
Low-Rank Approximation

Lecture 1 – Low-rank Approximability

Leonardo Robol, University of Pisa, Italy

Cagliari, 23 Sep 2019

1



The high-level program

Here is an outline on the content of these lectures.

1. Introduction, theoretical tools, structures of interest.

2. How to approximate a low-rank matrix?

3. Functional low-rank approximation and Chebfun2.

4. Matrix equations.

5. Matrix equations in practice – more general rank structures.
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Introduction

As we will see throughout these lectures – low-rank approximation is a general concept

that fits different applications:

• Data compression.

• Acceleration of transforms (Fast multipole schemes / polynomial transforms /

singular kernels).

• Data identification (PCA).

• Convenient way of treating bivariate (and possibly multivariate) functions.
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Notation

Throughout this course:

• A is an m × n matrix. That is:

A =


a11 . . . a1n

...
...

am1 . . . amn

 , aij ∈ C or aij ∈ R.

• AT is the transposed matrix (row exchanged with columns).

• U ∈ Cm×k and V ∈ Cn×k will usually be tall and skinny matrices. We use them

to approximate A ≈ UV T .

• u, v ,w are vectors.

• ‖·‖ denote matrix and vector norms.

• σj(A) will denote singular values of A.

4



What is rank?

Back to our first day of linear algebra, we can think of a matrix A ∈ Cm×n as a linear

operator from Cn to Cm that sends v into Av .

w = Av =

a1 . . . an



v1

...

vn

 = a1v1 + . . .+ anvn.

• The column-rank is the dimension of the range of A.

• The row-rank is the column rank of AT

For matrices, we have row-rank = col-rank. That’s why we call it just rank.
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Why do we like low-rank matrices?

Several reasons, which we will explore throughout these lectures, but mostly the

advantages are (assume m = n)

• Reduced storage (typically from O(n2) to O(n))

• Reduced complexities: often linear algebra operations can go down from O(n3) to

O(n).

• Parameter identification: reduction to the “real” number of degrees of freedom.

This will be the kind of results related to PCA, which we will discuss in the next

days.
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Storage reduction

Assume we have a m × n matrix A of rank k , then we can store it as

A = UV T =

Storage on the left is O(mn), on the right is O(k(m + n)). This has tons of

applications; for instance, image compression.
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Image compression

Consider the following image with 900× 1600 pixels:

8 bit per pixel, RGB channels

Storage is 3 · 8 · 900 · 1600 bits ≈ 4.2 MB.

The exact rank is 900.

We can approximate it as an image with a lower rank

(and thus cheaper to store!).
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Image compression

Consider the following image with 900× 1600 pixels:

8 bit per pixel, RGB channels

Approximated with rank 100.

Storage is 3 · 8 · 100 · (900 + 1600) bits ≈ 730 KB.

Reminder: the exact rank was 900.
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Image compression

Consider the following image with 900× 1600 pixels:

8 bit per pixel, RGB channels

Approximated with rank 50.

Storage is 3 · 8 · 50 · (900 + 1600) bits ≈ 360 KB.

Reminder: the exact rank was 900.

10



Image compression

Consider the following image with 900× 1600 pixels:

8 bit per pixel, RGB channels

Approximated with rank 10.

Storage is 3 · 8 · 10 · (900 + 1600) bits ≈ 73 KB.

Reminder: the exact rank was 900.
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Complexity reduction: an integral transform

Consider the following integral transform for functions over [0, 1]:

f̂ (x) =

∫ 1

0

f (y)

1 + x + y
dy .

If we discretize [0, 1] with N points by xj = jh, h = 1
N−1 and j = 0, . . . ,N − 1, then:

f̂ (xj) ≈ −h
3f (0) + f (1)

6
+

N−1∑
j=0

h
g(yj)

1 + xi + yj
. (trapezoidal rule)

In linear algebra terms, we have

f̂ = Cf + f01, Cij =
1

1 + xi + yj

Without further assumptions, the cost of a matrix-vector multiplication is O(N2) flops.
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Low-rank approximation in action

The matrix C is a Cauchy matrix, and can be approximated by a rank k � N one

C ≈ UV T . Then,

f̂ = Cf = U(V T f ), that requires O(Nk) flops.

Example: N = 1000, k = 5, we have UV T of rank k such that

‖C − UV T‖2 ≤ ‖C‖2 · ε, ε ≈ 10−9

• Are all matrices low-rank?

• Can we say a priori when the matrix we care about is?

• May we consider also more general, and maybe “weaker”, structures?
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More general rank structures

We have considered the definition of rank and numerical rank. Later on, we will

consider also more general (but related) structures.

Informal definition
We say that the matrix A is hierarchically low-rank if it can be partitioned as:

A =

[
A11 A12

A21 A22

]

such that:

• A12 and A21 are low-rank.

• A11 and A22 are again hierarchically low-rank, or they are “small”.

In practice, often we select a rank k and we check if the off-diagonal blocks are of rank

at most k , until the diagonal blocks do dimension at most k.

The analogous definition might be given for numerical rank.
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Numerical hierarchical rank

Let A be a matrix such that for every partitioning:

A =

[
A11 A12

A21 A22

]
,

such that:

• A12, A21 are numerical of rank k: there exist perturbations δA21 and δA12 such

that A21 + δA21 and A12 + δA12 are both rank k, and ‖δA21‖2, ‖δA12‖2 ≤ ε.
• This property continues to hold recursively on the diagonal blocks.

Does this implies the existence of a hierchically rank k matrix A + δA, such that

‖δA‖2 . ε? Yes, but we need to assume ‖δA‖2 ≤ log(n)ε.
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Matrices in this class

A lot of matrices are in this class:

• Banded matrices.

• Green matrices.

• Discretization of integral operators.

• The class is closed under addition, multiplication, and inversion: any of these

operations still gives a matrix inside the class1.

1Up to a moderate increase in the rank.
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Efficient representation for hierarchically low-rank matrices

Efficiently storing (and operating on) such matrices is inherently more complicated

than in the low-rank case. For a rank k matrix, we can always build the factorization

A = UV T , U ∈ Cm×k , V ∈ Cn×k .

The analogous in the hierarchical case requires a recursive representation. Given the

index sets:

I = {1, . . . ,m}, J = {1, . . . , n},

we build two trees recursive representing the splitting of the indices. For square

matrices, we can consider just one index set I .
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Row and column clusters

The tree representing the recursive splitting is called row or column cluster.

I = {1, 2, 3, 4, 5, 6, 7, 8}

I 1
1 = {1, 2, 3, 4} I 1

2 = {5, 6, 7, 8}

I 2
1 = {1, 2} I 2

2 = {3, 4} I 2
3 = {5, 6} I 2

4 = {7, 8}

I 3
1 = {1} I 3

2 = {2} I 3
3 = {3} I 3

4 = {4} I 3
5 = {5} I 3

6 = {6} I 3
7 = {7} I 3

8 = {8}

` = 0 ` = 1 ` = 2 ` = 3
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HODLR representation

The simpler representation is obtained by storing each off-diagonal block at each level

as a low-rank matrix outer product UV T :

• At each level `, we need 2` blocks;

• The blocks at level ` are of size ≈ n
2`
× n

2`
, so they require about nk

2`
each: O(nk)

storage for every level.

• Since we have about O(log n) levels, this yield a storage cost O(nk log n).

Most arithmetic operation are easily implementable within this format, and they require

similar complexities: for instance, for the sum A + B we have O(n(kA + kB)2 log n).

Typical complexity: O(nk2 logα n), 1 ≤ α ≤ 2.
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Fast matrix-vector product

As in the low-rank case, this has advantages not only for the storage, but also for

efficiently applying structured operators:

Av =

[
A11 A12

A21 A22

][
v1

v2

]
=

[
A11v1 + A12v2

A21v1 + A22v2

]

We need to implement:

• A fast matrix-vector for the products A21v1 and A12v2: these are low-rank, so we

already know how to do it!

• Fast matrix-vector products for A11v1 and A22v2; these matrices are again

hierarchically low-rank, so either we handle this directly (if they are small), or we

do it recursively.
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Example: sum in the HODLR format

The sum can be implemented recursively:

A + B =

[
A11 A12

A21 A22

]
+

[
B11 B12

B21 B22

]
=

[
A11 + B11 A12 + B12

A21 + B21 A22 + B22

]

• The diagonal blocks are handled directly if they are sufficiently small, otherwise

the procedure is called recursively.

• The off-diagonal blocks are handled by generating a low-rank representation for

the sum:

A12 = UAV
T
A , B12 = UBV

T
B =⇒ A12 + B12 =

[
UA UB

] [
VA VB

]T
,

and analogously for A21, B21.

• This new representation might be redundant in general; the hierarchical rank of

A + B is at most the sum of the hierarchical ranks of A and B.
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Another example: matrix multiplication

AB =

[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
Here we have:

• Products of low-rank matrices:

(UAV
T
A ) · (UVB

T
V ) = UA(V T

A UA)V T
B .

• Products of hierarchical matrices with a low-rank matrix:

A(UBV
T
B ) = (AUA)V T

B (need fast matvec)

• Products of two hierarchical matrices, which is handled recursively.

• Hierarchical rank of AB is at most the sum of the hierarchical ranks of A and B2.
2Under some additional assumptions, otherwise it might increase of a log n factor
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HSS representation

If we make stronger hypotheses on the rank structure, we can get rid of the

logarithmic factor. This requires a more involved representation; matrices in this form

are called hierarchical semi separable (HSS).

Let I `i be the index sets at level i , then, we call:

• HSS block rows, the submatrices A(I `i , I \ I `i ).

• HSS block columns, the submatrices A(I \ I `i , I `i ).

A(I 3
4 , I \ I 3

4 ) A(I \ I 2
3 , I

2
3 )
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Construction of the HSS representation

Under the assumption of the previous slide, we can construct the basis for each HSS

block row and columns at the lowest level. We call these matrices:

• U`
i , for the basis for the rows at i-th level.

• V `
i , for the basis of the columns at the i-th level.

Then, assuming Ud
i ,V

d
i are known, where d is the number of levels:

U
(`)
i =

[
U

(`+1)
i1

0

0 U
(`+1)
i2

]
R

(`)
U,i , V

(`)
j =

[
V

(`+1)
j1

0

0 V
(`+1)
j2

]
R

(`)
V ,j ,

• The operators R
(`)
U,i are called translation operators.

• Similar operators RV ,i are the defined for the columns.

• Existence is guaranteed by the conditions on the rank of the HSS block row and

columns.

• Each off-diagonal block is represented as U`
i B

`
ij(V

`
j )∗. We call the Bij core blocks.

24



Storage cost for HSS matrices

To store an HSS matrix, we need:

• The basis U`
i and V `

i at the lowest level: O(nk) storage.

• The translation operators at level `: there are 2` of them, and they require O(k2)

storage.

• The core blocks are O(2`), and require O(k2) each.

We now sum all the contributions, accounting for the fact that the number of levels is

smaller than log n
k , yields O(nk) storage.

Note that, generally, an HODLR matrix with ranks k might be an HSS matrix with

rank k log n — but in all practical cases these two ranks match, so the HSS format

requires less storage.
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Numerical HSS rank

Let A be a matrix such that:

• All the HSS block rows are of rank k up to a perturbation smaller than ε.

• The same holds for the HSS block columns.

Does this implies the existence of a HSS matrix A + δA with HSS rank k, such that

‖δA‖2 . ε? Yes, but we need to assume ‖δA‖2 ≤ 2
√
nε.

Proof is slightly more demanding.
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HODLR and HSS matrices in practice

We will meet HODLR and HSS matrices again at the end of these lectures, when we

will enough theory to construct and work with them.

In practice, all the complexity in the implementation can be overcome by using some

premade tools: we will use hm-toolbox (Hierarchical Matrices Toolbox).

Brief recap:

• We have seen that low-rank matrices can accelerate arithmetic operations.

• Even for matrices that are not low-rank, we may still be able to find low-rank

parts in them, and make operations fast, reduce storage costs.

The point is: how do we know beforehand when these good low-rank approximations

exist? And how do we find them in practice?
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Vector norms

Brief linear algebra recap: a norm on a vector space (for us, Rm), is a function

‖·‖ : Rm → R such that

1. ‖v‖ = 0 ⇐⇒ v = 0.

2. ‖αv‖ = |α| · ‖v‖.
3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangular inequality).

If we lose property 1, then this is a semi-norm.

Important special case: if 〈v ,w〉 is a scalar product, then

‖v‖ :=
√
〈v , v〉

is a norm. Not all norms are like this!
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Matrix norms

Mostly, we will consider the following norms for matrices:

• Induced norms, or operator norms, which are defined by a norm ‖·‖ on Rm:

‖A‖ := max
‖v‖=1

‖Av‖.

In practice, we consider only ‖v‖p :=
(∑n

j=1 |vj |p
) 1

p
.

• The Frobenius norm ‖A‖F , defined by

‖A‖F :=

∑
i ,j

|Aij |2
 1

2

=
√
tr(ATA).
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Important norms and properties

Reminder: Orthogonal/Unitary matrices are such that UTU = UUT = I , or

UHU = UUH = I (on the real and complex field, respectively).

• The norms ‖·‖2 and ‖·‖F are unitarily invariant, i.e., for every unitary norm U we

have ‖AU‖2 = ‖A‖2 and ‖AU‖F = ‖A‖F .

• ‖A‖∞ = ‖AT‖1, and

‖A‖∞ := max
i=1,...,n

n∑
j=1

|Aij |.

• The Euclidean norm ‖·‖2 is induced by a scalar product:

〈v ,w〉 = vTw = wT v .

• All our norms are submultiplicative, i.e., ‖AB‖ ≤ ‖A‖ · ‖B‖.
• The Frobenius norm is induced by the scalar product on matrices:

〈A,B〉 := tr(BTA) = tr(ATB).
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Approximation using the SVD

Truncating the SVD gives optimal approximant with respect to the norms ‖·‖2 and

‖·‖F . Let us consider A = UΣV T and

Ak := U


σ1

. . .

σk

0m−k,n−k

V T .

• Ak has rank ≤ k , and exactly k if σk 6= 0.

• Ak is the best rank k approximant in the Euclidean and Frobenius norms.

31



Optimal approximants

For Ak , we have that for every B of rank at most k ,

‖A− B‖2 ≥ ‖A− Ak‖2 = σk+1.

and analogously for the Frobenius norm:

‖A− B‖F ≥ ‖A− Ak‖F =

min{m,n}∑
j=k+1

σ2
j

 1
2

.

Brief recap:

• The SVD is the “optimal tool” for low-rank approximation;

• However, it is very expensive (it requires O(mn2) if m ≥ n flops).
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How much does it cost in practice?

We can try to time the computation of the SVD on a laptop, for n × n matrices:

m = n Time (s)

128 0.005

256 0.011

512 0.060

1024 0.688

2048 5.234

4096 34.39
...

...

• This becomes quickly unpractical!

• One has to exploit the structure at our disposal to obtain a faster procedure.
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Matrix functions

The theory of low-rank approximation is closely related to the ones of matrix functions.

We need to take a small detour in this theory. Throughout this section, all the

matrices are square (n × n).

• Matrix functions are interesting objects that often arise in applications.

• Well-known examples are:

• matrix powers (Ak , or even Aα where α ∈ R+)

• the matrix exponential eA — the computation of etA is related to solving ODEs and

PDEs.

• Some less known functions are often used as well, such as log(A).
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The plan

We do not need the full theory of matrix functions, but to answer the following:

• If f (z) is a polynomial/rational function/analytic function, what does it mean to

compute f (A)?

• How large is ‖f (A)‖2/F ? Can we answer looking at the spectrum of A?

The second result in particular will be key to understand how accurate are the low-rank

approximation that we consider. Often the error will be expressed as ‖f (A)‖2/F .
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Polynomials

Let p(z) be a degree d polynomial, then p(A) is defined by

p(A) = p0I + p1A + . . .+ pdA
d , p(z) =

d∑
j=0

pjz
j .

• This is well-defined for any square matrix A — no hypotheses needed.

• Note that p(A) and A commute — and indeed if A is diagonalizable they have the

same eigenvectors.

Assume Av = λv . Then, p(A)v = p(λ)v . Then,

• The eigenvector stay the same (and so do invariant subspaces, and Jordan chains).

• if λ is an eigenvalues of A, then p(λ) is an eigenvalue of p(A).

These results are sometimes called spectral mapping theorem.
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Analytic/Holomorphic functions

The definition for polynomials might suggest the following more general one:

Definition
Let f (z) be an holomorphic function over the open ball B(z0,R), and A be a matrix

with spectral radius ρ(A− z0I ) < R. Then,

f (A) =
∞∑
j=0

f (j)(z0)

j!
(A− z0I )

j .

• If f (z) is a polynomial, we have the same definition of before.

• If z0 = 0 and f (z) = ez we get the matrix exponential.

• We have exactly the same property concerning eigenvalues and eigenvectors of A

and f (A) (same eigenvectors, mapped eigenvalues): again the spectral mapping

theorem.

• Note that for every invertible V , f (V−1AV ) = V−1f (A)V .
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Looking at the spectrum

The comments on the spectrum inspire another definition:

Definition
Let A be diagonalizable, and V a basis of eigenvectors so that V−1AV = D is

diagonal. Then,

f (A) := V−1f (D)V , f (D) :=


f (D11)

. . .

f (Dnn)

 .

• Equivalent to the previous definition for analytic f (z), but valid for more general

functions.

• On the other hand, is valid only for less general matrices!

• But in reality, “almost” all matrices are diagonalizable (these are dense in the

class of all matrices) – so we do not have problems for any continuous function.
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A satisfying definition

We can give a definition that overcome all the drawbacks that we had, using the

Jordan Canonical form.

Definition
Let f (z) be a function defined at the eigenvalues of λi of A, and such that has

derivatives of order at least equal to the multiplicities of the eigenvalues at those

points. Then, let J = V−1AV be a JCF of A, then f (A) := Vf (J)V−1 where

J =


J1

. . .

Jk

 , f (Ji ) :=


f (λi ) f ′(λi ) . . . f (ni−1)(λi )

. . .
. . .

...
. . . f ′(λi )

f (λi )

 .

• Covers all the previous cases we have considered.

• Quite difficult to use in practice.
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Consequences

The last definition is the more “general” — and allows to draw some conclusions on

the algebraic structure.

• Matrix functions change the eigenvalues (resp. Jordan blocks) through the

relation λ 7→ f (λ) (resp. Jλ 7→ f (Jλ)).

• The eigenvector stay the same, and so do the Jordan chains.

• Note that the algebraic multiplicities might change, because f might not be

injective (and therefore have f (λ1) = f (λ2) with λ1 6= λ2) — but the length and

structure of the chains is preserved.
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Another definition for holomorphic functions

There is a last useful definition that is valid for holomorphic function, and is at the

basis of the holomorphic functional calculus.

f (A) =
1

2πi

∫
Γ
f (z)(zI − A)−1 dz ,

where Γ is a path enclosing once the spectrum of A, with positive orientation (i.e.,

counter-clockwise). The equivalence is easy to prove, for instance, for diagonalizable

matrices, using the residue theorem.
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Approximating the action of matrix functions

Assume we are given a matrix A and a vector b: how do we approximate x = f (A)b?

• If f (z) = ez this finds application in exponential integrators and direct solution of

ODEs. Indeed, if you haveẋ = Ax

x(0) = b
=⇒ x(t) = etAb.

• A special case is given by f (z) = z−1: we have the solution of a linear system:

x = A−1b ⇐⇒ Ax = b.

How to efficiently compute such objects?
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Small-scale case

If A is “small”, say at most 100× 100, we can compute f (A) explicitly, and then

compute directly f (A)b by matrix-vector multiplication.

• We have good specialized methods for some functions (MATLAB functions expm

for ez , logm for log(z), sqrtm for
√
z , . . . ).

• Generic method may work well for other cases (MATLAB funm, based on

Schur-Parlett algorithm – requires to know derivatives of f (z)).

What about larger matrices?

• In these cases, we usually know how to perform v 7→ Av efficiently.

• Sometimes, v 7→ (A− σI )−1v is available at a reasonable cost.
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Projection methods

To handle a large scale A we can use projection methods. General idea:

• Construct a “good” projection space U , spanned by the orthogonal matrix

Q ∈ Rn×`.

• Construct A` := QT
` AQ` ∈ Rk×k .

• Compute f (A`) (a small matrix function!).

• Approximate f (A)b ≈ Q`f (A`)Q
T
` b.

Exercise
Assume A = UUT , with U ∈ Rn×` has rank at most `; then, for every f (z) with

f (0) = 0, we have

f (A) = Q`f (A`)Q
T
` , Q` spans U.

What happens if f (0) 6= 0?
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A closer look at this approach

Note that if the previous approach works, then

f (A)b ≈ Q`f (A`)Q
T
` b

means that the action of f (A) on b is well-approximated by a low-rank matrix

Q`f (A`)Q
T
` . How to choose this subspace?

• If we understand this, we might be able to say something about the low-rank

approximation problem more in general!

• Several choices are possible for the subspace spanned by Q`. We will concentrate

on Krylov subspaces.
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Polynomial Krylov subspaces

Definition
Given a square matrix A and a vector b, we define the polynomial Krylov subspace

spanned by A and b as follows:

K`(A, b) := span{b,Ab, . . . ,A`−1b}

• Generically, we expect it to have dimension `.

• Clearly, K`(A, b) ⊆ K`+1(A, b).

• For every polynomial p(z) of degree at most `− 1, we have p(A)b ∈ K`(A, b).

Indeed, we can easily verify:

K`(A, b) := {p(A)b | p(z) with deg ≤ `− 1}.
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A link with polynomial approximation

Since Krylov subspaces contain polynomials in A – we may use them to approximate

f (A)b if f (z) ≈ p(z), for a (low degree) polynomial.

Theorem (Weierstrass)
Let Ω be a compact subset of R. Then, every continuous function can be

approximated uniformly well with polynomials. That is, given f (z) there exists a

sequence of polynomials pk(z) such that

lim
k→∞
‖f (z)− pk(z)‖∞ = 0

A related result holds in the complex plane as well:

Theorem (Mergelyan)
Let K a compact set such that C \ K is connected. Then, every continuous function

defined on K such that its restriction to the interior part of K is holomorphic can be

uniformly approximated by polynomials.
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A link with polynomial approximation

• Since f (z) ≈ p(z), can we claim that f (A) ≈ p(A)?

• If that’s true, than K`(A, b) contains a good approximation of f (A)b, since it

contains p(A)b; how to compute it in practice?

• Numerically, Weierstrass’ theorem is not as strong as it might seem . . . why?

The main limitation is that we don’t know anything about the speed of convergence.
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Building a basis for the polynomial Krylov subspace

Recall that, for our projection method, we need an orthogonal basis of K`(A, b). How

to retrieve it? We use the Arnoldi iteration:

• We can choose Q` its first `− 1 cols are equal to Q`−1.

• Note that if Q` spans K`(A, b), then AQ` ⊆ K`+1(A, b).

Indeed,

v ∈ K`(A, b) ⇐⇒ v = p(A)b, deg(p) ≤ `− 1.

Then, Av = Ap(A)b = q(A)b where deg q ≤ `, and therefore Av ∈ K`+1(A, b).

• This implies that the ` columns of AQ` can be written as linear combination of

the `+ 1 columns of Q`+1; in matrix terms:

AQ` = Q`+1H`, H` :=


× . . . ×

×
...

. . . ×
×


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Arnoldi iteration

The matrices Q`,H` can be built incrementally as ` increases.

• If ` = 0, we have

H0 = 01×0, Q0 = 0n×0, Q1 :=
b

‖b‖2

• If we know the Arnoldi relation for `, we can construct Q`+2 and H`+1 imposing

AQ`+1 = Q`+2H`+1 =

 Q`+1 v`+2

[ H` w`+1

β`+1

]
.

• v`+2 and w`+1 are computed by Gram-Schmidt reorthogonalization – as if β`+1.

We can checkout a few examples in MATLAB.

50



Arnoldi iteration

The matrices Q`,H` can be built incrementally as ` increases.

• If ` = 0, we have

H0 = 01×0, Q0 = 0n×0, Q1 :=
b

‖b‖2

• If we know the Arnoldi relation for `, we can construct Q`+2 and H`+1 imposing

AQ`+1 = Q`+2H`+1 =

 Q`+1 v`+2

[ H` w`+1

β`+1

]
.

• v`+2 and w`+1 are computed by Gram-Schmidt reorthogonalization – as if β`+1.

We can checkout a few examples in MATLAB.

50



Obtaining the projection

Right now we have Q`, the basis of the space. But H` allows to extract A` = QT
` AQ`

easily. Indeed,

AQ` = Q`+1H` =⇒ QT
` AQ` = (QT

` Q`+1)H`.

• The columns of Q` and Q`+1 are orthogonal, so we have

QT
` Q`+1 := [γij ] i=1,...,`

j=1,...,`+1
=
[
I` 0`×1

]
.

• Putting the pieces together yields:

H`+1 =

[
A`

γ`+1,`e`T

]
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Krylov exactness

A crucial property of Krylov subspace if the following.

Theorem (Exactness)
If A be any square matrix, b a vector Q` spanning K(A, b) and

v` := Q`f (QT
` AQ`)Q

T
` b.

If f (z) is a polynomial of degree at most `− 1, then v` = f (A)b.
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Accuracy of the projection method

Our setting:

• We consider a matrix A and a vector b, and build a basis Q` of K`(A, b), and

A` := QT
` AQ`.

• We approximate f (A)b ≈ Q`f (A`)Q
T
` .

Theorem
Let A be a square matrix, Q` orthogonal spanning K`(A, b). Then,

‖f (A)b − Q`f (A`)Q
T
` b‖2 ≤ min

deg p≤`−1

(
‖r(A)‖2 + ‖r(A`)‖2

)
· ‖b‖2,

where r(z) = f (z)− p(z).

If A is symmetric and there exists p(z) with |p(z)− f (z)| ≤ ε, then

‖f (A)b − Q`f (A`)Q
T
` b‖2 ≤ 2‖b‖2ε.
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Proof

The exactness property is key to proving the previous result. We have, by setting

A` = QT
` AQ`,

‖f (A)b − Q`f (A`)Q
T
` b‖2

≤ ‖f (A)b − p(A)b + Q`p(A`)Q
T
` b︸ ︷︷ ︸

=0, thanks to the exactness

−Q`f (A`)Q
T
` b‖2

≤ ‖f (A)b − p(A)b‖+ ‖Q`(f (A`)− p(A`))QT
` b‖2

= ‖r(A)b‖2 + ‖r(A`)Q
T
` b‖2,

where r(z) = f (z)− p(z). As a last step, we can take the vector b and QT
` b out of

the norms — and both are smaller than ‖b‖2 in norm:

‖f (A)b − Q`f (A`)Q
T
` b‖2 ≤

(
‖r(A)‖2 + ‖r(A`)‖2

)
· ‖b‖2.

54



Important take-home messages

Several nice features:

• The projection method is quasi-optimal – as the recovered approximation is

almost as good as the best polynomial approximation.

• However, there is no need to know the approximation a priori — the quasi-optimal

result is automatically extracted!

. . . and some limitations as well:

• For many interesting functions, polynomial approximation converge slowly.

• For instance, f (z) = 1/z or f (z) = zα with −1 < α < 1.

• For this case, one can resort to rational functions, instead of polynomials (more

on this later!).
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Making the bound explicit

The measured accuracy depends on ‖r(A)‖2 and ‖r(Am)‖2 – can we make these

numbers more “explicit”?

• Intuitively, if |f (z)− p(z)| ≤ ε on the set of eigenvalues is small, then r(A) is

small as well.

• Sometime intuition can be misleading:

A =

[
1 1

0 1

]
, r(z) = γ(z − 1), ‖r(A)‖2 =?

• A direct computation yields ‖r(A)‖2 = |γ|. r(z) ≡ 0 on the spectrum, yet

‖r(A)‖2 can be arbitrarily large!
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The normal case

As we have seen, the spectrum might not describe (in general) the norm of ‖r(A)‖2.

• There are classes of matrices for which this is true.

• We define normal matrices as matrices which commute with their transpose, i.e.,

for which we have:

AAT = ATA

• Examples: symmetric (resp. Hermitian) or orthogonal (resp. unitary) matrices.
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Diagonalization of normal matrices

Theorem
An n × n matrix is normal if and only if it can be diagonalized by orthogonal / unitary

matrices. That is, A normal iff there exists Q with QTQ = I such that

QTAQ = D, D diagonal.

• It is immediate to check that a matrix A = QTDQ is normal.

• On the other hand, if A normal then QTAQ is normal; then, we can compute the

Schur form T = QTAQ — and upper triangular normal matrices are diagonal

(easy, induction).
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Functions of normal matrices

If A is normal, then we have

f (A) = QT f (D)Q =⇒ ‖f (A)‖2 = ‖f (D)‖2 = max
j=1,...,n

|f (λk)|,

where λk are the eigenvalues of A.

• For normal matrices, the spectrum tell us everything on functions of matrices.

• Evaluating the function on the set Λ(A) gives us a bound for the norm of f (A).

• Can this property be extended to more general matrices?
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K -spectral sets

Definition
A set Ω is a K -spectral set for A if, for any matrix function f (z), we have

‖f (A)‖2 ≤ K max
z∈Ω
|f (z)|.

• Example: For normal matrices, Ω := Λ(A) is a 1-spectral set.

• Idea: we can try to find suitable sets, larger than Λ(A), such that this property

continue to hold.
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Diagonalizable matrices

Theorem
If A is diagonalizable, let V such that V−1AV = D. Then,

‖f (A)‖2 ≤ κ2(V ) · max
j=1,...,n

|f (λj)|.

Then, Λ(A) is a κ2(V )-spectral set for A.

• Unfortunately, if κ2(V ) is large this result can become almost meaningless.

• A similar result can be stated based on the Jordan Canonical Form (even though

it’s not very useful in practice) – how would it look like?
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Looking at contour integrals

Remember the integral definition of matrix functions:

f (A) =
1

2πi

∫
Γ
f (z)(zI − A)−1 dz .

This can be used to construct K -spectral sets by leveraging the pseudospectrum.

• Let us denote by RA(z) := (zI − A)−1 the resolvent of A.

• Clearly, by a slight abuse of notation, ‖RA(z)‖2 =∞ is and only if z is an

eigenvalue of A.

This connection has been used to give a more “robust” definition of spectrum – the

ε-pseudospectrum.
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Pseudospectrum

Definition
The set Λε(A), defined as follows

Λε(A) := {z ∈ C | ‖zI − A‖ ≥ ε−1},

is called the ε-pseudospectrum of A.

• This is a “continuous” extension of the spectrum. Clearly, it always include the

spectrum: Λ(A) ⊆ Λε(A).

• Encodes the idea of “robust eigenvalues”.

• Natural application to stability analysis.

• Might work with any norm (for us: mainly ‖·‖2).
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Building a K -spectral set using the pseudospectrum

Let Γε be a positive orientation contour of Λε(A). Then,

f (A) =
1

2πi

∫
Γε

f (z)(zI − A)−1 dz =⇒ ‖f (A)‖2 ≤
L(Γε)

2πε
· max
z∈Λε(A)

|f (z)|,

where L(Γε) is the length of the boundary of Λε(A). In particular, Λε(A) is a K -spectral

set for K := L(Γε)
2πε .

• This construction is valid for any ε: choosing the right value can give you good

bounds.

• Choosing the optimal ε can be tricky, as describing (and computing the length of

the boundary) Λε(A).

See: example pseudospectrum.m
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Computing the pseudospectrum

There are quite obvious difficulties with replacing the spectrum with the

pseudospectrum:

1. The first is often available from theorerical considerations; the second, instead, is

usually much harder to determine.

2. In particular, given a matrix A, how do we actually compute ΛεA?

3. The choice of ε can be tricky.

We briefly discuss point 2., and we concentrate on the case where ‖·‖ = ‖·‖2.
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Strategy 1: Poor’s man pseudospectrum

We may go back at the original definition, and consider:

Λε(A) :=
⋃

‖δA‖2≤ε

Λ(A + δA)

Prototype algorithm:

• Choose a number k sufficiently large.

• Compute k random matrices δAj for j = 1, . . . , k .

• Scale these matrices to have norm ε.

• For each of them, compute the eigenvalues of the perturbed matrix A + δAj .

• Plot everything together.

Problems: quite costly, not necessarily very descriptive.
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Bounding Λε(A)

We can determine a region including Λε(A) in view of the following observation: If

|z | > ‖A‖2, then

(zI −A)−1 = z−1(I −z−1A)−1 =⇒ ‖(zI −A)−1‖ ≤ 1

|z |
· 1

1− |z |−1‖A‖2
=

1

|z | − ‖A‖2
.

This allows to prove the following:

Lemma
The pseudospectrum Λε(A) satisfies

Λε(A) ⊆ {|z | ≤ ‖A‖2 + ε}

Proof.
If |z | > ‖A‖2 + ε then

‖(zI − A)−1‖2 ≤
1

|z | − ‖A‖2
< ε−1,

so such z cannot belong to Λε(A). 67



Strategy 2: grid discretization

Since we have an inclusion result for Λε(A), we can:

• Determine a box in the complex plane where the pseudospectrum is included for

different values of ε.

• Evaluate the function ‖(zI − A)−1‖2 on that grid.

• Construct the contour plot starting from the above data.

Main issue: the evaluation of ‖(zI − A)−1‖2 is cubic if using the straightforward

algorithm. That amounts to a total cost O(kn3) where:

• k is the number of sampling points.

• n is the size of the matrix A.
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Strategy 2: grid discretization (+ Schur form)

How can we make the computation of ‖(zI − A)−1‖2 more efficient?

• One may estimate the norm by a power iteration:

xk+1 = (zI − A)−∗(zI − A)−1xk ,

for some starting vector x0. Then, ‖xk+1‖2/‖xk‖2 → ‖(zI − A)−1‖2.

• This would still cost O(n3) per grid point in general.

• We can precompute the Schur factorization of A:

A = QTQ∗, Q unitary.

In particular, zI − A = zI − QTQ∗ and this implies that

‖(zI − A)−1‖2 = ‖(zI − T )−1‖2

Luckily, triangular linear systems are cheaper to solve (only O(n2)). Therefore, we

have total complexity:

O(n3 + kn2),

where k is the number of grid points. 69



Summary (pseudospectrum)

• The previous algorithm is the one included in eigtool.

• It works fairly well for small to medium size matrices.

• The large scale case is more complicated: one can couple similar ideas with

running inverse Lanczos iteration: difficult to recycle at different values of z .

• This process clearly shows the difficulty in computing the constant Lε, especially a

priori.
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Field of values

There is another alternative to construct K -spectral sets using the field of values.

Definition
Let A be any square matrix; the field of values of A, denoted by W(A), is defined as

follows:

W(A) := {xHAx | ‖x‖2 = 1}

• Clearly, it is a compact set, included in B(0, ‖A‖2).

• If A is normal, then the field of values is the convex hull of its eigenvalues.

Theorem (Crouzeix)
The spectral set is a (1 +

√
2)-spectral set3 with respect to the 2-norm. That is,

‖f (A)‖2 ≤ (1 +
√

2) · max
z∈W(A)

|f (z)|.

3It is conjectured that the optimal constant is 2, instead of 1 +
√
2.
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Some properties

• W(αA) = αW(A).

• W(A + B) ⊆ W(A) +W(B).

• W(A) ⊆ B(0, ‖A‖) for every induced norm ‖·‖.
• The field of values is convex (Hausdorff-Toeplitz theorem).

See: example fov.m
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