mu , with \ell \mu > r\mu ,

then in the sketching phase computes the sketchings

\Psi \mu = (Y T
\leq \mu  - 1 \otimes I)\scrT \leq \mu X>\mu and \Omega \mu = Y T

\leq \mu \scrT \leq \mu X>\mu ,

and finally forms the right unfoldings of the TT-cores \widehat C\mu as

\widehat CR
\mu =\Omega \dagger 

\mu  - 1\Psi \mu .
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A2812 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

A possible way to construct the sketching matrices X>\mu and Y\leq \mu is to use, respec-
tively, the right and left interface matrices of two Gaussian TT-DRMs of appropriate
size.

These steps describe how to compute the STTA approximation of a tensor. To
compute the STTA approximant of a linear combination of tensors a1\scrT (1) + \cdot \cdot \cdot +
as\scrT (s), first use the same DRMs to sketch each \scrT (i) obtaining the \Psi 

(i)
\mu and \Omega 

(i)
\mu .

Next, compute the linear combinations \Psi \mu = a1\Psi 
(1)
\mu + \cdot \cdot \cdot +as\Psi 

(s)
\mu and \Omega \mu = a1\Omega 

(1)
\mu +

\cdot \cdot \cdot + as\Omega 
(s)
\mu . Finally, proceed as described above to recover the final approximant.

The STTA algorithm can be exploited in TT-sGMRES during the orthogonaliza-
tion phase, to compute the weighted sum in line 7 of Algorithm 3.2, and, in line 18, to
compute the final solution. In particular, since we only need the sketched matrices
\Omega 

(vk)
\mu and \Psi 

(vk)
\mu of each basis vector vk to form the final solution xk using STTA, we

can get rid of the basis vectors that are no longer needed in the incomplete orthog-
onalization and store only their sketches. This is particularly beneficial in situations
where memory constraints pose a challenge. This means that we can exploit the full
potential of the incomplete orthogonalization also in terms of storage demand while
avoiding the possible extra costs coming from a two-pass strategy.

In practice, we have implemented the rounding schemes proposed in [25] and
obtained two routines, called STTA sketch and STTA recover, that perform the
following actions:
STTA sketch takes as input a tensor \scrT and X,Y as described above and computes

the corresponding sketches \Psi \mu and \Omega \mu .
STTA recover takes as input the sketches \Psi \mu and \Omega \mu (resp., a linear combination

of sketchings) and reconstructs an approximation to the original tensor \scrT 
(resp., the linear combination of the tensors).

Throughout the algorithm, we assume that the tensors X,Y have been chosen at
the beginning, with suitable dimensions r\mu , \ell \mu , which we discuss in further detail in
section 3.6. We are not able to recommend a choice for these parameters that is
suitable for all cases; in the algorithms, we let the user provide the values of these
parameters.

3.4. Incomplete orthogonalization, restarting, and whitening. From a
computational point of view, being able to perform only a local orthogonalization in
line 7 of Algorithm 3.2 is key to attain a competitive solver. However, choosing a
suitable value of \ell , the scalar that controls the number of vectors to orthogonalize the
newly computed basis vector against, is not straightforward. This is a common issue
also in the case of truncated Krylov methods for standard linear systems of equations;
see, e.g., [41].

In our context, employing smaller values of \ell not only decreases the cost of the
orthogonalization step itself, thanks to fewer orthogonalizations to perform, but also
induces smaller TT-ranks in the result by reducing the number of tensor sums. This
means that adopting a very small \ell has an impact on the whole solution procedure
and is extremely beneficial in reducing the computational efforts devoted to every
operation involving the basis vectors in TT-format. In most of our experiments, we
select \ell = 1, obtaining a very successful solution process; see section 5.

If selecting a small \ell looks very appealing from a computational point of view,
then such a selection most likely leads to a basis Vk, which is terribly ill-conditioned.
In [31, section 5.3], the authors suggest restarting the iterative scheme whenever a
too ill-conditioned basis Vk is detected. In particular, if at iteration m, Vm turns out
to be (close to) singular, then we may construct the residual vector rm = b  - \scrA xm
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2813

and restart the TT-sGMRES iteration using rm as a new initial residual vector in
line 1 of Algorithm 3.2. Even though this machinery may help in reducing the impact
of working with an ill-conditioned basis, it can potentially lead to important delays
in the convergence of the overall solution process. In practice, we have never needed
to employ this strategy in our numerical experiments. Moreover, in [17], it has been
observed that having an ill-conditioned Vk is not the primary cause of the possible
numerical instabilities of sGMRES. Therefore, we do not adopt any restarting strategy
in our numerical examples.

A different approach to stabilize sketched Krylov methods is the so-called whiten-
ing, namely, performing an explicit full orthogonalization of the sketched basis SVk.
This inexpensive procedure has a rather important impact in our context, as it allows
us to rewrite the minimization problem (2.9) in a different way, reminiscent of the
projected formulation (2.5) of (standard) GMRES. In particular, in [37], a sketched
Arnoldi relation has been derived in the context of Krylov approximations to matrix
function evaluations. Let Vk be constructed by a truncated Arnoldi scheme for which
the Arnoldi relation (2.4) holds true. Moreover, let QkTk = SVk be the skinny QR
factorization of the sketched basis SVk and

SVk+1 = [Qk, qk+1]

\biggl[ 
Tk tk+1

0 \tau k+1

\biggr] 
.

Then we can write

SA\widehat Vk = S \widehat Vk( \widehat Hk + \widehat heTk ) + hk+1,kS\widehat vk+1e
T
k = S \widehat Vk+1

\biggl[ \widehat Hk + \widehat heTk
[0, . . . ,0, hk+1,k]

\biggr] 
,(3.2)

where \widehat Vk+1 = [\widehat v1, . . . ,\widehat vk+1] = Vk+1T
 - 1
k+1,

\widehat Hk = TkHkT
 - 1
k , and \widehat h= tk+1hk+1,k/\tau k; see

[37, equation (9)]. Even though the transformed basis \widehat Vk+1 is not explicitly available,
it is important to notice that this is orthogonal with respect to the sketched inner
product STS, namely, \widehat V T

k+1S
TS \widehat Vk+1 = I. Moreover, at a first glance, the inversion of

Tk may look problematic, as this matrix carries over the possible ill-conditioning of the
nonorthogonal basis Vk. However, in [37, section 7], it has been shown that, thanks
to the triangular pattern of Tk, the forward error attained by computing z = T - 1

k y in
finite arithmetic behaves much better than what is predicted by solely looking at the
condition number of Tk.

Thanks to (3.2) and the STS-orthogonality of \widehat Vk, the minimization problem (2.8)
can be reformulated as

yk = argminy\| SAVky - Sr0\| 2 = argminy\| SAVkT
 - 1
k Tky - Sr0\| 2

= argminy=T - 1
k z\| S \widehat Vk+1z  - Sr0\| 2

= argminy=T - 1
k z

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \widehat Hk + \widehat heTk
[0, . . . ,0, hk+1,k]

\biggr] 
z  - \beta e1

\bigm\| \bigm\| \bigm\| \bigm\| 
2

, \beta = \| Sr0\| 2.(3.3)

If the vector yk is computed as above, then the sketched norm of the residual vector
associated to the solution xk = x0 + Vkyk, namely, rk = b  - Axk, can be cheaply
computed as

\| rk\| = \| S(AVkyk  - r0)\| = \| S(A\widehat Vkzk  - r0)\| =
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \widehat Hk + \widehat heTk

[0, . . . ,0, hk+1,k]

\biggr] 
zk  - \beta e1

\bigm\| \bigm\| \bigm\| \bigm\| 
2

.(3.4)

We would like to mention that, to the best of our knowledge, the derivations above
are new, even though they come from a straightforward combination of the original
sGMRES scheme from [31] and the sketched Arnoldi relation presented in [37].
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A2814 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

If one wanted to adopt whitening, then the only operations to change in Algo-
rithm 3.2 would be the computation of yk in line 10 and the residual norm evaluation in
line 11. Moreover, the storage of the matrix Wk would be no longer necessary, whereas
the updating of the skinny QR factorization of SVk would have to be introduced.

Even though it has been shown that whitening is an extremely beneficial practice
in contexts like matrix function approximations [37] and the numerical solution of
matrix equations [36], we must mention that it does present some peculiar drawbacks
in our framework. In particular, the computation of the coefficients collected in the
matrix Hk takes place before truncating the current basis vector \widetilde v in line 7 of Algo-
rithm 3.2. On the other hand, the sketching S is applied to vk+1, the truncated (and
normalized) version of \widetilde v. Svk+1 is then used to update the skinny QR of SVk+1 and
thus obtain the coefficients in Tk+1 necessary for computing the quantities involved
in the projected problem (3.3). As it turned out from our vast numerical testing, this
discrepancy in the construction of Hk and Tk may lead to a disagreement between
the actual sketched residual norm \| SAVkyk  - Sr0\| and its computed value on the
right-hand side of (3.4) whenever yk is computed as in (3.3). We did not observe such
a trend when computing yk by (2.9). Indeed, the use of the pseudoinverse of SAVk

is equivalent to performing an explicit projection without relying on the sketched
Arnoldi relation (3.2). Therefore, in all the experiments reported in section 5, the
vector yk is computed by (2.9).

3.5. Building the final solution. The final step of the TT-sGMRES algorithm
is the computation of the solution xk = x0+Vkyk = x0+

\sum k
i vi[yk]i. For this task, we

propose using the STTA algorithm.
Compared with the classic way to perform this linear combination (adding one

term at a time and rounding after each addition), this algorithm offers several ad-
vantages, some of which we have already described at the beginning of section 3. In
particular, this strategy has lower computational costs and avoids the storage of the
basis. Another advantage is that when the basis Vk is not orthogonal, possibly badly
conditioned, the classic procedure may face numerical cancellation. On the other
hand, our results show that STTA is not affected by this undesirable issue. There
is, however, a drawback in using STTA. Indeed, this strategy requires knowing in
advance the numerical TT-rank of the solution or at least an overestimate thereof,
which is not available in general. For the moment, we lack valid automatic strategies
for estimating the TT-rank of the final solution, and in our routines, we rely on a
user-provided value. That said, for many problems of interest, the TT-ranks of the
solution are very low, even lower than those of a single vi, so that any reasonable
heuristic could work.

The reconstructed solution is truncated using a tolerance \eta \cdot tol, where tol is
the prescribed tolerance for the algorithm and 0 < \eta < 1 is a fixed parameter. As
discussed in the next section, the parameter \eta is chosen to ensure that the accuracy
in the reconstructed solution is maintained.

3.6. Putting it all together. In Algorithm 3.3, we report the TT-sGMRES
pseudocode enhanced with all the tools and considerations discussed in the previous
sections. In particular, as mentioned in section 3.2, we refrain from performing any
low-rank truncation after the application of \scrA in line 5, whereas we employ a rather
large, constant value \eta (\eta is either 0.1 or 0.3 in our experiments, and we choose it
to ensure that the prescribed tolerance is reached) in the truncations in line 12 and
in the final reconstruction. Moreover, any linear combinations involving the basis
TT-vectors (lines 7 and 21) is carried out by the STTA recover routine described

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2815

Algorithm 3.3. TT-sGMRES.

Input: Tensor \scrA \in \BbbR n1\times ...\times nd , right-hand side b, initial guess x0 in TT-format,
maximum basis dimension maxit, tolerance tol, sketching S, incomplete
orthogonalization parameter \ell , rounding threshold \eta .
Output: Approximate solution xk such that \| S(\scrA xk  - b)\| \leq \| Sb\| \cdot tol

1: Set r0 = b - \scrA x0, \beta = \| r0\| V1 = v1 = r0/\beta , \beta 
[S] = \| Sb\| , W0 = []

2: [\Phi (1),\Psi (1)] = STTA Sketch(v1,X,Y ),
3: for k= 1, . . . ,maxit do
4: Compute \widetilde v=\scrA vk
5: Update Wk = [Wk - 1, S\widetilde v]
6: for i=max\{ 1, k - \ell + 1\} , . . . , k do
7: Set hi,k = \widetilde vT vi  \triangleleft Only \ell previous vectors are kept in memory
8: end for
9: for \mu = 1, . . . , d do

10: Set \widetilde \Phi \mu = h1,k\Phi 
(1)
\mu + . . .+ h1,k\Phi 

(k)
\mu and \widetilde \Psi \mu = h1,k\Psi 

(1)
\mu + . . .+ h1,k\Psi 

(k)
\mu 

11: end for

12: Set \widetilde v = STTA Recover(\widetilde \Phi , \widetilde \Psi , \eta \cdot tol)
13: Set hk+1,k = \| \widetilde v\| and vk+1 = \widetilde v/hk+1,k

14: Compute [\Phi (k+1),\Psi (k+1)] = STTA Sketch(vk+1,X,Y )
15: Compute yk as the solution to (2.9)
16: if \| Wkyk  - Sr0\| \leq \beta [S] \cdot tol then
17: Go to line 21
18: end if
19: Set Vk+1 = [Vk, vk+1]
20: end for
21: for \mu = 1, . . . , d do

22: Set \widetilde \Phi \mu = [yk]1\Phi 
(1)
\mu + . . .+ [yk]k\Phi 

(k)
\mu and \widetilde \Psi \mu = [yk]1\Psi 

(1)
\mu + . . .+ [yk]k\Psi 

(k)
\mu 

23: end for

24: Set xk = STTA Recover(\widetilde \Psi , \widetilde \Phi , \eta \cdot tol)
in section 3.3. To this end, we compute the sketch of the newly defined basis vector
vk+1 by STTA sketch in line 14. The parameter \ell \mu for the STTA algorithm (the
oversampling) is set to 20.

The number of rows of the sketch S for the TT-sGMRES method is based on the
maximum number of iterations. If the user specifies a maximum number maxit, then
the number of rows of S is chosen as twice that number. Optionally, in our code, we
allow further tweaking of these parameters or specifying a custom sketching S.

Remark 3.2. In the pseudocode of Algorithm 3.3, we use STTA Sketch and
STTA Recover to perform the partial reorthogonalization. This is useful especially
for sizable values of \ell . However, in our experiments, we often choose \ell = 1, for
which it is instead preferable to maintain in memory the last vector and perform the
reorthogonalization and round explicitly in the TT-format. In our implementation, we
let the user choose between the two strategies.

4. Preconditioning. It is well known that, to get a fast rate of convergence
in terms of number of iterations, Krylov methods require preconditioning in general.
This applies to our TT-sGMRES scheme as well. However, due to the peculiarity
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A2816 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

of our framework, preconditioners for (1.1) may pose further challenges with respect
to preconditioning operators for standard linear systems. Indeed, in addition to be
effective in reducing the number of iterations at a reasonable computational cost, the
preconditioner operator must not dramatically increase the rank of the current basis
vector. Otherwise, the cost of all the remaining operations in TT-sGMRES would
increase, possibly jeopardizing the gains coming from running fewer iterations. A
similar scenario holds for standard TT-GMRES as well.

Note that, in principle, thanks to the incomplete orthogonalization we perform,
TT-sGMRES is less penalized than the standard TT-GMRES [11] if a large number
of iterations to converge is needed. Nevertheless, for several practical problems (for
instance, the ones arising from PDEs, where the condition number of the problem
grows with the problem dimension), preconditioning is essential to ensure convergence
in a reasonable amount of time.

Few options for preconditioning tensor equations of the form (1.1) are available
in the literature. In [16], a low-rank approximation to \scrA  - 1 is employed as a precon-
ditioner for (1.1). Exponential sums have been proposed in [10, 18, 19, 38].

The main limitation when dealing with preconditioning in tensor Krylov methods
is that the operator\scrA \scrP  - 1 is usually of a much higher tensor rank than\scrA and therefore
induces a much faster rank growth in the basis. Hence, even if the number of iterations
necessary for convergence can be greatly reduced, this does not necessarily correspond
to a reduction in computational cost. In the next section, we discuss how sketching
can be helpful in this context as well by limiting the maximum TT-rank that can be
reached in the GMRES basis.

We could consider left or right preconditioning or both at once. We choose to
only discuss right preconditioning because it ensures that the residuals of the pre-
conditioned problem and of the original one coincide. In a nutshell, assuming the
availability of a preconditioner \scrP , right preconditioning modifies lines 4 and 21 in
Algorithm 3.3 as follows:

\widetilde v=\scrA \scrP  - 1vk, xk =\scrP  - 1
\Bigl[ 
STTA RECOVER(\widetilde \Psi , \widetilde \Phi ,tol)\Bigr] .

As we discuss in section 4.2, this does not always lead to better performance even when
the preconditioner works nicely, and extra care is needed to avoid an excessive rank
growth. In particular, it turned out that coupling preconditioning with a ``maximum
rank"" rounding step and sketching often leads to competitive results.

4.1. Exponential sum preconditioning. In this work, we have considered
preconditioners based on exponential sums, which are often suitable for problems aris-
ing from PDEs; see, e.g., [10, 18, 19, 38]. In order to construct such a preconditioner,
it is first necessary to split the operator \scrA into the following form:

\scrA = \widehat \scrA +

d\bigoplus 
i=1

Ai,

d\bigoplus 
i=1

Ai :=Ad \otimes I \otimes . . .\otimes I + . . .+ I \otimes . . .\otimes I \otimes A1,

where the second term (called the ``Kronecker sum,"" denoted by
\bigoplus 

) is the dominant
part of the operator. The Kronecker sum is a summation of d terms, each with a single
entry in the Kronecker product different from the identity, which form a commutative
family. Then we precondition by considering \scrP such that \scrP  - 1 \approx (

\bigoplus d
i=1Ai)

 - 1. Instead
of computing explicitly such \scrP , we directly write \scrP  - 1. To accomplish this, we rely
on exponential sums; that is, we determine an approximant for the inverse function
1
z of the form
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RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2817

1

z
\approx 

\zeta \sum 
j=1

\alpha je
 - \beta jz =:E\zeta (z),

where \zeta is a positive integer and such that the approximation is accurate over
the spectrum (or, better, over the field of values) of

\bigoplus d
i=1Ai. Then we consider

\scrP  - 1 :=E\zeta 

\Biggl( 
d\bigoplus 

i=1

Ai

\Biggr) 
=

\zeta \sum 
i=1

\alpha i

d\bigotimes 
j=1

e - \beta iAj .

In particular, applying \scrP  - 1 to a tensor \scrX requires summing \zeta tensors, obtained by
performing j-mode multiplications with e - \beta iAj for all j. Since j-mode multiplications
do not increase the TT-rank, applying this preconditioner generally increases the TT-
ranks of \scrX by a factor of (at most) \zeta .

The difficulty in designing a preconditioner in this class lies in determining the
coefficients \alpha i, \beta i. In this work, we rely on the procedure described in [10]; we refer the
interested reader to [18] and [19, Appendix D] for an in-depth overview. Determining
the optimal \alpha i, \beta i is often challenging even when the spectrum is real and known a
priori (see [18]); hence, we often prefer to rely on suboptimal approximations recovered
from integral representations of 1

z (as done in [10]). It is worth noting that another
approach to preconditioning this class of problems involves techniques based on tensor
Sylvester equations, such as those presented in [9].

4.2. Sketching and bounded rank roundings. We note that several tech-
niques discussed in the previous sections (e.g., incomplete reorthogonalization) might
become less relevant when using a good preconditioner, as this leads to convergence
in a small number of steps in general. On the other hand, preconditioning often leads
to fast rank growth, possibly making the overall solution process impractical. To mit-
igate this annoying side effect, we propose relying on a low-rank rounding step of the
basis with a prescribed maximum rank. This gives little control over the truncation
accuracy, making the analysis of the method even trickier. In particular, the dis-
tance between truncated and original (not truncated) quantities cannot be quantified
in general. However, sketching-based GMRES still works fine in practice, and the
maximum-rank rounding often leads to important computational advantages. Never-
theless, we must mention that this rounding may induce a slightly larger (but faster)
number of iterations when compared to the scenario where this is not performed.

To implement the maximum-rank rounding, when we call the rounding procedure
in line 12, we enforce that the TT-rank of vk+1 cannot be larger than a maximum
prescribed value rmax (componentwise). The choice of this rmax is arbitrary, and the
optimal value is problem dependent: Smaller ranks correspond to faster iterations but
slower convergence, whereas higher ranks lead to fewer iterations but with a higher
computational cost per iteration.

5. Numerical illustration. In this section, we analyze the proposed enhanced
TT-sGMRES algorithm through two distinct applications: one involving convection-
diffusion PDEs and another arising from Markov chains in performance and reliability
analysis. We compare its performance against other solvers in the TT-format, includ-
ing TT-GMRES, the vanilla version of TT-sGMRES, and AMEn.

A key aspect of the enhanced TT-sGMRES algorithm is that it provides access
only to the sketched residual (2.8), which is typically slightly smaller than the actual
residual. To ensure fair comparisons, we set the tolerance for TT-sGMRES lower than
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A2818 ALBERTO BUCCI, DAVIDE PALITTA, AND LEONARDO ROBOL

that of TT-GMRES. In all our numerical experiments, this allowed us to consistently
achieve the desired accuracy across all tested scenarios.

The section is divided into two main blocks, in which we analyze, respectively, the
behaviors of the algorithms without and with preconditioning. Before presenting
these two block experiments in sections 5.2 and 5.3, respectively, we briefly describe
the two case studies. In all unpreconditioned experiments, the maximum number of
iterations for TT-sGMRES is set to 200 (and thus the sketch S has 400 rows), whereas
in the preconditioned examples, this number is set to 20 (and S has 40 rows).

The code to replicate the numerical experiments in this section can be down-
loaded from https://github.com/numpi/tt-sgmres. It requires MATLAB and the TT-
Toolbox [33].

5.1. Case studies. Throughout the numerical experiments, we will consider
two classes of linear systems that are briefly described here. The first arises from
the discretization of a PDE, whereas the second stems from the analysis of a high-
dimensional Markov chain.

5.1.1. A convection-diffusion problem. We consider the computation of the
steady state for a convection-diffusion equation on a d-dimensional box

K\Delta u+ \langle w,\nabla u\rangle + f = 0, u : [ - 1,1]d \rightarrow \BbbR ,

with zero Dirichlet boundary conditions. We choose the parameters K = 10 - 2 and
w = 10 - 2 \cdot [1, . . . ,1] \in \BbbR d. The source term is chosen as f(x) = e - 10\| x\| 2

2 . When
discretized with finite differences, this yields the linear system\Biggl( 

d\bigoplus 
i=1

[L+Di]

\Biggr) 
u+ f = 0,

where f contains the samplings of the source term at the grid points and the matrices
L and Di discretize the diffusion and convection operators and are defined as follows:

L=
K

h2

\left[      
 - 2 1

1
. . .

. . .

. . .
. . . 1
1  - 2

\right]      , Di =
wi

h

\left[      
 - 1 1

. . .
. . .

. . . 1
 - 1

\right]      .
The choice of the source term f(x, y) = e - 10(x2+y2) guarantees that, when represented
in tensor form, the vector f has rank exactly equal to 1. We remark that the matrices
Ai := L+Di are natural candidates for building a preconditioner using exponential
sums.

5.1.2. High-dimensional Markov chains. Our second test case arises from
the description of a Markov chain. The case study we describe is often found when
dealing with the evaluation of performance and reliability measures of complex sys-
tems, for which a high-dimensional state space naturally appears. Consider a set of d
systems that evolve stochastically as a continuous time Markov chain, each of them
endowed with a state space \scrS i, with | \scrS i| = n. Even though the combined state space
would be \scrS :=

\prod d
i=1 \scrS i, which has cardinality nd, this high-dimensional Markov chain

is relatively easy to analyze because every system evolves independently of each other.
We now modify the Markov chain, allowing some state transitions inside \scrS that

involve more than one system (called synchronizations). This situation may arise, for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

8/
25

 to
 1

46
.4

8.
83

.2
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/numpi/tt-sgmres


RANDOMIZED SOLVERS FOR LINEAR TT-TENSOR EQUATIONS A2819

instance, when analyzing computer networks, where failure of one server may impact
one or more other servers. With this modification, the systems cannot be analyzed
independently anymore, and the problem is truly high-dimensional. The computation
of the steady-state probabilities can be recast to solving a linear system of the form

(Q+W  - D)\pi = e, Q=

d\bigoplus 
i=1

Qi,

where Qi encodes the transition rates of the systems when viewed independently, W
adds the synchronization transitions, e is the vector of all ones, and D is a diagonal
matrix to ensure that the row sum is zero. The vector \pi contains the steady-state
probabilities.

This kind of system has been previously analyzed in [27, 28]. We refer the in-
terested reader to these works and the references therein for further details on the
model. In this work, we assume that we have a family of d systems with the following
interaction topology:

\scrS 1 \scrS 2 \cdot \cdot \cdot \scrS d

We assume that when particular transitions in system \scrS i are triggered, they change
the state in the system \scrS i+1 for all i < d. As mentioned above, these particular
transitions are called synchronizations. Note that this fits well with the underlying
topology of indices in TT and often allows representing the steady-state vector in this
low-rank format efficiently. The transition rates are chosen as follows:

\bullet Each system behaves as a random walk, with transition rates \eta k and \mu k to
move forward and backward from state k chosen with a random uniform
distribution from [1,2]. All transition rates are chosen independently (that
is, the systems are not equidistributed).

\bullet Systems i and i + 1 have a synchronized transition such that when both
systems are in state n - 1, they move together to state n (in the model, this
represents the failure of both systems at once). The rate of ``joint failure"" is
equal to 0.1 in our model.

From the linear algebra point of view, this means that the matrices Qi are all tridi-
agonal, and W is the sum of matrices obtained by the Kronecker product of d  - 2
identity matrices (corresponding to the systems not impacted by the failure) and 2
matrices with only one nonzero entry.

Remark 5.1. The sparse structure of the matrices could be exploited for both
case studies in sections 5.1.1 and 5.1.2 to accelerate the MatVec operations. For the
sake of simplicity, generality, and readability of the code, we avoided doing so, but we
expect that this could be a further speedup to our experiments.

5.2. Unpreconditioned GMRES. In this section, we analyze the performance
of TT-sGMRES without preconditioning, applied to the two nonsymmetric problems
described above: the convection-diffusion case study and the Markov chain one. In
these problems, the condition number depends polynomially on n, and therefore we
only consider small values of n and test the scaling with the number of dimensions.

5.2.1. Loss in accuracy of vanilla TT-sGMRES. The first experiment has
the aim of showing that the ``vanilla"" TT-sGMRES presented in Algorithm 3.2 has
accuracy problems in the reconstruction of the solution, whereas this is not the case in
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Enhanced - Alg. 3.3

Fig. 1. Actual residuals of the vanilla and enhanced TT-sGMRES algorithms computed after
each iteration for the PDE problem in section 5.1.1 with d= 4 and n= 34.

the ``enhanced"" TT-sGMRES that we presented in Algorithm 3.3. In fact, since the
matrix Wk obtained by running Arnoldi with partial reorthogonalization becomes in-
creasingly poorly conditioned, we expect to find large cancellations when reconstruct-
ing the final solution. This leads to poor accuracy if successive relative truncations are
performed while computing the sum, which are instead avoided when approximating
the sum all at once with the STTA scheme of section 3.3.

For this case, we set \ell = 1 and run the vanilla and enhanced versions of TT-
sGMRES on the same problem with n = 34 and d = 4, for 80 iterations. The two
algorithms are exactly the same, the only exception being the final reconstruction
described in line 18 of Algorithm 3.2. We then show the value of the residual (recom-
puted exactly) at each iteration and report it for both schemes in Figure 1. While the
enhanced version shows a nice convergence plot, the vanilla one has a semiconvergent
behavior, and starting from iteration 40, the cancellation errors completely dominate
with respect to the achieved accuracy.

Since the one depicted in Figure 1 is a common behavior of the vanilla TT-
sGMRES, in the following, we focus only on Algorithm 3.3.

5.2.2. TT-GMRES versus TT-sGMRES. In the second experiment, we con-
sider again the PDE problem from section 5.1.1, and we compare the timings of the
enhanced TT-sGMRES with the standard TT-GMRES. The problem is considered
for d ranging from 3 to 9 and n fixed to 64. The stopping criterion is tol= 10 - 4, and
we aborted the execution if the runtime exceeded 1 hour. The results are reported in
Figure 2 (left).

In this test, the enhanced TT-sGMRES is faster than TT-GMRES for all di-
mensions. The speedup arises from two phenomena: We only perform partial re-
orthogonalization, and the TT-ranks remain smaller. To better describe the latter
phenomenon, we provide another plot in Figure 2 (right), in which we show the max-
imum TT-rank of the vectors vk generated by the two algorithms for d= 6 (for other
dimensions, we obtained analog results). We can see that TT-GMRES operates with
higher TT-ranks with respect to the enhanced TT-sGMRES. On one side, higher TT-
ranks lead to more expensive arithmetic operations, and on the other side, the fact
that TT-GMRES performs full orthogonalization increases the number of dot prod-
ucts; the enhanced TT-sGMRES, instead, only requires a constant number of these
dot products per iteration. We also observe that the enhanced TT-sGMRES requires
a few more iterations to converge than TT-GMRES, mostly because the sketched
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Fig. 2. On the left, we report the runtime of the TT-GMRES and TT-sGMRES algorithms on
convection-diffusion PDE problems of size n= 64 across various dimensions d and accuracy 10 - 4.
On the right, we plot the maximum TT-ranks of the base vectors generated by TT-GMRES and
TT-sGMRES with d= 6, n= 64, and \ttt \tto \ttl = 10 - 4. In the right experiment, TT-GMRES converged
in 1528.22 seconds with respect to the 80.03 seconds of TT-sGMRES.
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Fig. 3. The above plots report the difference between the sketched residual and the true residual
for different values of d.

tolerance is set to 0.3 \cdot tol, with tol being the TT-GMRES threshold, in order to
accommodate with the estimation error for the residual.

5.2.3. Gap between sketched and actual residual. In the previous exam-
ples, we have set the tolerance for the stopping criterion in TT-sGMRES slightly
smaller than the one for TT-GMRES. This is because the stopping criterion for the
former relies on the sketched relative residual \| S(Axk  - b)\| /\| Sb\| , which in practice
is often a good estimate of the true residual \| b - Axk\| /\| b\| up to a small constant.

In this experiment, we show the distance between the sketched and the true
residuals for various dimensions d = 3,5,7,9. The results along all the iterations for
the PDE problem with n = 64 are reported in Figure 3. The maximum number of
iterations is set to 500 and the number of rows of S to 1000, so at the end of the
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Fig. 4. On the left, the comparison between running TT-GMRES and TT-sGMRES for the
Markov test case with different values of d and n = 64. On the right, the behavior of ranks of the
basis vectors during the iterations in the case d= 5.

algorithm, the dimension of the sketched space is about twice the dimension of the
subspace where the residual lives. The tolerance was set to tol= 10 - 6.

The plots show that the gaps are larger for higher values of d. One of the causes is
that the embedding power of the Khatri--Rao embeddings depends on the dimension
d; the other and most impactful is that STTA recovers an approximate low-rank
approximation up to some constants depending exponentially on d.

In this experiment and in the tests that we ran, this gap has always been less
than 10; however, for higher dimensions, this gap could become significant because
of the loss of accuracy of the STTA approximation. It is possible to compensate
for this effect and reduce the STTA constants by increasing the parameter \ell \mu in the
generation of the sketchings phase. For further details, see [25].

5.2.4. Markov case study without preconditioning. We replicated the ex-
periments for the PDE problems on the Markov case study, which led to a similar
behavior. We report in this section the timings for running TT-GMRES and TT-
sGMRES, which are plotted in Figure 4 (left). We can see that, as in the PDE case
study, the proposed algorithm can deal with the increasing dimensionality without a
significant increase in computational times (with respect to TT-GMRES).

On the right, in the same figure, the ranks throughout the iterations are reported.
In contrast to the PDE example, the rank of the operator describing the Markov chain
grows with d (linearly), and therefore the problem becomes increasingly challenging
for high dimensions.

We remark, however, that without preconditioning, the performance of the algo-
rithm is still far from that of AMEn (which requires less than 1 second to converge
for d= 4,5,6). Therefore, in the next section, we focus on the preconditioned case.

5.3. Numerical tests with preconditioning. In this section, we reconsider
the case studies presented above and include an option to precondition the TT-
sGMRES iteration. In both cases, this is necessary when the dimensions ni become
large because the condition number grows polynomially in n. We will use exponential
sums to build preconditioners for all examples for simplicities, but we do not expect
major differences in case other preconditioners are used. Since AMEn requires ac-
cess to the TT operator [12] (and not only the MatVec operation), preconditioning
cannot be easily incorporated. Hence, we compare the results with AMEn on the
unpreconditioned problem.
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5.3.1. Convection-diffusion. For the convection-diffusion problem in the case
d= 5, we employed an exponential sum preconditioner with

\scrP  - 1 =

\zeta \sum 
i=1

\alpha i

d\bigotimes 
j=1

e - \beta iAj ,

as detailed in section 4. We selected \zeta = 17. In addition, we tested different values of
maxrank for the basis recompression. As a rule of thumb, we expect smaller values of
maxrank to yield faster iterations but slower convergence or even stagnation. On the
other hand, higher values of maxrank will be closer to the GMRES iteration without
rounding and usually yield a better convergence but with a much higher computational
cost per iteration.

For this example, we tested maxrank =\infty and maxrank = 30; in addition, we have
compared the performance with the AMEn solver in the TT-Toolbox (with default
parameters and a maximum number of sweeps set to 200 in order to achieve the
target tolerance). The target tolerance was set to 10 - 8, and as usual, we reduced it
by a factor 10 in TT-sPGMRES to account for the constant in the estimation of the
residual by sketching.

All approaches achieved the required accuracy, and the timings for different values
of ni are reported in Figure 5 (left). We see from the results in Figure 5 (left) that
allowing the ranks to grow unbounded does not yield optimal performance. With both
maxrank set to \infty and 30, TT-sPGMRES converges in four iterations to the desired
tolerance with this choice of preconditioner. Moreover, when choosing maxrank =
30, our algorithm becomes competitive, and for this example, it is faster than AMEn.

Without preconditioning, the ranks stay nicely bounded, but the number of itera-
tions is so large that the method cannot be competitive with the choices above. With
maxrank = \infty , the iteration reaches rank 433 for ni = 1024, so it is rather memory
demanding. Hence, this example shows how using a bounded rank can be essential
when incorporating preconditioning.

128 256 512 1,024
100

101

102

103

104

ni

T
im

e
(s
)

Test case from section 5.1.1

maxrank = \infty 
maxrank = 30

AMEn

128 256 512

101

102

103

104

105

ni

T
im

e
(s
)

Test case from section 5.1.2

maxrank = \infty 
maxrank = 50
maxrank = 80

AMEn

Fig. 5. Left: Runtime of TT-sPGMRES iteration for the convection-diffusion problem in sec-
tion 5.1.1 with variable ni and d= 5; the target tolerance in this example is 10 - 8, and different values
of maxrank are used. Right: Runtime of TT-sPGMRES iteration for the Markov problem in section
5.1.2 with variable ni and d= 5; the target tolerance in this example is 10 - 6, and different values of
maxrank are used. AMEn is run with standard parameters and is taken from the TT-Toolbox [33].
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5.3.2. Preconditioning for the Markov test case. We ran a similar experi-
ment for the test case arising from Markov chains. In that case, a natural choice for
the preconditioner is to consider the infinitesimal generator Q obtained by ignoring
all interactions between the different systems and dropping the matrix W (following
the notation used in section 5.1.2).

The matrix Q is a Kronecker sum, and therefore its approximate inverse can be
constructed by exponential sums, exactly as for the convection-diffusion test case.
For this problem, we selected \zeta = 33. We ran the same tests, using systems with a
number of states ranging from 128 to 512 and requiring tolerance 10 - 6. This problem
is more challenging than the PDE case, and we ran our algorithm with maxrank

\in \{ 50,80,\infty \} . As for the PDE case, we used \eta = 0.1 as a safety factor to make sure
that if the sketched residual is below \eta \cdot \epsilon , then the true residual is around \epsilon or less.
The results are reported in Figure 5 (right).

When running with maxrank =\infty , we encountered the same behavior of the PDE
case study of the previous section: The rank grows quickly (up to about 220 in this
example), and the algorithm is slowed down and can easily encounter memory issues.
On the other hand, using lower values of maxrank makes the algorithm competitive
with AMEn and even faster for large values of ni and presents corresponding badly
conditioned problems. In this example, maxrank = 50 only manages to reach a true
accuracy of about 10 - 5, whereas maxrank = 80 achieves the target of 10 - 6.

6. Conclusions. In this work, we presented and analyzed a sketched version of
TT-GMRES, called TT-sGMRES, a novel algorithm that combines the winning strate-
gies of sGMRES and TT-GMRES. Through various methodological refinements, we
demonstrated that the introduction of sketching and randomization brings significant
benefits, primarily by greatly reducing the cost of orthogonalization and limiting the
ranks of tensors during the iteration. Additionally, the approach based on a stream-
able method allowed us to overcome one of the classic storage problems, namely, the
allocation of the whole basis. In particular, once the vectors of the Krylov basis are
computed, they are sketched and then discarded, and this is sufficient to recover the
solution on convergence.

The experiments conducted validate the effectiveness of the proposed method.
Not only did the TT-sGMRES prove to be significantly superior to the classical TT-
GMRES, but in many cases, it was also competitive with established solvers, such as
AMEn. Another advantage of our method is the possibility of leveraging precondi-
tioners to further improve its performance, making it an extremely promising method
for a wide range of applications.

Although we focused on the TT-format, many of the improvements introduced can
be tested and exploited in a broader range of cases where vectors can be compressed
in a low-rank format and streamable algorithms for their linear combinations are
available. For example, this approach could be applied to the Tucker format using
the methods in [6, 7, 47], and efforts could be made to extend it to the case of the
tree tensor network format.

In conclusion, TT-sGMRES represents a significant advancement in the state of
the art, offering an efficient and scalable scheme for solving high-dimensional linear
systems.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
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computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/numpi/tt-sgmres and in the supple-
mentary materials (tt-sgmres-main.zip [local/web 25.5KB]).
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