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Our goal today

Assume we are given some matrix A, and we are told that it can be efficiently

approximated as A ≈ UV T . How do we compute U,V , cheaply?

• What does cheap mean? We aim at complexities O(n) or O(n log n), where n is

the dominant size of A.

• What about the accuracy? Ideally, working in the 2-norm we would aim at getting

the best approximation given by the SVD: in practice, we will only approximate it

— trying to stay as close as possible.

We will present these strategies:

1. QR factorization with column pivoting.

2. Golub-Kahan-Lanczos bidiagonalization (close relation with Krylov methods).

3. Randomized methods.

4. Adaptive cross approximation.
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A few numerical examples with the SVD

See: example svd.m.

Take-home message: SVD would be wonderful tool, if it were not that expensive; we

shall find a way to approximate it.
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QR factorization with column pivoting

• The standard QR factorization looks for an orthogonal matrix Q and an upper

triangular R such that A = QR.

• Here Q is m ×m and R is m × n.

• If A is low-rank, this can take a particular form:

A = QR =
[
Q1 Q2

] [R11 R12

0 R22

]
, R22 = 0 (or small).
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QR factorization

Quick reminders:

• A QR factorization is a decomposition A = QR, with Q unitary, and R upper

triangular.

• Given a vector v , we can always find an Householder reflector P such that

Pv = ±αe1, with α := ‖v‖2.

• A can be made upper triangular with a sequence of n − 1 Householder reflectors.

P1P2 . . .Pn−1︸ ︷︷ ︸
QT

A = R ⇐⇒ A = QR = Pn−1 . . .P1R.

• The cost is O(m2n) for an m× n matrix. No advantage having a low-rank matrix.
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Rank-revealing QR factorization

• If we order the columns in a smart way, we “detect” low-rank matrices.

• Such variants are known as rank-revealing QR factorizations.

• Several applications, among which solving (low-rank) least square problems.

Observation: if A = QR, and

Q =

q1 q2 . . . qn

 ,
then {q1, . . . , qk} span the column span of the first k columns of A.

6



Why we need column permutations

Consider A = ene
T
n . Then,

• A = I · A is the QR factorization, since A is already upper triangular!

• If we compute the factorization by Householder reflectors, we need n − 1 steps

before we get a good the vectors we need for the basis of the column span.

• Clearly, if we permute the n-th column into the first 1, at the first step of

reduction we already have all the necessary information!
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QR with column pivoting

A =

a1 a2 . . . an

 .

• Compute the norms of the columns ‖aj‖2, for j = 1, . . . , n.

• Put the column ak with the largest norm in front.

• Compute an Householder reflector such that Pak = αe1.

• Apply it to the matrix, and continue the reduction on the trailing

(n − 1)× (n − 1) minor.
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QR with column pivoting

Final result: A = QRΠ, with Π permutation.

• R has decreasing diagonal entries.

• If the rank of A is k, the method terminates in k steps.

• Cost: O(kmn).

• The norms of the columns can be downdated at a lower cost than recomputing

them from scratch.
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Norm updates

Assume we have compute the norms of the columns ‖aj‖2, for j = 1, . . . , n. If we

apply a reflector P we end up with:

PA =

Pa1 Pa2 . . . Pan

 =


ã11 ã12 . . . ã1n

0 ã2 . . . ãn

 .
Clearly, we have

‖ãj‖2
2 = ‖Paj‖2

2 − |ã1j |2 = ‖aj‖2
2 − |ã1j |2.

If we store the square of the column norms we can get away with O(1) updates; we

just need to be careful with cancellation!

MATLAB1 code: [Q,R,P] = qr(A).
1Unfortunately, MATLAB will always compute the full Q, without stopping early if it detects a

low-rank of numerically low-rank matrix.
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A quick look at the source code

See: rrqr.m
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Golub-Kahan-Lanczos: computing eigenvalues of large scale matrices

To understand the Golub-Kahan approach, we first notice that

A = UΣV T ⇐⇒ AAT = UΣ2UT and ATA = VΣ2V T

and also

A = UΣV T ⇐⇒

[
V

U

][
AT

A

][
V

U

]T
=

[
Σ

Σ

]

• There is a close connection between computing singular values of and eigenvalues

of symmetric matrices. Indeed, the second formula is a reduction to a 2× 2 block

diagonal matrix with blocks of the form[
0 σj

σj 0

]
, which has eigenvalues ± σj , and eigenvectors

1√
2

[
1

±1

]
.

• We are only interested in the largest singular values and their singular vectors.

Can this be exploited?
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Large-scale eigenvalue problems

• Let us focus on approximating the eigenvalues of A, i.e., solving the eigenvalue

problem Av = λv .

• we need to some structure, so we assume that we can compute v 7→ Av “fast”.

• We only care about large eigenvalues.

The simplest idea is the power method. Consider the iteration

v0 := random vector, v`+1 = Av`.

If A has a single dominant eigenvalue λ1 such that

|λ1| > |λ2| ≥ |λ3| ≥ . . . ,

then v`/‖v`‖2 converges to the eigenvector relative to λ1.
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Advantages and drawbacks of the power method

• Very simple to implement, only need matrix-vector products.

• The convergence rate is given by |λ1|/|λ2|. Could be slow if the eigenvalues are

not well separated!

• What if |λ1| = |λ2|? Things can go very badly . . .

• What if we want more eigenvalues? We may compute λ1 and its eigenvectors v1,

and then reapply the method to the deflated matrix

A1 := A− λ1v1v
T
1 , A2 := A1 − λ2v2v

T
2 , . . .

Note: After ` steps of the power method, the vector v` := A`v , so it belongs to the

Krylov subspace K`(A, v0). Idea: instead of v`, we may take the largest eigenvalue of

A projected onto K`(A, v0) as approximation to λ1.
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Krylov methods

High-level description of the idea:

• Compute the projection A` = QT
` AQ`.

• Compute the eigenvalues of A` and use them as approximation to the largest

eigenvalues of A. If UT
` A`U` = D`, then the eigenvectors are approximated by

V` = Q`U`.

The method is harder to analyze than the power method, but is very powerful.

• The projection A` and the orthogonal basis Q` are easy to compute (recall the

Arnoldi projection).

• Eigenvalues (and eigenvectors) are approximated all together, we do not need to

restart from the beginning with deflation.

• How fast do the eigenvalues converge? Not so easy to say, in general.

• However, note that we can always compute the residual ‖Avj − λjvj‖2, which is

an indication of the backward error.

15



Arnoldi method for symmetric matrices: the Lanczos iteration

When applied to symmetric matrices, the Arnoldi projection scheme is called Lanczos2.

• The Lanczos iteration could be run “without” the reorthogonalization step.

• For improved stability, we will always run Lanczos with reorthogonalization.

• A key difference is that A` is upper Hessenberg and symmetric (being the

projection of a symmetric matrix), so is tridiagonal. This is what makes it possible

to derive a cheaper orthogonalization strategy.

2The reason is that it was originally formulated for tridiagonal reduction of symmetric matrices, and

then extended to general ones for reduction to upper Hessenberg form.
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Adaptation to computing the SVD

• When dealing with symmetric eigenvalue problems, we approximate

A ≈ Q`A`Q
T
` .

Such approximation is accurate if the eigenvalues go to zero quickly – and the

ones in A` converge to the large eigenvalues of A.

• Working with the SVD, we need to consider two different bases:

A ≈ Q`A`U
T
` ,

where Q` spans K`(A, b) and U` spans K`(A
T ,Ab), for an appropriate vector b.
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The method in practice

We iteratively construct the two bases Q,U as follows:

Q =

v1 v2 . . .

 U =

w1 w2 . . .


where we impose: Avj ∈ span{w1 . . .wj} and ATwj ∈ span{v1 . . . vj+1}.

• v1 := b/‖b‖2.

• w1 needs to span Av1, so we choose it as w1 := Av1
‖Av1‖2

.

• ATw1 needs to be in span{v1, v2}, so we choose v2 as

v2 :=
ATw1 − 〈ATw1, v1〉v1

‖ATw1 − 〈ATw1, v1〉v1‖2
.

• Av2 must belong to span{w1,w2}, so we choose it similarly.

• . . .
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Breakdown

The method might break at any step for a division by zero. When does this happen?

• A quick check shows that either we have found an invariant subspace of ATA, or

an invariant subspace of AAT .

• We need to handle this condition and restart from a new vector orthogonal to the

invariant subspace.

• Slightly tricky to do in practice because, instead of a division by zero, we might

have a division by a small number.

19



Example application

Given x , y positive vectors, consider the symmetric Cauchy matrix

Cij :=
1

xi + xj
.

• This matrix has numerically low-rank (why? We will see this in a couple of days).

• Find a low-rank approximation C ≈ UV T to a certain accuracy ε.

• For being able to apply the Golub-Kahan-Lanczos method, we need a fast

matrix-vector multiplication v 7→ Cv .
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Hankel matrices

Let us choose x := [1 2 3 4 . . .]. Then, C is the Hilbert matrix:

C =


1
2

1
3

1
4

1
5

1
3

1
4

. .
.

1
4

. .
.

1
5



• A matrix constant on the antidiagonal is called Hankel.

• The product by a vector can be computed in O(n log n) time.

• Clearly, it is symmetric – so the product by CT is easy as well.
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Fast matrix vector multiplication

Note that, if we assume that C is left-antitriangular:

Cv =


cn . . . c0

... . .
.

c0



v0

...

vn

 =


c0vn + · · ·+ cnv0

...

v0c0


• The right hand side contains (part of) the coefficients of c(z)v(z), where

c(z) =
n∑

j=0

cjz
j , v(z) =

n∑
j=0

vjz
j .

• The product of two polynomials can be evaluate efficiently by combining
evaluation and interpolation using the FFT:

1. Evaluate the polynomials v(ξj) and c(ξj) where ξ are roots of the unity (FFT).

2. Compute the evaluation of the product v(ξj)c(ξj).

3. Interpolate the product by invrese FFT.
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Trying it out in practice

See: example hankel.m
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Randomized sampling

We will now see a different technique which is also a valid choice for problems where a

fast mat-vec is available:

• It is based on randomized methods – less prone to be stuck into invariant

subspaces, as it might happen to the Lanczos iteration.

• Well understood convergence theory.

• Very easy to implement and adapt to particular needs.

Let us check in person the (possible) limitations of Lanczos: example invariant.m.
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Approximating the range

To understand randomized approximation, we concentrate on a simpler subproblem:

Range approximation problem
Given A, we want to approximate its range up to some accuracy ε, i.e., we want to find

an orthogonal basis of a k-dimensional subspace

Q :=
[
q1 . . . qk

]
such that, for every v ∈ Range(A), we can find x

‖Qx − v‖2 ≤ ‖v‖2 · ε.
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Projectors

The same statement can be given in terms of projectors3.

If we call V := span(Q), then

QQT is a projector on V, and (I − QQT ) on V⊥.

• If Q approximates the range of A up to ε then ‖A− QQTA‖2 ≤ ‖A‖2 · ε.
• The two problems are almost equivalent – we will focus on this formulation.

• The problem can be seen from the opposite perspective: if I fix the dimension k ,

what is the best ε that I can achieve?

• In the latter case, the optimal projector is given by the SVD.

3Here we always refer to orthogonal projections on a low-dimensional subspace
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Optimal projector by SVD

Consider the SVD of A, given by:

A = UΣV T
[
U1 U2

] [Σ1

Σ2

] [
V1 V2

]T
,

then Q := U1 is the optimal projector for dimension k , and attains the accuracy

ε = σk+1. Why?

Proof.
By unitary invariance of the two norm, plus orthogonality of the columns in U1 and U2,

‖A−U1U
T
1 A‖2 = ‖UTAV−UTU1U

T
1 UUTAV ‖2 =

∥∥∥∥∥
[

Σ1 − Σ1

Σ2

]∥∥∥∥∥
2

= ‖Σ2‖2 = σk+1

• If the optimal projector is known, it is easy to recover the singular values and

vector in Σ1 (more on this later).
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A simple idea

How to recover an approximate range?

• Simple idea: multiply A by random vectors.

• Consider Qj be the orthogonal basis of A[ω1 . . . ωj ], with ωj being independent

Gaussian distributed vectors.

• Can we say something on ‖A− QjQ
T
j A‖2?

See: example randomvec.m.
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Intuition behind these facts

Let us consider the case where rank(A) = k , and consider random vectors ω1, . . . , ωk .

• Intuitively, two random vectors ω1 and ω2 are independent with probability 1 —

to be dependent one should have ω1 = λω2, and this is a set of measure zero.

• This argument generalizes easily to k ≤ n vectors.

• Similarly, one can show that (with probability 1), none of their linear combination

is in the kernel of A if they are at most k .

Using these arguments, AW with W = [ω1 . . . ωj ] is a basis for the range (with

probability 1), so we can reorthogonalize it and we have found Q.

• However, we are not in the “exact rank” case;

• For this purpose, to get a rank k approximation, we multiply with k + p vectors

— p is called the oversampling parameter.
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Theoretical results

Theorem
Let A be a real m × n matrix. Then, let k + p ≤ min{m, n}. If Q spans AW with

W = [ω1 . . . ωk+p] Gaussian random vectors as above, then

E
[
‖A− QQTA‖2

]
≤
(

1 +
4
√
k + p

p − 1

√
min{m, n}

)
σk+1(A).

• Not too far from the optimal!

• This result is only about the average case.

•
√
k very similar to the results based on rank-revealing QR decompositions.
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The error is small with high probability

Theorem
Let A be a real m × n matrix. Then, let k + p ≤ min{m, n}. If Q spans AW with

W = [ω1 . . . ωk+p] Gaussian random vectors as above, then

P
{
‖A− QQTA‖2 ≤ (1 + 9

√
k + p

√
min{m, n})σk+1(A)

}
≥ 1− 3p−p,

under some mild hypotheses on p.

• This tells us that the average case is representative of the typical performance of

the algorithm.

• With p = 5 we have 3p−p ≈ 10−3, with p = 10 we have 3p−p = 3 · 10−10.
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From the range to the SVD

Assume we have a basis Q that approximately span the range of A. The SVD can be

recovered as follows:

• Compute W = QTA, which has size k × n.

• Obtain a reduced QR factorization VR = W T , with V of size n × k and a k × k

matrix R.

• Now,

A ≈ QQTA = QRTV T .

• Get an SVD RT = URΣV T
R .

• The reduced SVD can be formed by

A ≈ QUR · Σ · (VVR)T ,

since both QUR and VVR have orthogonal columns.

Total cost: O(k3 + nk2 + k ·Tm), where Tm is the cost of a multiplication by A or AT .
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Adaptive approximation

• We have discussed the case where we know the target rank k a priori.

• Often, we don’t, so we need to estimate the accuracy of our approximation.

Lemma
Let Q be an approximation for the range of A, and ωi for i = 1, . . . , r iid Gaussian

vectors. Then,

‖A− QQTA‖2 ≤ α
√

2

π
max

i=1,...,r
‖Aωi − QQTAωi‖2

with probability at least 1− α−r .

• Note that this information is available while we add more vectors to the testing

set.

• If we are not satisfied, we can use the computed products Aωi to enlarge it.

• Alternative approaches are possible: for instance, power iterations on

(A− QQTA)T (A− QQTA).
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An even cheaper criterion

Since we are multiplying the vector ωi incrementally, we can make a smarter choice.

Assume we have already computed j vectors, and we have an ortohgonal basis Qj for

the span of A[ω1, . . . , ωj ].

• We compute qj+1 = Aωj+1.

• We orthogonalize it against Qj , and we renormalize:

q̃j := (I − QjQ
T
j )qj , q̂j :=

q̃j
‖q̃j‖2

.

• We construct the new basis

Qj+1 = [Qj q̂j ].

• If we encounter r consecutive vectors for which ‖q̃j‖2 ≤ τ – with τ chosen

according to the previous Lemma! – we stop.
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A closer look at the convergence bounds

Theorem
Let A be a real m × n matrix, and fix k ≥ 2 and an oversampling parameter p ≥ 2,

with k + p ≤ min{m, n}. If Q is an orthogonal basis of AΩ, with Ω an n × (k + p)

Gaussian matrix, then

E
[
‖A− QQTA‖F

]
≤

√
1 +

k

p − 1
·
√∑

j>k

σj(A)2

and

E
[
‖A− QQTA‖2

]
≤

(
1 +

√
k

p − 1

)
σk+1(A) + e

√
k + p

p − 1
·
√∑

j>k

σj(A)2

≤

(
1 +

√
k

p − 1
+ e

√
k + p

p − 1

√
min{k + p}

)
σk+1(A)
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Slowly decaying singular values

• If the singular values decay slowly, we might have to choose a larger oversampling

parameter – which can be unconvenient.

• An alternative strategy is to approximate the range of (AAT )qA, for some q ≥ 1.

These two matrices have the same range, but:

σj(B) = σj(A)2q+1, B := (AAT )qA

• For instance, with q = 1,

AATA = (UΣV T )(VΣUT )(UΣV T ) = UΣ3V T .

• For those of you familiar with generalized matrix functions, this is nothing else

than z 7→ z2q+1.

36



Accelerating the approach for dense matrices

• Assume we are given an n × n matrix A without any apparent structure, but we

are told that it is rank k (numerically).

• Applying the randomized sampling would give us a rank k parametrization by

O(k) matrix-vector products, which amounts to O(n2k) flops.

We are using Gaussian vectors because they make the theory “easy”, but we are not

forced to do so — using a structured sampling space allows faster approximation

(sometimes!).

Idea: choose Ω such that AΩ is cheap to compute independently of A.
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Some structured vectors

We need some vectors ωi such that Aωi has linear (or almost linear) cost. Some

examples: itemize. A few examples!

• ωi = G1 . . .Gje1, where Gi are Givens rotations.

• A subsampled random Fourier transform — what we will consider today. Use Ω

defined by:

Ω =

√
n

k
DFR, where

• D is diagonal with random unimodular entries.

• F is the FFT matrix of size n.

• R is an n × k matrix that samples the columns at random.

The cost of computing AΩ with this second version of Ω becomes O(n2 log k), instead

of O(mnk).
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Computing a subsampled FFT

• The FFT of a vector v can be written as

F (n)v =

 n∑
j=1

ξ
(i−1)(j−1)n
n vj


i=1,...,n

• If we assume n = km, we can rearrange the sum in a clever way so that:

F (n)v =

 m∑
j2=1

ξ
(i1−1)(j2−1)
m · ξ(i2−1)(j2−1)

n ·
k∑

j1=1

ξ
(i2−1)(j1−1)
k v(j1−1)m+j2


i1=1,...,m
i2=1,...,k

• The right most summation requires O(km log k), since it has to be applied to m

vectors. Then, there is a scalar multiplication, and if we want O(k) entries we just

need a total cost of O(km log k + km).
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A few more comments

• This strategy works quite well in practice, even though it is less straightforward to

implement.

• In general, a higher oversampling is required, and it is only convenient for medium

ranks – for small ranks the classical approach turns out to be more useful!

• All the strategy that we have described are easily parallelizable! This is in contrast

with Lanczos or the rank-revealing QR – which are inherently sequential methods.
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Recompression

Quite often, one ends up with a low-rank parametrization A ≈ UV T which is

redundant, i.e., not minimal. How do we recompress it, up to some truncation

tolerance ε?

• Compute economic-size QR factorizations of U,V :

QURU = U, QVRV = V .

• Find the SVD of RUR
T
V = ÛSK V̂

T . Then,

(QU Û)S(QV V̂ )T = UV T

is a reduced SVD of UV T , so we can perform a truncation dropping the small

singular values in S , and the related singular vectors.

• Note that this allows for truncation in both the 2 and the Frobenius norm!
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Cross approximation

It’s not always possible to design a fast matrix-vector product “easily”. Therefore, it is

of interest to obtain good low-rank approximations by just “sampling” the matrix.

• The usual approach in these cases is cross approximation.

• Based on selecting a few rows and columns – and ignoring the rest.

• Can be very close to optimality.
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• The usual approach in these cases is cross approximation.

• Based on selecting a few rows and columns – and ignoring the rest.

• Can be very close to optimality.
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A simple example

Assume that the m × n matrix A has rank k , then:

• We select two sets of indices with cardinality k

I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}.

such that A(I , J) is invertible.

• Then, A = A(:, J)A(I , J)−1A(I , :).

Note that:

• Such matrix always exists — if A has rank k at least one k × k minor needs to

have nonzero determinant.

• Equality holds for the exact rank. What can we say about stability?

• We use MATLAB notation for the indices.
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Approximate rank

Assume A = A0 + E , with:

• A0 of rank k ;

• ‖E‖2 ≤ ε.

Suppose we select an invertible k × k matrix; then,

‖A− A(:, J)A(I , J)−1A(I , :)‖2 ∼ O(ε · ‖A(I , J)−1‖2
2 · ‖A‖2

2).

Proof.
Clearly, for small enough perturbations A0(I , J) will be invertible as well, so we have

that A0 = A0(:, J)A0(I , J)−1A0(I , :). Then, we perform first order expansions:

A(:, J)A(I , J)−1A(I , :) = (A0(:, J) + E (:, J)) · (A0(I , J) + E (I , J))−1 · (A0(I , :) + E (I , :))
.

= . . .

Putting the pieces together yields the desired bound.
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Choosing a good submatrix

Having a look at the bound hints at the features for the “optimal submatrix A(I , J)”:

‖A− A(:, J)A(I , J)−1A(I , :)‖2 ∼ O(ε · ‖A(I , J)−1‖2
2 · ‖A‖2

2).

• We aim at finding a well-conditioned submatrix.

• A similar concept is maximizing the volume of the submatrix A(I , J), i.e., finding

the index sets I , J such that | detA(I , J)| is maximum.

• The latter problem has a very bad complexity in general (NP-hard) – but has

many studied by many people (most notably, D. Knuth).
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Maximum volume submatrices

The following result relates the property of being a submatrix of maximum subvolume

and being an accurate low-rank approximation.

Theorem
Let A be an m × n matrix, and A(I , J) an r × r submatrix of maximum subvolume.

Then:

‖A− A(:, J)A(I , J)−1A(I , :)‖C ≤ (r + 1)σr+1(A).

• ‖·‖C is the Chebyshev norm – defined as the maximum of the absolute value of

the entries.

• Note that the rows in I and the columns in J are approximated exactly.

• Deriving bounds in unitarily invariant norms requires a few more steps.
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A model problem

Let U be a m × r matrix with orthogonal columns, i.e.,

U ∈ Rm×r , UTU = I .

• The optimal cross approximation problem for U is as follows: choose a submatrix

Û such that its inverse is as small as possible.

• Denote by M(U) the set of r × r submatrices of U.

Lemma
Let τU := minÛ∈M(U)‖Û

−1‖2, where U is an m × r unitary matrix as above. Then,

τU ≤
√

1 + r(m − r).

• The property of being unitary imposes that the bound only depends on m and r !
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Proof for the model problem

Let Û be the matrix of maximum volume. Without loss of generality, we can assume

that Û is in the first r rows of U, i.e.,

U =

[
Û

W

]
=⇒ UÛ−1 =

[
I

V

]
, V := WÛ−1.

Claim: The entries of V satisfies |Vij | ≤ 1. Indeed, if |Vij | > 1 for some i , swapping

rows i and i + r in U gives us a matrix of volume larger than Û.

Hence, we conclude noting that

‖Û−1‖2 = ‖UÛ−1‖ =

∥∥∥∥∥
[
I

V

]∥∥∥∥∥
2

≤
√
‖I‖2

2 + ‖V ‖2
2,

and bounding ‖V ‖2
2 ≤ ‖V ‖2

F ≤ r(m + r).
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Extension to the general case

• The previous result covers a very particular case of matrices: m × r orthogonal

matrices of rank r .

• We would like to handle the general case of m × n matrices.

• In most situation, we will have only approximate rank r .

Theorem
Let A be any matrix such that A = A0 + E, where A has rank r , and ‖E‖2 ≤ ε. Then,

there exist choise of index sets I , J, of cardinality r , such that4

‖A− A(:, J)A(I , J)−1A(I , :)‖2 ≤ (1 + 2
√
r
√

max{m, n})ε.

4The best result is actually sharper than this — this is only what we will prove today, for simplicity
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Proof

We build the economy size SVD of A0, which has rank r :

A0 = UΣV T , U ∈ Rm×r ,V ∈ Rn×r , Σ ∈ Rr×r .

Both U and V contain submatrices Û, V̂ of maximum volume, which satisfy:

‖Û−1‖2 ≤
√

1 + r(m − r), ‖V̂−1‖2 ≤
√

1 + r(n − r).

Consider I , J indices such that Û = U(I , :) and V̂ = V (J, :). If we use these for the

cross approximation we have

A− A(:, J)A(I , J)−1A(I , :) = A0 + E − (A0(:, J) + ER)(A0(I , J) + ERC )−1(A0(I , :) + EC )
.

= A0 − A0(:, J)A0(I , J)−1A0(I , :) + E − ERA0(I , J)−1A0(I , :)

− A(:, J)A0(I , J)−1EC + A0(:, J)A0(I , J)−1ECRA0(I , J)−1A0(I , :).

Remaining steps: we have A0 − A0(:, J)A0(I , J)−1A0(I , :) = 0; then, write

A0 = UΣV T , A0(I , :) = ÛΣV T , A(:, J) = UΣV̂ T , and A0(I , J) = ÛΣV̂ T , and take

norms.
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Optimality in the Frobenius norm

A result in the Frobenius norm can be derived from the element-wise bound that we

have stated previously. Recall that:

‖A− A(:, J)A(I , J)−1A(I , :)‖C ≤ (r + 1)σr+1(A),

where ‖·‖C denotes the Chebyshev norm, i.e., the maximum of the absolute values of

the entries. Then,

‖A− A(:, J)A(I , J)−1A(I , :)‖F ≤
√

(m − r)(n − r)(r + 1)σr+1(A),

just by summing up all the (m − r)(n − r) nonzero entries of the residual.

• Note that on the right hand side we have σr+1(A), and instead we would like to

have
√
σ2
r+1(A) + . . . σ2

min{m,n}(A).

• Alternatively, one could redo the previous proof for ‖·‖F instead of ‖·‖2.
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A few comments

• These results justify the applicability of cross approximation methods.

• However, there is some loss of optimality as the rank increases.

• Possible solution: try to approximate rank r with a bigger matrix, and not just r

rows and columns.

• Idea very similar to the oversampling for randomized methods.
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Projective inverses

Suppose I select a submatrix A(I , J) with #I > r and #J > r , and possibly also

#I 6= #J. How do I get a rank r cross approximation for A? I need:

A ≈ A(:, J)A†r (I , J)A(I , :), A†r (I , J) of rank r .

• Recall that we are trying to select the “inverse” in the middle to have norm as

small as possible.

• We need that, if #I = #J = r we go back to the usual case A†r (I , J) = A(I , J)−1.

• Most natural definition: consider the projective inverse:

A†r (I , J) := Vdiag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0)UT ,

where A(I , J) = UΣV T is the SVD. Essentially a Moore-Penrose pseudo-inverse

with fixed rank r .

• Definition is valid for rectangular matrices as well.
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How to choose the submatrix A(I , J)?

• Previously, we knew that we had to select the maximum volume submatrix.

• Now, we need a new definition of “volume”: the r -projective volume:

Definition
Given A ∈ Rm×n, we define the r -projective volume as the product of its first r singular

values:

Vr (A) := σ1(A) . . . σr (A).

• If A has any dimension smaller than r , or rank smaller than r , then, Vr (A) = 0.

• If A is r × r , then Vr (A) = | det(A)| (the classical volume).

• We would like this volume to have the usual good properties.
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The model problem, again

Lemma
Let U be an m× r matrix with orthogonal columns, i.e., UTU = I . Consider the set of

s × r submatrices of U, with s ≥ r , defined by Ms(U). Then, if Û ∈ Ms(U) has

maximum r-projective volume,

‖U†r ‖2 ≤
√

1 +
(m − s)r

s − r + 1
.

• Proof very similar to the previous result for the usual subvolume.

• Note that if we choose s = r , we recover the same result as before:

‖U†r ‖2 ≤
√

1 + (m − r)r .

• If, instead, we choose s = 2r − 1, then

‖U†r ‖2 ≤
√

1 + (m − 2r + 1).

The bound gets better as r increases!
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The general case with projective volumes

Theorem
Let A be any m × n matrix decomposable as A = A0 + E, where A0 has rank r , and

‖E‖2 ≤ ε. Choose s, t ≥ r . Then, there exist I with cardinality s and J with

cardinality t such that5

‖A− A(:, J)A†r (I , J)A(I , :)‖2 ≤

(
1 +

√
1 +

(m − s)r

s − r + 1
+

√
1 +

(n − t)r

t − r + 1

)
ε.

• If we choose s = t = r , we obtain again the old result.

• If we choose s = t = 2r − 1, then the constant can be bounded by

‖A− A(:, J)A†r (I , J)A(I , :)‖2 ≤
(

1 + 2
√

max{m, n}
)
ε.

The dependency on r has disappeared!
5This result has been made slightly less sharp for readability.
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Proof of the result

• The proof is completely analogous to the “old” one.

• Compute the SVD of A0.

• Select the maximum r -projective volume submatrices Û and V̂ in the SVD bases.

• Use the corresponding rows and cols for cross approximation.
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Working in the Chebyshev norm

Recall that for the Chebyshev norm, the one defined as the maximum of the absolute

value of the entries, we had the following result:

‖A− A(:, J)A(I , J)−1A(I , :)‖C ≤ (r + 1)σr+1(A).

• This result can be improved working with projective inverses as well.

• We would like to get rid of the dependency on the rank.

Theorem
Let A be any matrix, and A(I , J) its s × t submatrix with maximum r-projective

volume. Then,

‖A− A(:, J)A†r (I , J)A(I , :)‖C ≤
√

1 +
r

s − r + 1

√
1 +

r

t − r + 1
.
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Comments on the theorem

Theorem
Let A be any matrix, and A(I , J) its s × t submatrix with maximum r-projective

volume. Then,

‖A− A(:, J)A†r (I , J)A(I , :)‖C ≤
√

1 +
r

s − r + 1

√
1 +

r

t − r + 1
.

• As usual, choosing s = t = r gives the bound we had previously.

• If we choose s = t = 2r − 1 then the dependency on the rank disappears, and the

constant becomes 2!.

• Intermediate way possible: choose s = 2r − 1, and t = r . Then, the constant

grows is
√

2
√

1 + r .
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From theory to practice

• The theory is nice, but finding a maximum volume (or maximum r -projective

volume) matrix is NP-hard — how shall we deal with the problem?

We consider two possible strategies:

1. A practical heuristic algorithm, that deals with rectangular m× r matrices (known

as maxvol).

2. A heuristic that rephrases the problem in a different way, and allows to

characterize the growth of ‖A(I , J)‖−1
2 with something that we know (and we

don’t completely understand) since a long time.
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Dominant submatrices

Definition
Let A be an m × r matrix. Then, an r × r submatrix A0 is dominant if, up to

permuting the rows to put A0 on top,

AA−1
0 =

[
I

V

]
, |Vij | ≤ 1.

Lemma
If A0 has maximum volume, then it is dominant.

Proof.
Construct AA−1

0 . Note that the property of being of maximum volume is transferred by

the submatrices of A to the ones AA−1
0 , since all the sub-determinant are just

multiplied by det(A−1
0 ).

If, by contradiction, there exists |Vij | > 1, swap rows i and i + r . Then, the top matrix

has now determinant Vij , and therefore the previous top submatrix was not of

maximum volume, which leads to a contradiction. 61



The algorithm maxvol

A maximum volume submatrix needs to be dominant: therefore, we can relax the

problem into finding a dominant submatrix:

1. Select a starting submatrix A0.

2. Compute

AA−1
0 =

[
I

V

]
(up to permutation).

3. Find the element Vij in V with largest modulus.

4. Update A0 by swapping its row i with the one in position i + r , containing Vij . Go

back to step 2.

This algorithm generates a sequence of submatrices of (strictly) increasing volume – so

it must converge (since the volumes are bounded). Stopping criterion can be chosen

looking at the maximum of |Vij |.

62



Speeding up maxvol

• The computational bottleneck in maxvol is the computation of A0A
−1
0 , which in

principle requires O(mr2) flops at every step.

• However, notice that at every step A0 changes just by one row – so by a rank 1

update. We can make use of the Sherman-Morrison formula that updates an r × r

inverse in O(r2):

(A0 + uvT )−1 = A−1
0 −

A−1
0 uvTA−1

0

1 + vTA−1
0 u

.

• In principle, one may use the rank 1 update of a QR factorization as well, for

improved stability – but the matrices A0 get increasingly well-conditioned, so this

is not so important.

• With this change, one step costs O(mr).
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Adaptive cross approximation

Ufortunately, maxvol only works for tall and skinny matrices.

• Other heuristics available for finding maximum volume submatrices; often based

as maxvol as a starting step.

• We consider another heuristic, that tries to build the matrix A(I , J) one step at a

time.

• It is called adaptive cross approximation (or ACA), and was proposed by

Bebendorf around 2000 for functional approximation (or probably even before).
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ACA in a nutshell

At every step, we want to have A = Ak + Rk , where Ak is the approximation, and Rk

the residual. We start by A0 = 0, and R0 = A.

1. Find a good maximum volume submatrix of size 1× 1; in other words, find a large

element |Aij | in |A|.
2. Use element (i , j) as pivot, and build the rank 1 approximation

A1 := A(:, j)A(i , j)−1A(i , :), R1 = A− A1.

3. Replace A with R1, and repeat until the residual gets sufficiently small.

Does this algorithm sound familiar? It should . . .
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A “stupid” ACA

Choosing the largest element in A is costly – we need to make a suboptimal choice.

Assume we make a fixed selection, and we choose as pivot at the r -th step the element

in position (r , r).

Then,

A1 = A(:, 1)A(1, 1)−1A(1, :), R1 = A− A(:, 1)A(1, 1)−1A(1, :).

Then,

R1 =


0 0 . . . 0

0 ã22 . . . ã2n

...
...

...

0 ãm2 . . . ãmn

 , ãij = aij − ai1a
−1
11 a1j .

R1 is exactly the matrix obtained after 1 step of LU factorizatino without pivoting – at

least in the trailing part.
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A “stupid” ACA

Choosing the largest element in A is costly – we need to make a suboptimal choice.
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0 ã22 . . . ã2n
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least in the trailing part.
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An important connection

Lemma
If we perform the “stupid” pivoting for the ACA that we had in the previous slide, then

if A = LU with no pivoting,

Ak = L(:, 1 : k)U(1 : k , :)

= L(:, 1 : k)U(1 : k , 1 : k)U(1 : k, 1 : k)−1L(1 : k , 1 : k)−1U(1 : k , :)

= A(:, 1 : k)[A(1 : k , 1 : k)]−1A(1 : j , :).

• Therefore, ACA with no pivoting is equivalent to cross approximation selecting the

leading matrix as approximant.

• The quality of the approximation depends on the growth of A(1 : k , 1 : k)−1 —

very much related to the growth factor of LU!

• For the cases where LU with no pivoting is known to work well, then ACA with no

particular pivoting works as well (positive definite matrices, M-matrices,

diagonally dominant matrices, . . . ). 67



General matrices

For a general A, the LU factorization has a growth factor, defined as

ρk :=
‖L(1 : k, 1 : k)‖∞ · ‖U(1 : k , 1 : k)‖∞

‖A(1 : k, 1 : k)‖∞
,

which grows exponentially, and that is the typical behavior. It allows to control the

norm of the selected core by ‖A(I , J)−1‖ ≤ 4kρk for complete pivoting.

• If we perform a selection of the largest pivot on the row/col, we have LU with

column/row pivoting: the worst case growth factor is still exponential, but is very

rare in practice!

• If we look for the largest pivot, we have LU with complete pivoting: growth factor

very slow, conjecture to be equal to k , but was disproved ≈ 30 years ago. Still

very small in practice.
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Summary

• Cross approximation very powerful, but related to a difficult problem.

• In practice, ACA is a good enough heuristic, works in most cases.

• It is slightly less reliable than Lanczos or randomized sampling, but only requires a

few entries of the matrix!

• The optimal low-rank approximation strategy depends on the features of your
problem:

• Is A small size (min{m, n} ≤ 500)? Then, do a rank-revealing QR or even SVD if

one of the two dimensions is small.

• Is a fast matrix-vector product by A and AT available? Then go with randomized

sampling or Lanczos.

• Are single entries of A easily computable? Then, use ACA.

• If all the above assumptions fail — one has to design a custom procedure for the

case at hand — but they cover 99.9% of the cases of practical interest.
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Example

See: example aca.m
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Principal Component Analysis

One of applications of low-rank approximation is the so-called principal component

analysis, or PCA. Assume we have ` independent random variables

X1(ω),X2(ω), . . . ,X`(ω).

• We do not known these variables explicitly.

• Instead, we are given the possibility to take some samples for a small set of events.

• Unfortunately, we cannot measure the variables directly, but only their effects,

which are given by certain linear combinations:

Y1(ω) = M1,1X1(ω) + . . .+ M1,`X`(ω)

...

Ym(ω) = Mm,1X1(ω) + . . .+ Mm,`X`(ω)
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The observed matrix

Given the sample points ω1, . . . , ωn, we measure a matrix Aij with entries Aij = Yi (ωj):

A =


M1,1 . . . M1,`

...
...

Mm,1 . . . Mm,`



X1(ω1) . . . X1(ωn)

...
...

X`(ω1) . . . X`(ωn)

 .

• In the typical situation, one has m, n� `.

• The matrix X has rank (at most) `, and therefore A has a low-rank structure.

• Identifying the structure allows to determine the important variables in the

solution — restricting the dimension space.
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Another viewpoint

• We can think of having m correlated variables.

• PCA recovers another representation of the same samples, where all the variables

are uncorrelated.

• The variables are ordered so they contribute less and less to the variance.

See: example pca.m
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Matrix completion

There is a low-rank approximation problem that is slightly different from the ones we

have seen as of now:

• Assume that a few entries of a large matrix A are given;

• We look for the lowest degree matrix that coincide with A on the given entries.

• Often denoted as low-rank matrix completion.

Several possible solutions: we discuss the one in the paper “Low-rank matrix

completion by Riemannian optimization”, by B. Vandereycken.
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Some notation

Let

Ω = {(i1, j1), . . . , (is , js)}

be the set of known indices, and:

[PΩ(A)]ij :=

Aij if(i , j) ∈ Ω

0 otherwise
.

The problem statement can be given as:

minimize rank(X ), subject to PΩ(A) = PΩ(X ) ⇐⇒ PΩ(X − A) = 0,

where A is the given data matrix. This problem is NP-hard.

We might relax the formulation to cope with noise:

minimize rank(X ), ‖PΩ(X − A)‖2 ≤ ε
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Another formulation

We consider another formulation that is better suited to be solved numerically:min‖PΩ(X − A)‖2
F

rank(X ) = k
,

where k is chosen a priori.

• Rank k matrices form a smooth (Riemannian) manifold.

• If we see the set of rank k matrices as the ambient space, this is a an

unconstrained minimization problem over a Riemannian manifold.

• Can be solved by any minimization method (for instance, gradient descent, or

Newton-like methods).
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Riemannian geometry in a nutshell

Smooth manifold:

• Locally similar to Rn through a diffeomorphism.

• Can compute tangent space TX (M) at any point, and construct the tangent

bundle TM.

Riemannian structure:

• At any point, one has g(x , y) definite bilinear form over the tangent space

TX (M).

• The above scalar product depends smoothly on the point.

Gradient:

• Given a smooth function f :M→ R, the gradient is a map from the manifold to

the tangent bundle, such that

g(∇f (X ), ξ) = DfX [ξ],

where DfX is the directional derivative at X , in the direction ξ. 77



Embedded manifolds

Rn is a Riemannian manifold with the usual scalar product as metric. Our manifold is

a submanifold of the m × n matrices, which are isomorphic to Rmn with the scalar

product g(X ,Y ) = tr(XTY ).

Not a special case!

Theorem (Nash, 1956)
All the Riemannian manifolds admit an isometric embedding into RN , for sufficiently

large N.

We need to move in a direction: possible through a retraction map; R : TM→M is

a retraction iff

• R((X , 0)) = X ;

• DR((X , 0))[0, ξ] = ξ.

Intuitively, it goes along geodesics, i.e. it locally approximate the exponential map.
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Embedded manifolds (gradient)

Given f :M→ R, the gradient is given by

• Computing the gradient in the ambient manifold.

• Projecting it onto the manifold.

In our case:

∇‖PΩ(X − A)‖2
F = 2PΩ(X − A).

Very easy if we know how to compute the selected entries, and we do. However, we

need to project it back onto the tangent space of rank k matrices.
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The tangent space of Mk

If X = UΣV T , then the tangent space can be described as:

TXMk :=

{[
U U⊥

] [M11 M12

M21 0

] [
V V⊥

]}

for arbitrary Mij . Therefore, the projection onto TXMk is defined as:

PTXMk
(Y ) := (I−UUT )Y (I−VV T ) = UUTYVV T+(I−UUT )YVV T+UUTY (I−VV T ).

• Very easy to compute for Y already in factorized form.

• Proof: just look at first order perturbations that preserve the rank k structure.
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General structure of the gradient descent

• Given some initial point X0, compute gradient ∇X .

• Perform line search along that direction.

• Choose next point, and iterate.

In practice, the algorithm uses conjugate gradient instead of plain gradient descent:

need to compare vectors in different tangent space. This can be done with parallel

transport, the unique map that moves the tangent space smoothly along a path

compatibly with the metric g(·, ·).

In an embedded manifold the parallel transport is given by “translation + projection”.
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Summary

How do I approximate A ≈ UV T ?

• Is A small size (min{m, n} ≤ 500)? Then, do a rank-revealing QR or even SVD if

one of the two dimensions is small.

• Is a fast matrix-vector product by A and AT available? Then go with randomized

sampling or Lanczos.

• Are single entries of A easily computable? Then, use ACA.

• Do I know only certain entries of A, and I am trying to complete the rest keeping

the rank low? Riemannian optimization or minimization of the nuclear norm (:=

sum of singular values, we have not covered this).
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