
Low-Rank Approximation

Lecture 2 – Practical methods for low-rank approximation

Leonardo Robol, University of Pisa, Italy

Cagliari, 23–27 Sep 2019

1

Our goal today

Assume we are given some matrix A, and we are told that it can be efficiently

approximated as A ≈ UV T . How do we compute U,V , cheaply?

• What does cheap mean? We aim at complexities O(n) or O(n log n), where n is

the dominant size of A.

• What about the accuracy? Ideally, working in the 2-norm we would aim at getting

the best approximation given by the SVD: in practice, we will only approximate it

— trying to stay as close as possible.

We will present these strategies:

1. QR factorization with column pivoting.

2. Golub-Kahan-Lanczos bidiagonalization (close relation with Krylov methods).

3. Randomized methods.

4. Adaptive cross approximation.

2

A few numerical examples with the SVD

See: example svd.m.

Take-home message: SVD would be wonderful tool, if it were not that expensive; we

shall find a way to approximate it.

3

A few numerical examples with the SVD

See: example svd.m.

Take-home message: SVD would be wonderful tool, if it were not that expensive; we

shall find a way to approximate it.

3

QR factorization with column pivoting

• The standard QR factorization looks for an orthogonal matrix Q and an upper

triangular R such that A = QR.

• Here Q is m ×m and R is m × n.

• If A is low-rank, this can take a particular form:

A = QR =
[
Q1 Q2

] [R11 R12

0 R22

]
, R22 = 0 (or small).

4

QR factorization

Quick reminders:

• A QR factorization is a decomposition A = QR, with Q unitary, and R upper

triangular.

• Given a vector v , we can always find an Householder reflector P such that

Pv = ±αe1, with α := ‖v‖2.

• A can be made upper triangular with a sequence of n − 1 Householder reflectors.

P1P2 . . .Pn−1︸ ︷︷ ︸
QT

A = R ⇐⇒ A = QR = Pn−1 . . .P1R.

• The cost is O(m2n) for an m× n matrix. No advantage having a low-rank matrix.

5

Rank-revealing QR factorization

• If we order the columns in a smart way, we “detect” low-rank matrices.

• Such variants are known as rank-revealing QR factorizations.

• Several applications, among which solving (low-rank) least square problems.

Observation: if A = QR, and

Q =

q1 q2 . . . qn

 ,
then {q1, . . . , qk} span the column span of the first k columns of A.

6

Why we need column permutations

Consider A = ene
T
n . Then,

• A = I · A is the QR factorization, since A is already upper triangular!

• If we compute the factorization by Householder reflectors, we need n − 1 steps

before we get a good the vectors we need for the basis of the column span.

• Clearly, if we permute the n-th column into the first 1, at the first step of

reduction we already have all the necessary information!

7

QR with column pivoting

A =

a1 a2 . . . an

 .

• Compute the norms of the columns ‖aj‖2, for j = 1, . . . , n.

• Put the column ak with the largest norm in front.

• Compute an Householder reflector such that Pak = αe1.

• Apply it to the matrix, and continue the reduction on the trailing

(n − 1)× (n − 1) minor.

8

QR with column pivoting

Final result: A = QRΠ, with Π permutation.

• R has decreasing diagonal entries.

• If the rank of A is k, the method terminates in k steps.

• Cost: O(kmn).

• The norms of the columns can be downdated at a lower cost than recomputing

them from scratch.

9

Norm updates

Assume we have compute the norms of the columns ‖aj‖2, for j = 1, . . . , n. If we

apply a reflector P we end up with:

PA =

Pa1 Pa2 . . . Pan

 =


ã11 ã12 . . . ã1n

0 ã2 . . . ãn

 .
Clearly, we have

‖ãj‖2
2 = ‖Paj‖2

2 − |ã1j |2 = ‖aj‖2
2 − |ã1j |2.

If we store the square of the column norms we can get away with O(1) updates; we

just need to be careful with cancellation!

MATLAB1 code: [Q,R,P] = qr(A).
1Unfortunately, MATLAB will always compute the full Q, without stopping early if it detects a

low-rank of numerically low-rank matrix.

10

A quick look at the source code

See: rrqr.m

11

Golub-Kahan-Lanczos: computing eigenvalues of large scale matrices

To understand the Golub-Kahan approach, we first notice that

A = UΣV T ⇐⇒ AAT = UΣ2UT and ATA = VΣ2V T

and also

A = UΣV T ⇐⇒

[
V

U

][
AT

A

][
V

U

]T
=

[
Σ

Σ

]

• There is a close connection between computing singular values of and eigenvalues

of symmetric matrices. Indeed, the second formula is a reduction to a 2× 2 block

diagonal matrix with blocks of the form[
0 σj

σj 0

]
, which has eigenvalues ± σj , and eigenvectors

1√
2

[
1

±1

]
.

• We are only interested in the largest singular values and their singular vectors.

Can this be exploited?

12

Large-scale eigenvalue problems

• Let us focus on approximating the eigenvalues of A, i.e., solving the eigenvalue

problem Av = λv .

• we need to some structure, so we assume that we can compute v 7→ Av “fast”.

• We only care about large eigenvalues.

The simplest idea is the power method. Consider the iteration

v0 := random vector, v`+1 = Av`.

If A has a single dominant eigenvalue λ1 such that

|λ1| > |λ2| ≥ |λ3| ≥ . . . ,

then v`/‖v`‖2 converges to the eigenvector relative to λ1.

13

Large-scale eigenvalue problems

• Let us focus on approximating the eigenvalues of A, i.e., solving the eigenvalue

problem Av = λv .

• we need to some structure, so we assume that we can compute v 7→ Av “fast”.

• We only care about large eigenvalues.

The simplest idea is the power method. Consider the iteration

v0 := random vector, v`+1 = Av`.

If A has a single dominant eigenvalue λ1 such that

|λ1| > |λ2| ≥ |λ3| ≥ . . . ,

then v`/‖v`‖2 converges to the eigenvector relative to λ1.

13

Advantages and drawbacks of the power method

• Very simple to implement, only need matrix-vector products.

• The convergence rate is given by |λ1|/|λ2|. Could be slow if the eigenvalues are

not well separated!

• What if |λ1| = |λ2|? Things can go very badly . . .

• What if we want more eigenvalues? We may compute λ1 and its eigenvectors v1,

and then reapply the method to the deflated matrix

A1 := A− λ1v1v
T
1 , A2 := A1 − λ2v2v

T
2 , . . .

Note: After ` steps of the power method, the vector v` := A`v , so it belongs to the

Krylov subspace K`(A, v0). Idea: instead of v`, we may take the largest eigenvalue of

A projected onto K`(A, v0) as approximation to λ1.

14

Advantages and drawbacks of the power method

• Very simple to implement, only need matrix-vector products.

• The convergence rate is given by |λ1|/|λ2|. Could be slow if the eigenvalues are

not well separated!

• What if |λ1| = |λ2|? Things can go very badly . . .

• What if we want more eigenvalues? We may compute λ1 and its eigenvectors v1,

and then reapply the method to the deflated matrix

A1 := A− λ1v1v
T
1 , A2 := A1 − λ2v2v

T
2 , . . .

Note: After ` steps of the power method, the vector v` := A`v , so it belongs to the

Krylov subspace K`(A, v0). Idea: instead of v`, we may take the largest eigenvalue of

A projected onto K`(A, v0) as approximation to λ1.

14

Krylov methods

High-level description of the idea:

• Compute the projection A` = QT
` AQ`.

• Compute the eigenvalues of A` and use them as approximation to the largest

eigenvalues of A. If UT
` A`U` = D`, then the eigenvectors are approximated by

V` = Q`U`.

The method is harder to analyze than the power method, but is very powerful.

• The projection A` and the orthogonal basis Q` are easy to compute (recall the

Arnoldi projection).

• Eigenvalues (and eigenvectors) are approximated all together, we do not need to

restart from the beginning with deflation.

• How fast do the eigenvalues converge? Not so easy to say, in general.

• However, note that we can always compute the residual ‖Avj − λjvj‖2, which is

an indication of the backward error.

15

Arnoldi method for symmetric matrices: the Lanczos iteration

When applied to symmetric matrices, the Arnoldi projection scheme is called Lanczos2.

• The Lanczos iteration could be run “without” the reorthogonalization step.

• For improved stability, we will always run Lanczos with reorthogonalization.

• A key difference is that A` is upper Hessenberg and symmetric (being the

projection of a symmetric matrix), so is tridiagonal. This is what makes it possible

to derive a cheaper orthogonalization strategy.

2The reason is that it was originally formulated for tridiagonal reduction of symmetric matrices, and

then extended to general ones for reduction to upper Hessenberg form.

16

Adaptation to computing the SVD

• When dealing with symmetric eigenvalue problems, we approximate

A ≈ Q`A`Q
T
` .

Such approximation is accurate if the eigenvalues go to zero quickly – and the

ones in A` converge to the large eigenvalues of A.

• Working with the SVD, we need to consider two different bases:

A ≈ Q`A`U
T
` ,

where Q` spans K`(A, b) and U` spans K`(A
T ,Ab), for an appropriate vector b.

17

The method in practice

We iteratively construct the two bases Q,U as follows:

Q =

v1 v2 . . .

 U =

w1 w2 . . .


where we impose: Avj ∈ span{w1 . . .wj} and ATwj ∈ span{v1 . . . vj+1}.

• v1 := b/‖b‖2.

• w1 needs to span Av1, so we choose it as w1 := Av1
‖Av1‖2

.

• ATw1 needs to be in span{v1, v2}, so we choose v2 as

v2 :=
ATw1 − 〈ATw1, v1〉v1

‖ATw1 − 〈ATw1, v1〉v1‖2
.

• Av2 must belong to span{w1,w2}, so we choose it similarly.

• . . .

18

Breakdown

The method might break at any step for a division by zero. When does this happen?

• A quick check shows that either we have found an invariant subspace of ATA, or

an invariant subspace of AAT .

• We need to handle this condition and restart from a new vector orthogonal to the

invariant subspace.

• Slightly tricky to do in practice because, instead of a division by zero, we might

have a division by a small number.

19

Example application

Given x , y positive vectors, consider the symmetric Cauchy matrix

Cij :=
1

xi + xj
.

• This matrix has numerically low-rank (why? We will see this in a couple of days).

• Find a low-rank approximation C ≈ UV T to a certain accuracy ε.

• For being able to apply the Golub-Kahan-Lanczos method, we need a fast

matrix-vector multiplication v 7→ Cv .

20

Hankel matrices

Let us choose x := [1 2 3 4 . . .]. Then, C is the Hilbert matrix:

C =


1
2

1
3

1
4

1
5

1
3

1
4

. .
.

1
4

. .
.

1
5



• A matrix constant on the antidiagonal is called Hankel.

• The product by a vector can be computed in O(n log n) time.

• Clearly, it is symmetric – so the product by CT is easy as well.

21

Fast matrix vector multiplication

Note that, if we assume that C is left-antitriangular:

Cv =


cn . . . c0

... . .
.

c0



v0

...

vn

 =


c0vn + · · ·+ cnv0

...

v0c0


• The right hand side contains (part of) the coefficients of c(z)v(z), where

c(z) =
n∑

j=0

cjz
j , v(z) =

n∑
j=0

vjz
j .

• The product of two polynomials can be evaluate efficiently by combining
evaluation and interpolation using the FFT:

1. Evaluate the polynomials v(ξj) and c(ξj) where ξ are roots of the unity (FFT).

2. Compute the evaluation of the product v(ξj)c(ξj).

3. Interpolate the product by invrese FFT.

22

Trying it out in practice

See: example hankel.m

23

Randomized sampling

We will now see a different technique which is also a valid choice for problems where a

fast mat-vec is available:

• It is based on randomized methods – less prone to be stuck into invariant

subspaces, as it might happen to the Lanczos iteration.

• Well understood convergence theory.

• Very easy to implement and adapt to particular needs.

Let us check in person the (possible) limitations of Lanczos: example invariant.m.

24

Randomized sampling

We will now see a different technique which is also a valid choice for problems where a

fast mat-vec is available:

• It is based on randomized methods – less prone to be stuck into invariant

subspaces, as it might happen to the Lanczos iteration.

• Well understood convergence theory.

• Very easy to implement and adapt to particular needs.

Let us check in person the (possible) limitations of Lanczos: example invariant.m.

24

Approximating the range

To understand randomized approximation, we concentrate on a simpler subproblem:

Range approximation problem
Given A, we want to approximate its range up to some accuracy ε, i.e., we want to find

an orthogonal basis of a k-dimensional subspace

Q :=
[
q1 . . . qk

]
such that, for every v ∈ Range(A), we can find x

‖Qx − v‖2 ≤ ‖v‖2 · ε.

25

Projectors

The same statement can be given in terms of projectors3.

If we call V := span(Q), then

QQT is a projector on V, and (I − QQT) on V⊥.

• If Q approximates the range of A up to ε then ‖A− QQTA‖2 ≤ ‖A‖2 · ε.
• The two problems are almost equivalent – we will focus on this formulation.

• The problem can be seen from the opposite perspective: if I fix the dimension k ,

what is the best ε that I can achieve?

• In the latter case, the optimal projector is given by the SVD.

3Here we always refer to orthogonal projections on a low-dimensional subspace

26

Optimal projector by SVD

Consider the SVD of A, given by:

A = UΣV T
[
U1 U2

] [Σ1

Σ2

] [
V1 V2

]T
,

then Q := U1 is the optimal projector for dimension k , and attains the accuracy

ε = σk+1. Why?

Proof.
By unitary invariance of the two norm, plus orthogonality of the columns in U1 and U2,

‖A−U1U
T
1 A‖2 = ‖UTAV−UTU1U

T
1 UUTAV ‖2 =

∥∥∥∥∥
[

Σ1 − Σ1

Σ2

]∥∥∥∥∥
2

= ‖Σ2‖2 = σk+1

• If the optimal projector is known, it is easy to recover the singular values and

vector in Σ1 (more on this later).

27

A simple idea

How to recover an approximate range?

• Simple idea: multiply A by random vectors.

• Consider Qj be the orthogonal basis of A[ω1 . . . ωj], with ωj being independent

Gaussian distributed vectors.

• Can we say something on ‖A− QjQ
T
j A‖2?

See: example randomvec.m.

28

Intuition behind these facts

Let us consider the case where rank(A) = k , and consider random vectors ω1, . . . , ωk .

• Intuitively, two random vectors ω1 and ω2 are independent with probability 1 —

to be dependent one should have ω1 = λω2, and this is a set of measure zero.

• This argument generalizes easily to k ≤ n vectors.

• Similarly, one can show that (with probability 1), none of their linear combination

is in the kernel of A if they are at most k .

Using these arguments, AW with W = [ω1 . . . ωj] is a basis for the range (with

probability 1), so we can reorthogonalize it and we have found Q.

• However, we are not in the “exact rank” case;

• For this purpose, to get a rank k approximation, we multiply with k + p vectors

— p is called the oversampling parameter.

29

Theoretical results

Theorem
Let A be a real m × n matrix. Then, let k + p ≤ min{m, n}. If Q spans AW with

W = [ω1 . . . ωk+p] Gaussian random vectors as above, then

E
[
‖A− QQTA‖2

]
≤
(

1 +
4
√
k + p

p − 1

√
min{m, n}

)
σk+1(A).

• Not too far from the optimal!

• This result is only about the average case.

•
√
k very similar to the results based on rank-revealing QR decompositions.

30

The error is small with high probability

Theorem
Let A be a real m × n matrix. Then, let k + p ≤ min{m, n}. If Q spans AW with

W = [ω1 . . . ωk+p] Gaussian random vectors as above, then

P
{
‖A− QQTA‖2 ≤ (1 + 9

√
k + p

√
min{m, n})σk+1(A)

}
≥ 1− 3p−p,

under some mild hypotheses on p.

• This tells us that the average case is representative of the typical performance of

the algorithm.

• With p = 5 we have 3p−p ≈ 10−3, with p = 10 we have 3p−p = 3 · 10−10.

31

From the range to the SVD

Assume we have a basis Q that approximately span the range of A. The SVD can be

recovered as follows:

• Compute W = QTA, which has size k × n.

• Obtain a reduced QR factorization VR = W T , with V of size n × k and a k × k

matrix R.

• Now,

A ≈ QQTA = QRTV T .

• Get an SVD RT = URΣV T
R .

• The reduced SVD can be formed by

A ≈ QUR · Σ · (VVR)T ,

since both QUR and VVR have orthogonal columns.

Total cost: O(k3 + nk2 + k ·Tm), where Tm is the cost of a multiplication by A or AT .

32

Adaptive approximation

• We have discussed the case where we know the target rank k a priori.

• Often, we don’t, so we need to estimate the accuracy of our approximation.

Lemma
Let Q be an approximation for the range of A, and ωi for i = 1, . . . , r iid Gaussian

vectors. Then,

‖A− QQTA‖2 ≤ α
√

2

π
max

i=1,...,r
‖Aωi − QQTAωi‖2

with probability at least 1− α−r .

• Note that this information is available while we add more vectors to the testing

set.

• If we are not satisfied, we can use the computed products Aωi to enlarge it.

• Alternative approaches are possible: for instance, power iterations on

(A− QQTA)T (A− QQTA).
33

An even cheaper criterion

Since we are multiplying the vector ωi incrementally, we can make a smarter choice.

Assume we have already computed j vectors, and we have an ortohgonal basis Qj for

the span of A[ω1, . . . , ωj].

• We compute qj+1 = Aωj+1.

• We orthogonalize it against Qj , and we renormalize:

q̃j := (I − QjQ
T
j)qj , q̂j :=

q̃j
‖q̃j‖2

.

• We construct the new basis

Qj+1 = [Qj q̂j].

• If we encounter r consecutive vectors for which ‖q̃j‖2 ≤ τ – with τ chosen

according to the previous Lemma! – we stop.

34

A closer look at the convergence bounds

Theorem
Let A be a real m × n matrix, and fix k ≥ 2 and an oversampling parameter p ≥ 2,

with k + p ≤ min{m, n}. If Q is an orthogonal basis of AΩ, with Ω an n × (k + p)

Gaussian matrix, then

E
[
‖A− QQTA‖F

]
≤

√
1 +

k

p − 1
·
√∑

j>k

σj(A)2

and

E
[
‖A− QQTA‖2

]
≤

(
1 +

√
k

p − 1

)
σk+1(A) + e

√
k + p

p − 1
·
√∑

j>k

σj(A)2

≤

(
1 +

√
k

p − 1
+ e

√
k + p

p − 1

√
min{k + p}

)
σk+1(A)

35

Slowly decaying singular values

• If the singular values decay slowly, we might have to choose a larger oversampling

parameter – which can be unconvenient.

• An alternative strategy is to approximate the range of (AAT)qA, for some q ≥ 1.

These two matrices have the same range, but:

σj(B) = σj(A)2q+1, B := (AAT)qA

• For instance, with q = 1,

AATA = (UΣV T)(VΣUT)(UΣV T) = UΣ3V T .

• For those of you familiar with generalized matrix functions, this is nothing else

than z 7→ z2q+1.

36

Accelerating the approach for dense matrices

• Assume we are given an n × n matrix A without any apparent structure, but we

are told that it is rank k (numerically).

• Applying the randomized sampling would give us a rank k parametrization by

O(k) matrix-vector products, which amounts to O(n2k) flops.

We are using Gaussian vectors because they make the theory “easy”, but we are not

forced to do so — using a structured sampling space allows faster approximation

(sometimes!).

Idea: choose Ω such that AΩ is cheap to compute independently of A.

37

Accelerating the approach for dense matrices

• Assume we are given an n × n matrix A without any apparent structure, but we

are told that it is rank k (numerically).

• Applying the randomized sampling would give us a rank k parametrization by

O(k) matrix-vector products, which amounts to O(n2k) flops.

We are using Gaussian vectors because they make the theory “easy”, but we are not

forced to do so — using a structured sampling space allows faster approximation

(sometimes!).

Idea: choose Ω such that AΩ is cheap to compute independently of A.

37

Accelerating the approach for dense matrices

• Assume we are given an n × n matrix A without any apparent structure, but we

are told that it is rank k (numerically).

• Applying the randomized sampling would give us a rank k parametrization by

O(k) matrix-vector products, which amounts to O(n2k) flops.

We are using Gaussian vectors because they make the theory “easy”, but we are not

forced to do so — using a structured sampling space allows faster approximation

(sometimes!).

Idea: choose Ω such that AΩ is cheap to compute independently of A.

37

Some structured vectors

We need some vectors ωi such that Aωi has linear (or almost linear) cost. Some

examples: itemize. A few examples!

• ωi = G1 . . .Gje1, where Gi are Givens rotations.

• A subsampled random Fourier transform — what we will consider today. Use Ω

defined by:

Ω =

√
n

k
DFR, where

• D is diagonal with random unimodular entries.

• F is the FFT matrix of size n.

• R is an n × k matrix that samples the columns at random.

The cost of computing AΩ with this second version of Ω becomes O(n2 log k), instead

of O(mnk).

38

Some structured vectors

We need some vectors ωi such that Aωi has linear (or almost linear) cost. Some

examples: itemize. A few examples!

• ωi = G1 . . .Gje1, where Gi are Givens rotations.

• A subsampled random Fourier transform — what we will consider today. Use Ω

defined by:

Ω =

√
n

k
DFR, where

• D is diagonal with random unimodular entries.

• F is the FFT matrix of size n.

• R is an n × k matrix that samples the columns at random.

The cost of computing AΩ with this second version of Ω becomes O(n2 log k), instead

of O(mnk).

38

Computing a subsampled FFT

• The FFT of a vector v can be written as

F (n)v =

 n∑
j=1

ξ
(i−1)(j−1)n
n vj


i=1,...,n

• If we assume n = km, we can rearrange the sum in a clever way so that:

F (n)v =

 m∑
j2=1

ξ
(i1−1)(j2−1)
m · ξ(i2−1)(j2−1)

n ·
k∑

j1=1

ξ
(i2−1)(j1−1)
k v(j1−1)m+j2


i1=1,...,m
i2=1,...,k

• The right most summation requires O(km log k), since it has to be applied to m

vectors. Then, there is a scalar multiplication, and if we want O(k) entries we just

need a total cost of O(km log k + km).

39

A few more comments

• This strategy works quite well in practice, even though it is less straightforward to

implement.

• In general, a higher oversampling is required, and it is only convenient for medium

ranks – for small ranks the classical approach turns out to be more useful!

• All the strategy that we have described are easily parallelizable! This is in contrast

with Lanczos or the rank-revealing QR – which are inherently sequential methods.

40

Recompression

Quite often, one ends up with a low-rank parametrization A ≈ UV T which is

redundant, i.e., not minimal. How do we recompress it, up to some truncation

tolerance ε?

• Compute economic-size QR factorizations of U,V :

QURU = U, QVRV = V .

• Find the SVD of RUR
T
V = ÛSK V̂

T . Then,

(QU Û)S(QV V̂)T = UV T

is a reduced SVD of UV T , so we can perform a truncation dropping the small

singular values in S , and the related singular vectors.

• Note that this allows for truncation in both the 2 and the Frobenius norm!

41

Cross approximation

It’s not always possible to design a fast matrix-vector product “easily”. Therefore, it is

of interest to obtain good low-rank approximations by just “sampling” the matrix.

• The usual approach in these cases is cross approximation.

• Based on selecting a few rows and columns – and ignoring the rest.

• Can be very close to optimality.

42

Cross approximation

It’s not always possible to design a fast matrix-vector product “easily”. Therefore, it is

of interest to obtain good low-rank approximations by just “sampling” the matrix.

• The usual approach in these cases is cross approximation.

• Based on selecting a few rows and columns – and ignoring the rest.

• Can be very close to optimality.

42

A simple example

Assume that the m × n matrix A has rank k , then:

• We select two sets of indices with cardinality k

I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}.

such that A(I , J) is invertible.

• Then, A = A(:, J)A(I , J)−1A(I , :).

Note that:

• Such matrix always exists — if A has rank k at least one k × k minor needs to

have nonzero determinant.

• Equality holds for the exact rank. What can we say about stability?

• We use MATLAB notation for the indices.

43

Approximate rank

Assume A = A0 + E , with:

• A0 of rank k ;

• ‖E‖2 ≤ ε.

Suppose we select an invertible k × k matrix; then,

‖A− A(:, J)A(I , J)−1A(I , :)‖2 ∼ O(ε · ‖A(I , J)−1‖2
2 · ‖A‖2

2).

Proof.
Clearly, for small enough perturbations A0(I , J) will be invertible as well, so we have

that A0 = A0(:, J)A0(I , J)−1A0(I , :). Then, we perform first order expansions:

A(:, J)A(I , J)−1A(I , :) = (A0(:, J) + E (:, J)) · (A0(I , J) + E (I , J))−1 · (A0(I , :) + E (I , :))
.

= . . .

Putting the pieces together yields the desired bound.

44

Choosing a good submatrix

Having a look at the bound hints at the features for the “optimal submatrix A(I , J)”:

‖A− A(:, J)A(I , J)−1A(I , :)‖2 ∼ O(ε · ‖A(I , J)−1‖2
2 · ‖A‖2

2).

• We aim at finding a well-conditioned submatrix.

• A similar concept is maximizing the volume of the submatrix A(I , J), i.e., finding

the index sets I , J such that | detA(I , J)| is maximum.

• The latter problem has a very bad complexity in general (NP-hard) – but has

many studied by many people (most notably, D. Knuth).

45

Maximum volume submatrices

The following result relates the property of being a submatrix of maximum subvolume

and being an accurate low-rank approximation.

Theorem
Let A be an m × n matrix, and A(I , J) an r × r submatrix of maximum subvolume.

Then:

‖A− A(:, J)A(I , J)−1A(I , :)‖C ≤ (r + 1)σr+1(A).

• ‖·‖C is the Chebyshev norm – defined as the maximum of the absolute value of

the entries.

• Note that the rows in I and the columns in J are approximated exactly.

• Deriving bounds in unitarily invariant norms requires a few more steps.

46

A model problem

Let U be a m × r matrix with orthogonal columns, i.e.,

U ∈ Rm×r , UTU = I .

• The optimal cross approximation problem for U is as follows: choose a submatrix

Û such that its inverse is as small as possible.

• Denote by M(U) the set of r × r submatrices of U.

Lemma
Let τU := minÛ∈M(U)‖Û

−1‖2, where U is an m × r unitary matrix as above. Then,

τU ≤
√

1 + r(m − r).

• The property of being unitary imposes that the bound only depends on m and r !

47

Proof for the model problem

Let Û be the matrix of maximum volume. Without loss of generality, we can assume

that Û is in the first r rows of U, i.e.,

U =

[
Û

W

]
=⇒ UÛ−1 =

[
I

V

]
, V := WÛ−1.

Claim: The entries of V satisfies |Vij | ≤ 1. Indeed, if |Vij | > 1 for some i , swapping

rows i and i + r in U gives us a matrix of volume larger than Û.

Hence, we conclude noting that

‖Û−1‖2 = ‖UÛ−1‖ =

∥∥∥∥∥
[
I

V

]∥∥∥∥∥
2

≤
√
‖I‖2

2 + ‖V ‖2
2,

and bounding ‖V ‖2
2 ≤ ‖V ‖2

F ≤ r(m + r).

48

Extension to the general case

• The previous result covers a very particular case of matrices: m × r orthogonal

matrices of rank r .

• We would like to handle the general case of m × n matrices.

• In most situation, we will have only approximate rank r .

Theorem
Let A be any matrix such that A = A0 + E, where A has rank r , and ‖E‖2 ≤ ε. Then,

there exist choise of index sets I , J, of cardinality r , such that4

‖A− A(:, J)A(I , J)−1A(I , :)‖2 ≤ (1 + 2
√
r
√

max{m, n})ε.

4The best result is actually sharper than this — this is only what we will prove today, for simplicity

49

Proof

We build the economy size SVD of A0, which has rank r :

A0 = UΣV T , U ∈ Rm×r ,V ∈ Rn×r , Σ ∈ Rr×r .

Both U and V contain submatrices Û, V̂ of maximum volume, which satisfy:

‖Û−1‖2 ≤
√

1 + r(m − r), ‖V̂−1‖2 ≤
√

1 + r(n − r).

Consider I , J indices such that Û = U(I , :) and V̂ = V (J, :). If we use these for the

cross approximation we have

A− A(:, J)A(I , J)−1A(I , :) = A0 + E − (A0(:, J) + ER)(A0(I , J) + ERC)−1(A0(I , :) + EC)
.

= A0 − A0(:, J)A0(I , J)−1A0(I , :) + E − ERA0(I , J)−1A0(I , :)

− A(:, J)A0(I , J)−1EC + A0(:, J)A0(I , J)−1ECRA0(I , J)−1A0(I , :).

Remaining steps: we have A0 − A0(:, J)A0(I , J)−1A0(I , :) = 0; then, write

A0 = UΣV T , A0(I , :) = ÛΣV T , A(:, J) = UΣV̂ T , and A0(I , J) = ÛΣV̂ T , and take

norms.
50

Optimality in the Frobenius norm

A result in the Frobenius norm can be derived from the element-wise bound that we

have stated previously. Recall that:

‖A− A(:, J)A(I , J)−1A(I , :)‖C ≤ (r + 1)σr+1(A),

where ‖·‖C denotes the Chebyshev norm, i.e., the maximum of the absolute values of

the entries. Then,

‖A− A(:, J)A(I , J)−1A(I , :)‖F ≤
√

(m − r)(n − r)(r + 1)σr+1(A),

just by summing up all the (m − r)(n − r) nonzero entries of the residual.

• Note that on the right hand side we have σr+1(A), and instead we would like to

have
√
σ2
r+1(A) + . . . σ2

min{m,n}(A).

• Alternatively, one could redo the previous proof for ‖·‖F instead of ‖·‖2.

51

A few comments

• These results justify the applicability of cross approximation methods.

• However, there is some loss of optimality as the rank increases.

• Possible solution: try to approximate rank r with a bigger matrix, and not just r

rows and columns.

• Idea very similar to the oversampling for randomized methods.

52

Projective inverses

Suppose I select a submatrix A(I , J) with #I > r and #J > r , and possibly also

#I 6= #J. How do I get a rank r cross approximation for A? I need:

A ≈ A(:, J)A†r (I , J)A(I , :), A†r (I , J) of rank r .

• Recall that we are trying to select the “inverse” in the middle to have norm as

small as possible.

• We need that, if #I = #J = r we go back to the usual case A†r (I , J) = A(I , J)−1.

• Most natural definition: consider the projective inverse:

A†r (I , J) := Vdiag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0)UT ,

where A(I , J) = UΣV T is the SVD. Essentially a Moore-Penrose pseudo-inverse

with fixed rank r .

• Definition is valid for rectangular matrices as well.

53

How to choose the submatrix A(I , J)?

• Previously, we knew that we had to select the maximum volume submatrix.

• Now, we need a new definition of “volume”: the r -projective volume:

Definition
Given A ∈ Rm×n, we define the r -projective volume as the product of its first r singular

values:

Vr (A) := σ1(A) . . . σr (A).

• If A has any dimension smaller than r , or rank smaller than r , then, Vr (A) = 0.

• If A is r × r , then Vr (A) = | det(A)| (the classical volume).

• We would like this volume to have the usual good properties.

54

The model problem, again

Lemma
Let U be an m× r matrix with orthogonal columns, i.e., UTU = I . Consider the set of

s × r submatrices of U, with s ≥ r , defined by Ms(U). Then, if Û ∈ Ms(U) has

maximum r-projective volume,

‖U†r ‖2 ≤
√

1 +
(m − s)r

s − r + 1
.

• Proof very similar to the previous result for the usual subvolume.

• Note that if we choose s = r , we recover the same result as before:

‖U†r ‖2 ≤
√

1 + (m − r)r .

• If, instead, we choose s = 2r − 1, then

‖U†r ‖2 ≤
√

1 + (m − 2r + 1).

The bound gets better as r increases!
55

The general case with projective volumes

Theorem
Let A be any m × n matrix decomposable as A = A0 + E, where A0 has rank r , and

‖E‖2 ≤ ε. Choose s, t ≥ r . Then, there exist I with cardinality s and J with

cardinality t such that5

‖A− A(:, J)A†r (I , J)A(I , :)‖2 ≤

(
1 +

√
1 +

(m − s)r

s − r + 1
+

√
1 +

(n − t)r

t − r + 1

)
ε.

• If we choose s = t = r , we obtain again the old result.

• If we choose s = t = 2r − 1, then the constant can be bounded by

‖A− A(:, J)A†r (I , J)A(I , :)‖2 ≤
(

1 + 2
√

max{m, n}
)
ε.

The dependency on r has disappeared!
5This result has been made slightly less sharp for readability.

56

Proof of the result

• The proof is completely analogous to the “old” one.

• Compute the SVD of A0.

• Select the maximum r -projective volume submatrices Û and V̂ in the SVD bases.

• Use the corresponding rows and cols for cross approximation.

57

Working in the Chebyshev norm

Recall that for the Chebyshev norm, the one defined as the maximum of the absolute

value of the entries, we had the following result:

‖A− A(:, J)A(I , J)−1A(I , :)‖C ≤ (r + 1)σr+1(A).

• This result can be improved working with projective inverses as well.

• We would like to get rid of the dependency on the rank.

Theorem
Let A be any matrix, and A(I , J) its s × t submatrix with maximum r-projective

volume. Then,

‖A− A(:, J)A†r (I , J)A(I , :)‖C ≤
√

1 +
r

s − r + 1

√
1 +

r

t − r + 1
.

58

Comments on the theorem

Theorem
Let A be any matrix, and A(I , J) its s × t submatrix with maximum r-projective

volume. Then,

‖A− A(:, J)A†r (I , J)A(I , :)‖C ≤
√

1 +
r

s − r + 1

√
1 +

r

t − r + 1
.

• As usual, choosing s = t = r gives the bound we had previously.

• If we choose s = t = 2r − 1 then the dependency on the rank disappears, and the

constant becomes 2!.

• Intermediate way possible: choose s = 2r − 1, and t = r . Then, the constant

grows is
√

2
√

1 + r .

59

From theory to practice

• The theory is nice, but finding a maximum volume (or maximum r -projective

volume) matrix is NP-hard — how shall we deal with the problem?

We consider two possible strategies:

1. A practical heuristic algorithm, that deals with rectangular m× r matrices (known

as maxvol).

2. A heuristic that rephrases the problem in a different way, and allows to

characterize the growth of ‖A(I , J)‖−1
2 with something that we know (and we

don’t completely understand) since a long time.

60

Dominant submatrices

Definition
Let A be an m × r matrix. Then, an r × r submatrix A0 is dominant if, up to

permuting the rows to put A0 on top,

AA−1
0 =

[
I

V

]
, |Vij | ≤ 1.

Lemma
If A0 has maximum volume, then it is dominant.

Proof.
Construct AA−1

0 . Note that the property of being of maximum volume is transferred by

the submatrices of A to the ones AA−1
0 , since all the sub-determinant are just

multiplied by det(A−1
0).

If, by contradiction, there exists |Vij | > 1, swap rows i and i + r . Then, the top matrix

has now determinant Vij , and therefore the previous top submatrix was not of

maximum volume, which leads to a contradiction. 61

The algorithm maxvol

A maximum volume submatrix needs to be dominant: therefore, we can relax the

problem into finding a dominant submatrix:

1. Select a starting submatrix A0.

2. Compute

AA−1
0 =

[
I

V

]
(up to permutation).

3. Find the element Vij in V with largest modulus.

4. Update A0 by swapping its row i with the one in position i + r , containing Vij . Go

back to step 2.

This algorithm generates a sequence of submatrices of (strictly) increasing volume – so

it must converge (since the volumes are bounded). Stopping criterion can be chosen

looking at the maximum of |Vij |.

62

Speeding up maxvol

• The computational bottleneck in maxvol is the computation of A0A
−1
0 , which in

principle requires O(mr2) flops at every step.

• However, notice that at every step A0 changes just by one row – so by a rank 1

update. We can make use of the Sherman-Morrison formula that updates an r × r

inverse in O(r2):

(A0 + uvT)−1 = A−1
0 −

A−1
0 uvTA−1

0

1 + vTA−1
0 u

.

• In principle, one may use the rank 1 update of a QR factorization as well, for

improved stability – but the matrices A0 get increasingly well-conditioned, so this

is not so important.

• With this change, one step costs O(mr).

63

Adaptive cross approximation

Ufortunately, maxvol only works for tall and skinny matrices.

• Other heuristics available for finding maximum volume submatrices; often based

as maxvol as a starting step.

• We consider another heuristic, that tries to build the matrix A(I , J) one step at a

time.

• It is called adaptive cross approximation (or ACA), and was proposed by

Bebendorf around 2000 for functional approximation (or probably even before).

64

ACA in a nutshell

At every step, we want to have A = Ak + Rk , where Ak is the approximation, and Rk

the residual. We start by A0 = 0, and R0 = A.

1. Find a good maximum volume submatrix of size 1× 1; in other words, find a large

element |Aij | in |A|.
2. Use element (i , j) as pivot, and build the rank 1 approximation

A1 := A(:, j)A(i , j)−1A(i , :), R1 = A− A1.

3. Replace A with R1, and repeat until the residual gets sufficiently small.

Does this algorithm sound familiar? It should . . .

65

A “stupid” ACA

Choosing the largest element in A is costly – we need to make a suboptimal choice.

Assume we make a fixed selection, and we choose as pivot at the r -th step the element

in position (r , r).

Then,

A1 = A(:, 1)A(1, 1)−1A(1, :), R1 = A− A(:, 1)A(1, 1)−1A(1, :).

Then,

R1 =


0 0 . . . 0

0 ã22 . . . ã2n

...
...

...

0 ãm2 . . . ãmn

 , ãij = aij − ai1a
−1
11 a1j .

R1 is exactly the matrix obtained after 1 step of LU factorizatino without pivoting – at

least in the trailing part.

66

A “stupid” ACA

Choosing the largest element in A is costly – we need to make a suboptimal choice.

Assume we make a fixed selection, and we choose as pivot at the r -th step the element

in position (r , r).

Then,

A1 = A(:, 1)A(1, 1)−1A(1, :), R1 = A− A(:, 1)A(1, 1)−1A(1, :).

Then,

R1 =


0 0 . . . 0

0 ã22 . . . ã2n

...
...

...

0 ãm2 . . . ãmn

 , ãij = aij − ai1a
−1
11 a1j .

R1 is exactly the matrix obtained after 1 step of LU factorizatino without pivoting – at

least in the trailing part.

66

An important connection

Lemma
If we perform the “stupid” pivoting for the ACA that we had in the previous slide, then

if A = LU with no pivoting,

Ak = L(:, 1 : k)U(1 : k , :)

= L(:, 1 : k)U(1 : k , 1 : k)U(1 : k, 1 : k)−1L(1 : k , 1 : k)−1U(1 : k , :)

= A(:, 1 : k)[A(1 : k , 1 : k)]−1A(1 : j , :).

• Therefore, ACA with no pivoting is equivalent to cross approximation selecting the

leading matrix as approximant.

• The quality of the approximation depends on the growth of A(1 : k , 1 : k)−1 —

very much related to the growth factor of LU!

• For the cases where LU with no pivoting is known to work well, then ACA with no

particular pivoting works as well (positive definite matrices, M-matrices,

diagonally dominant matrices, . . .). 67

General matrices

For a general A, the LU factorization has a growth factor, defined as

ρk :=
‖L(1 : k, 1 : k)‖∞ · ‖U(1 : k , 1 : k)‖∞

‖A(1 : k, 1 : k)‖∞
,

which grows exponentially, and that is the typical behavior. It allows to control the

norm of the selected core by ‖A(I , J)−1‖ ≤ 4kρk for complete pivoting.

• If we perform a selection of the largest pivot on the row/col, we have LU with

column/row pivoting: the worst case growth factor is still exponential, but is very

rare in practice!

• If we look for the largest pivot, we have LU with complete pivoting: growth factor

very slow, conjecture to be equal to k , but was disproved ≈ 30 years ago. Still

very small in practice.

68

Summary

• Cross approximation very powerful, but related to a difficult problem.

• In practice, ACA is a good enough heuristic, works in most cases.

• It is slightly less reliable than Lanczos or randomized sampling, but only requires a

few entries of the matrix!

• The optimal low-rank approximation strategy depends on the features of your
problem:

• Is A small size (min{m, n} ≤ 500)? Then, do a rank-revealing QR or even SVD if

one of the two dimensions is small.

• Is a fast matrix-vector product by A and AT available? Then go with randomized

sampling or Lanczos.

• Are single entries of A easily computable? Then, use ACA.

• If all the above assumptions fail — one has to design a custom procedure for the

case at hand — but they cover 99.9% of the cases of practical interest.

69

Example

See: example aca.m

70

Principal Component Analysis

One of applications of low-rank approximation is the so-called principal component

analysis, or PCA. Assume we have ` independent random variables

X1(ω),X2(ω), . . . ,X`(ω).

• We do not known these variables explicitly.

• Instead, we are given the possibility to take some samples for a small set of events.

• Unfortunately, we cannot measure the variables directly, but only their effects,

which are given by certain linear combinations:

Y1(ω) = M1,1X1(ω) + . . .+ M1,`X`(ω)

...

Ym(ω) = Mm,1X1(ω) + . . .+ Mm,`X`(ω)

71

The observed matrix

Given the sample points ω1, . . . , ωn, we measure a matrix Aij with entries Aij = Yi (ωj):

A =


M1,1 . . . M1,`

...
...

Mm,1 . . . Mm,`



X1(ω1) . . . X1(ωn)

...
...

X`(ω1) . . . X`(ωn)

 .

• In the typical situation, one has m, n� `.

• The matrix X has rank (at most) `, and therefore A has a low-rank structure.

• Identifying the structure allows to determine the important variables in the

solution — restricting the dimension space.

72

Another viewpoint

• We can think of having m correlated variables.

• PCA recovers another representation of the same samples, where all the variables

are uncorrelated.

• The variables are ordered so they contribute less and less to the variance.

See: example pca.m

73

Matrix completion

There is a low-rank approximation problem that is slightly different from the ones we

have seen as of now:

• Assume that a few entries of a large matrix A are given;

• We look for the lowest degree matrix that coincide with A on the given entries.

• Often denoted as low-rank matrix completion.

Several possible solutions: we discuss the one in the paper “Low-rank matrix

completion by Riemannian optimization”, by B. Vandereycken.

74

Some notation

Let

Ω = {(i1, j1), . . . , (is , js)}

be the set of known indices, and:

[PΩ(A)]ij :=

Aij if(i , j) ∈ Ω

0 otherwise
.

The problem statement can be given as:

minimize rank(X), subject to PΩ(A) = PΩ(X) ⇐⇒ PΩ(X − A) = 0,

where A is the given data matrix. This problem is NP-hard.

We might relax the formulation to cope with noise:

minimize rank(X), ‖PΩ(X − A)‖2 ≤ ε

75

Another formulation

We consider another formulation that is better suited to be solved numerically:min‖PΩ(X − A)‖2
F

rank(X) = k
,

where k is chosen a priori.

• Rank k matrices form a smooth (Riemannian) manifold.

• If we see the set of rank k matrices as the ambient space, this is a an

unconstrained minimization problem over a Riemannian manifold.

• Can be solved by any minimization method (for instance, gradient descent, or

Newton-like methods).

76

Riemannian geometry in a nutshell

Smooth manifold:

• Locally similar to Rn through a diffeomorphism.

• Can compute tangent space TX (M) at any point, and construct the tangent

bundle TM.

Riemannian structure:

• At any point, one has g(x , y) definite bilinear form over the tangent space

TX (M).

• The above scalar product depends smoothly on the point.

Gradient:

• Given a smooth function f :M→ R, the gradient is a map from the manifold to

the tangent bundle, such that

g(∇f (X), ξ) = DfX [ξ],

where DfX is the directional derivative at X , in the direction ξ. 77

Embedded manifolds

Rn is a Riemannian manifold with the usual scalar product as metric. Our manifold is

a submanifold of the m × n matrices, which are isomorphic to Rmn with the scalar

product g(X ,Y) = tr(XTY).

Not a special case!

Theorem (Nash, 1956)
All the Riemannian manifolds admit an isometric embedding into RN , for sufficiently

large N.

We need to move in a direction: possible through a retraction map; R : TM→M is

a retraction iff

• R((X , 0)) = X ;

• DR((X , 0))[0, ξ] = ξ.

Intuitively, it goes along geodesics, i.e. it locally approximate the exponential map.

78

Embedded manifolds (gradient)

Given f :M→ R, the gradient is given by

• Computing the gradient in the ambient manifold.

• Projecting it onto the manifold.

In our case:

∇‖PΩ(X − A)‖2
F = 2PΩ(X − A).

Very easy if we know how to compute the selected entries, and we do. However, we

need to project it back onto the tangent space of rank k matrices.

79

The tangent space of Mk

If X = UΣV T , then the tangent space can be described as:

TXMk :=

{[
U U⊥

] [M11 M12

M21 0

] [
V V⊥

]}

for arbitrary Mij . Therefore, the projection onto TXMk is defined as:

PTXMk
(Y) := (I−UUT)Y (I−VV T) = UUTYVV T+(I−UUT)YVV T+UUTY (I−VV T).

• Very easy to compute for Y already in factorized form.

• Proof: just look at first order perturbations that preserve the rank k structure.

80

General structure of the gradient descent

• Given some initial point X0, compute gradient ∇X .

• Perform line search along that direction.

• Choose next point, and iterate.

In practice, the algorithm uses conjugate gradient instead of plain gradient descent:

need to compare vectors in different tangent space. This can be done with parallel

transport, the unique map that moves the tangent space smoothly along a path

compatibly with the metric g(·, ·).

In an embedded manifold the parallel transport is given by “translation + projection”.

81

Summary

How do I approximate A ≈ UV T ?

• Is A small size (min{m, n} ≤ 500)? Then, do a rank-revealing QR or even SVD if

one of the two dimensions is small.

• Is a fast matrix-vector product by A and AT available? Then go with randomized

sampling or Lanczos.

• Are single entries of A easily computable? Then, use ACA.

• Do I know only certain entries of A, and I am trying to complete the rest keeping

the rank low? Riemannian optimization or minimization of the nuclear norm (:=

sum of singular values, we have not covered this).

82

