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1 Stabilizing a bicycle

Consider the paper [2], where the authors describe a model for the dynamics of
a bicycle moving at a certain velocity v, and subject to external forces.

The model is given by a second order ODE

Mẍ+ C(v)ẋ+K(v) = f,

where as usual M is the mass matrix, C the damping-like term, and K the
stiffness matrices. The matrices C and K depend on the velocity; recall that
a linear system as the one above is stable if and only if the eigenvalues of the
quadratic eigenvalue problem

det(Mλ2 + Cλ+K) = 0

are all contained in the left half plane, that is, they have negative real part.
Look at the model described in [2], and try to compute the eigenvalues using
polyeig in MATLAB — the model is very simple, these are 2 × 2 matrices.
Then, use Chebfun to determine for which values of the velocity v the system
is stable; compare your findings with the ones of the authors.

Possible hints:

• The eigenvalues depend analytically on the entries of the matrices, except
at at a few exceptional points; Chebfun has a special options to automati-
cally split the domain into parts where the function is smooth, which you
can enable by calling: chebfun(..., ’splitting’, ’on’).

• The paper is the file bicycle.pdf.

2 Finding the material characteristics of a por-
tal

Download the file portal.mat; this contains a vector called frequencies, and
two cell arrays K and M. These describe the parametric mass and stiffness matri-
ces of an undamped portal, of which the mass density and the Young’s modulus
of one of the two pillars are unknown (this a simplified model taken from [1])
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If we call ρ and E the mass density and the Young’s modulus of this material,
then the stiffness and mass matrices are given by

K(ρ,E) = K1 + EK1 + ρK2, M(ρ,E) = M1 + EM1 + ρM2.

The vector frequencies contains the first 5 natural frequencies of the structure,
given as fj =

√
λj/(2π), where λj are the eigenvalues of the pencil K − λM .

Consider the objective function

Φ(E, ρ) = ‖f(E, ρ)− f̂‖22,

where f(E, ρ) are the frequencies computed at some value of the parameters,

and f̂ the reference ones. It is known that the parameters lie in the box 109 ≤
E ≤ 1010, and 103 ≤ ρ ≤ 104. Use Chebfun2 to construct a model of the
objective function, and find its minimum.

Hints:

• You can use eigs in MATLAB to solve the eigenvalue problem, and only
compute the first 5 eigenvalues. For this problem, the smallest eigenvalues
are of interest!

• As you will sound find out, solving a large scale eigenvalue problem at
every Chebyshev points takes a considerable amount of time; therefore,
we should come up with some decent model reduction idea to reduce the
size of the problem before feeding it into chebfun. One possibility is to
compute a few eigenvectors of the smallest eigenvalues of the problem
for a few values of the parameters xj , yj , put them together in a matrix
side by side; then take an SVD (economy-size!), and construct a basis of
the column space by dropping singular values relatively smaller than, say,
10−3. Then, project everything setting K̃j = UTKjU and M̃j := UTMjU ,
and use this reduced model in Chebfun.

• Once you find the first minimum, you may want to construct a second
chebfun object on a much smaller domain around the minimum, and try
to refine the approximation.

3 Transient behavior of an ODE

Load the matrix A from the transient MAT file. This defined an ODE{
ẋ = Ax,

x(0) = x0
,

for different values of x0. We are interested in x0 of Euclidean norm 1, obtained
by combining and normalizing the vectors e6 and e7.

• Verify that this matrix is stable (the real part of its eigenvalues is strictly
negative), and therefore limt→∞‖x(t)‖2 = 0.
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• Use chebfun to verify what the maximum transient norm is. That is,
compute

max
x0=αe6+βe7
‖x0‖2=1

max
t≥0
‖etAx0‖2.

• Hint: Since limt→∞‖x(t)‖2 = 0, it is sufficient to consider a finite interval
for the time.

• Concerning the previous points, explicitly give the starting vector x0 (in-
side the considered set) and the time t, at which the maximum possible
norm is reached.

• Find the starting point x0, inside the considered set, which minimizes the
norm in the transient state. That is, compute

min
x0=αe6+βe7
‖x0‖2=1

max
t≥0
‖etAx0‖2.

The matrix reported has been considered in [3].

4 Fast multiplication by a kernel function

Consider the following operation. Given f(x), we want to compute the integral
transform

f̂(x) :=

∫ 1

−1
log
(
1 + x2 + y2

)
f(y) dy.

• Use chebfun2 to implement this transform; hint: define the bivariate in-
tegral and integrate out one variable using the sum command.

• Try your implementation on a few test functions. For instance, for f(x) =
x+ 1 you should get the following result:
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• Modify your procedure to compute the integral transform

f̃(x) :=

∫ 1

−1
log (1 + |x− y|) f(y) dy.

You will see that this cannot be extended so easily. Why is that?

• Find a way around the problem, and test it on some function. For instance,
the plot above should now look as follows:
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• Hint for developing the scheme:

– You can split the kernel κ(x, y) as

κ(x, y) = κ11(x, y) + κ12(x, y) + κ21(x, y) + κ22(x, y),

where each splitting has support in one of the four parts of the domain
[−1, 1]2 obtained by splitting both x and y in two equal parts. On
two of these domains, κ(x, y) is smooth, so the previous approach
works with no problems, on the other, we may call our procedure
recursively.

– When the domain gets small enough (say, the width is smaller than
1/10), use some crude approximation of the integral. Here x ≈ y,
and therefore the contribution will be close to 0.

• The above scheme will not be super-effective, as it is — but it should at
least complete in a bunch of seconds.

• A clever observation of self-similarities inside the above decomposition
might lead to a more efficient technique!
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