
Low-Rank Approximation

Lecture 3 – Chebfun 2

Leonardo Robol, University of Pisa, Italy

Cagliari, 23–27 Sep 2019

1

Preliminaries

Until now, we have played with low-rank matrices; a theoretical mathematician might

say that a matrix A is nothing else than a bivariate function:

A : {1, . . . ,m} × {1, . . . , n} → R (or C),

where we agree on the notation Aij := A(i , j).

Even if we like applied math, this suggests a natural questions: what if we have a

bivariate function on a continuous domain — for instance f (x , y) : [−1, 1]2 → R —

instead of a discrete one? Is it a “matrix”, in an appropriate sense?

And obviously, the important questions: is it “low-rank”? Well, sometimes it is, and

this is a quite powerful idea.

2

Scalar products

To jump into the continuous setting, we need some tools. Denote by:

〈v ,w〉 : V × V → R

any scalar product on some vector (Hilbert) space. As we all know, they induce a

norm, and we have many examples of them:

• The canonical scalar product on R: 〈v ,w〉 := vTw , or vHw if we are on Cn.

• On matrices, a scalar product is 〈A,B〉 := tr(ATB): this induces the Frobenius

norm, and is equivalent to the canonical by identifying Rm×n with Rmn.

• The usual scalar product on L2([a, b]), the functions whose square is integrable:

〈f , g〉 :=

∫ b

a
f (x)g(x) dx .

• The previous scalar product, with some weight w(x) ≥ 0:

〈f , g〉 :=

∫ b

a
f (x)g(x)w(x) dx .

3

Orthogonal polynomials

We will concentrate on the interval [−1, 1]; given a scalar product, we may define

orthogonal functions in an appropriate space:

f ⊥ g ⇐⇒ 〈f , g〉 = 0 ⇐⇒
∫ 1

−1
f (x)g(x)w(x) dx = 0.

• Any choice of w(x) gives rise to a family of orthogonal polynomials

• The family is generated by starting with p0(x) = 1.

• . . . and then we construct pj+1(x) as:

pj+1(x) := x j+1 − 〈x j+1, pj〉
pj(x)

‖pj(x)‖2
− . . .− 〈x j+1, p0〉

p0(x)

‖p0(x)‖2

• Clearly, {p0, . . . , pj} spans the vector space of polynomials of degree (at most) j .

• Different normalizations might be considered.

4

Not all weights are born equal

In practice, we will consider a special weight:

w(x) =
1√

1− x2

• This choice generates the Chebyshev polynomials of the first kind.

• Incredibly relevant for approximation theory – and for numerical analysis in

particular.

• As we will see, they are very well suited for quasi-optimal uniform approximation

of functions.

• Obviously, up to a change of variable, we can always remap them from [−1, 1] to

any interval [a, b] that is of interest.

5

Recurrence relation

• All the orthogonal polynomials satisfy a recurrence relation.

• By the definition, we know that the following procedure can be used to compute
pj+1:

1. Compute qj+1 := xpj(x).

2. Orthogonalize qj+1 against p0, . . . , pj .

• In principle, this would give a formula for pj(x) of the form:

pj+1(x) = xpj(x) +

j∑
i=0

tipi (x), ti = − 1

‖pi‖2

∫ 1

−1
xpj(x)pi (x)w(x) dx

• However, most of the above terms are zeros (why?), and we can write:

pj+1(x) = (αjx + βj)pj(x)− γjpj−1(x).

• This is known as the three-term recurrence relation.

6

Recurrence relation for Chebyshev polynomials

For Chebyshev polynomials of the first kind, the recurrence relation is given by:
Tj+1(x) = 2xTj(x)− Tj−1(x)

T1(x) = x

T0(x) = 1

.

As you might guess, there are also Chebyshev polynomials of the second kind, given by

the recurrence relation: 
Uj+1(x) = 2xUj(x)− Uj−1(x)

U1(x) = 2x

U0(x) = 1

.

It is a practical way if one wanted to compute the coefficients of the polynomials

(almost never necessary!).

7

Orthogonal projection for polynomials

• Since we have a scalar product, it is natural to consider the orthogonal projection.

• For any polynomial q(x), we can consider:

qj :=
1

‖Tj‖2

∫ 1

−1
q(x)Tj(x)w(x) dx .

• Then, q(x) can be written as the (finite!) sum

q(x) =
∞∑
j=0

qjTj(x).

• We have qj = 0 for any j > deg q(x).

8

Orthogonal projection for functions

• In fact, the orthogonal projector would be defined for all the functions in

L∞([−1, 1]):

fj :=
1

‖Tj‖2

∫ 1

−1
Tj(x)f (x)w(x) dx .

• Natural question: under which conditions we have the following equality?

f (x) =
∞∑
j=0

fjTj(x)

• We note that this summation is never finite — unless f (x) is a polynomial.

• Even more importantly (for an applied mathematician), we may consider the

truncated series fk(x):

fk(x) :=
k∑

j=0

fjTj(x)

Is it true that fk(x) ≈ f (x)?

9

Approximation properties

The answer to the previous questions is: mostly yes, the Chebyshev polynomials have

very good approximation properties, essentially the same of the Fourier series.

There are several results in the literature — before stating one of interest for us, we

will test this in practice on the following examples:

f (x) = sin(x2 − x + 1)

See: example chebfun1.m

10

Speed of convergence

• The convergence of Chebyshev series is intimately connected with the regularity of

the approximated function.

• Consider the following examples:

f (x) = |x | g(x) = |x | · x h(x) = |x |3

• f (x) is continuous — but its derivative has a jump at 0.

• g(x) is differentiable, but its second derivative has a jump.

• And finally, h(x) has a third derivative with a jump.

• We look at the maximum of |fk(x)− f (x)| over [−1, 1], and analogously for g(x)

and h(x).

11

Convergence speed

Here, fk , gk , hk are the truncated Chebyshev series of the functions

f (x) = |x |, g(x) = |x | · x , h(x) = |x |3.

100 101

10−5

10−4

10−3

10−2

10−1

100

k

|f − fk |
|g − gk |
|h − hk |
O(k−1)

O(k−2)

O(k−3)

12

Coefficients decay

The convergence of the series can be easily related with the decay of the coefficients in

the expansions. Indeed, let:

f (x) =
∞∑
j=0

αjTj(x), αj :=
1

‖Tj‖2

∫ 1

−1
f (x)Tj(x)w(x) dx .

Then, we can use that the Chebyshev polynomials are bounded between −1 and 1 on

[−1, 1], so:

|f (x)− fk(x)| ≤

∣∣∣∣∣∣
∞∑

j=k+1

αjTj(x)

∣∣∣∣∣∣ ≤
∞∑

j=k+1

|αj |.

For instance, if we have |αj | ≤ Cj−ν , with ν > 1, then:

|f (x)− fk(x)| ≤
∞∑

j=k+1

|αj | ≤ C
∞∑

j=k+1

j−ν ≤ C

∫ ∞
k

1

xν
dx = Ck−ν+1.

If the approximant converges as k−ν , we would like the coefficients to decay as k−ν−1.

13

Algebraic decay for C ν functions

If a function has ν derivatives, and f (ν) is nice enough – we have indeed convergence

of the coefficients as k−(ν+1).

Theorem
Assume f (x) has ν − 1 continuous derivatives, and f (ν) has bounded variation. Then,

for every j > ν,

|αj | ≤ C (j − ν)−(ν+1).

• Combined with the previous result, this gives O(k−ν) convergence for fk → f , in

the infinite norm, assuming f (ν) of bounded variation.

• Bounded variation includes continuous functions, but allows for a few jumps: we

just restrict that the sum of the height of all jumps is finite, i.e., f ∈ BV ([−1, 1])

if and only if

‖f ′(x)‖1 <∞,

where the above is taken in a distributional sense, if necessary.

14

Analytic functions

• What can we say if f (x) is analytic — and not only C ν?

• Based on the previous result, we have that |αj | → 0 faster than any polynomial.

• To understand this — we need to look at how the functions behave on the

complex plane.

By using analytic continuation we might be able to extend the definition of our

function f (z) on a larger set. The larger set, the faster the convergence.

For Chebyshev series, the most natural sets to consider are Bernstein ellipses. In order

to understand them, we need the Joukowski map:

J(z) :=
z + z−1

2
.

Note that J(S1) = [−1, 1].

15

The Joukowski map

• The Joukoski map maps S1 (the unit circle) into [−1, 1].

• z and z−1 are sent into the same spot.

• We call Eρ the set J(B(0, ρ)).

• Circles are sent into ellipses! a few examples:

16

Bernstein ellipses

It is relatively easy to compute the maximum ρ that does not include the points ±iβ:

z + z−1

2
= ±iβ ⇐⇒ iρ+ (iρ)−1

2
= ±iβ ⇐⇒ ρ2

2
− βρ− 1

2
= 0.

Solving the quadratic equation yields

ρ = β +
√

1 + β2.

Theorem
If f (z) is analytic on the Bernstein ellipse Eρ, then

|αj | ≤ 2Mρ−j , M := max
z∈Eρ

|f (z)|.

In particular, |f − fk | ≤ 2M
∑∞

j=k+1 ρ
−j = 2Mρk+1

1−ρ .

Let’s check it in practice! See: example analytic chebfun.m

17

Converse result

Interestingly, the result also holds in the other direction!

Lemma
Let f (z) a function whose Chebyshev series satisfies

|αj | ≤ Cρ−j

for some constant ρ. Then, f (z) can be extended by analytic continuation on Eρ.

Proof.
Apply the inverse of the Joukoski map into the inside of the circle, and use the Taylor

expansion there (the condition on αj automatically becomes a condition on the decay

of Taylor coefficients).

18

Interpolation: practical computation of the approximants

Computing the approximants fk(x) by the integral formula

αj =
1

‖Tj‖2

∫ 1

−1
f (x)Tj(x)w(x) dx

is not practical. Instead, we typically prefer to compute the interpolant polynomial

f̃k(x) at the points :

xj := cos

(
πj

k + 1

)
, j = 0, . . . , k + 1.

• These points are called Chebsyhev points of the second kind.

• They are the roots of Uk(x) — with the addition of ±1.

• They are also the image of the roots of the unity through the Joukoski map.

19

Fast interpolation

How much does it cost to interpolate the polynomial at those points?

• In a general context, interpolation requires the solution of a Vandermonde system

— typicall O(k3) and potentially very ill-conditioned.

• Instead, the fact that the points are image of the roots of the unity through the

Joukoski map allows to design a fast trasform — based on the FFT — this is

known as the discrete cosine transform, or DCT.

• The interpolant is computed in O(k log) flops, with a normwise stable procedure.

• This is the main reason why Chebyshev polynomials are used in Chebfun, in place

of other families of orthogonal polynomials (together with the quasi-optimal

approximation properties).

20

Rootfinding

In order to understand the potential features that we investigate for 2D functions —

we consider the following problem: given a polynomial p(x) expressed in the

Chebyshev basis, how do we compute its roots?

We want to solve p(x) = 0, for a polynomial of degree k .

• This will allow to compute zeros of functions too — if |f − fk | ≤ ε than the roots

of fk(x) inside [−1, 1] are good approximations of the ones of f (x)!

• In addition, this can be used to compute the roots of f ′(x) as well (since the

latter is computed easily by the polynomial expansion), with applications to global

optimization; more on this later!

Reminder: for Chebyshev polynomials, we have the recurrence relation
Tj+1(x) = 2xTj(x)− Tj−1(x)

T1(x) = x

T0(x) = 1

.

21

The colleague matrix

Consider the following (k − 1)× k matrix pencil, multiplied by a polynomial vector:

L(x)v(x) =


1 −2x 1

. . .
. . .

. . .

1 −2x 1

1 −x



Tk−1(x)

...

T1(x)

T0(x)

 = 0.

• Related to the concept of dual minimal bases (not for today).

• Essentially encodes the recurrence relation; if we choose T0(x) = 1 then imposing

the duality between L(x) and v(x) automatically determines the basis.

• Can be used as a building block to transform the rootfinding problem into an

eigenvalue problem.

22

The colleague matrix

Consider the following square matrix pencil, obtained by adding a top row:
αk−1 + 2xαk αk−2 − αk αk−3 . . . α0

1 −2x 1
. . .

. . .
. . .

1 −2x 1

1 −x




Tk−1(x)

Tk−2
...

T1(x)

T0(x)

 =



s(x)

0
...
...

0


,

where s(x) = αk(2xTk−1(x)− Tk−2(x)) +
∑k−1

j=0 αjTj(x).

• Since Tk(x) = 2xTk−1(x)− Tk−2(x), we have s(x) =
∑k

j=0 αjTj(x).

• Clearly, the polynomial matrix is singular whenever s(x) has a root at x .

• If we write the polynomial matrix as A− xB, the roots of s(x) are exactly the

eigenvalues of AB−1, which can be computed in O(k3) by the QR method.

23

The cost of eigenvalues

• If the approximant has a large degree, then k3 could be a large cost.

• Quadratic methods are available for the task.

• As an even more efficient alternative, chebfun decomposes the domain into small

parts until the degree is sufficiently small. This brings the cost down to ≈ k log k .

In general, computing the roots is quite efficient with Chebfun. Note that we only get

the roots inside [−1, 1]! We do not get roots out of that interval, or in the complex

plane.

Test: we can try with sin(5πx), which has roots at ± j
5 for j = 0, . . . , 5.

24

Global optimization

We can use the method for computing roots for global optimization:

• Given a chebfun f , we compute its derivative f ′(x) — also a chebfun.

• We compute the roots of f ′(x), which are the stationary points.

• We inspect them one by one, and find maxima and minima (plus we check the

endpoints).

As before, we can try with the simple function f (x) = sin(5πx).

25

Going bi-dimensional

Assume we are given a function in two variables:

f (x , y) : [−1, 1]2 → R

Then, we may expand it in a bivariate Chebyshev series:

f (x , y) =
∑
i ,j

αijTi (x)Tj(y).

• Theoretically, there is little change with respect to the previous approach.

• If we assume the regularity in the two variables, we have the decay in the αij for

i →∞, and for j →∞ as well.

• In particular, only the coefficients for small enough i , j are relevant.

26

Function factorization

Given the truncated expansion

fmn(x , y) =
m∑
i=1

n∑
j=1

αijTi (x)Tj(y),

we can refactor it in “matrix form”:

fmn(x , y) =

T0(x) . . . Tm(x)



α11 . . . α1n

...
...

αm1 . . . αmn


T0(y) . . . Tn(y)


T

.

• Somehow, this resembles the SVD: we have outer factors which are orthogonal

(with respect to a different scalar product than the usual one), and a central core.

• However, the bases do not depend on f (x , y), so this representation is probably

redundant. Indeed, often the central matrix has low numerical rank. Why?

27

SVD for bivariate functions

Let f (x , y) : [−1, 1]2 → R be a function in L2([−1, 1]). Then, we may define the

integral operator:

Tf (g(x)) :=

∫ 1

−1
f (x , y)g(y) dy .

• The operator is linear, and maps L2 into L2.

• It is bounded, since ‖Tf ‖2 ≤ ‖f ‖2.

• It is a compact operator: therefore, TT
f Tf has a discrete spectrum (possibly

accumulating at 0), and can therefore be decomposed with an SVD.

28

Rank one operators

Since we are working in L2, we can make use of the Riesz representation theorem to

represent operators in the dual space (L2)∗ ∼ L2 as

ϕg (h) :=

∫ 1

−1
g(x)h(x)dx .

Therefore, rank 1 operators have the form f (x)ϕg where f , g ∈ L2; since the SVD is

obtained as a sum of rank 1 terms of the form σj fjϕgj where ‖fj‖2 = ‖gj‖2 = 1, we

have the decomposition:

Tf = σ1f1ϕg1 + σ2f2ϕg2 + . . .

Putting all the pieces together yields:

Tf (h) =

∫ 1

−1
f (x , y)h(y) dy =

∞∑
j=0

∫ 1

−1
σj fj(x)gj(y)h(y) dy

=

∫ 1

−1

∞∑
j=1

(σj fj(x)gj(y)) h(y) dy

29

Using the SVD to separate variables

The equality can be derived also in the L2 sense, so we can write

f (x , y) =
∞∑
j=1

σj fj(x)gj(y).

• As usual, this is the same in the complex case by adding appropriate conjugations.

• As it is, we only have convergence in L2, and we know that σj → 0 but not the

speed.

Lemma
If f (x , y) is also Lipschitz, then the above series convergeces uniformly, and therefore

also pointwise. In addition, the factors fj(x) and gj(y) can be chosen continuous.

30

Practical approximation

How do we compute such expansion? We can try to follow our rules from yesterday:

• Is the problem low-dimensional enough that we can perform an SVD directly?

No

— not a viable solution (unless . . .)

• Is it easy to perform a matrix vector multiplication by Tf or TT
f ? In this case this

would mean computing∫ 1

−1
f (x , y)g(y) dy , or

∫ 1

−1
f (y , x)g(y) dy .

This might be problem dependent, but in general it seems quite difficult: no

Lanczos or randomized sampling.

• Can we evaluate the matrix point-wise? In this case, this would be the equivalent

of computing A(i , j) = eTi Aej = 〈ei ,Aej〉, which means〈
δ(x − x0),

∫ 1

−1
f (x , y)δ(y − y0) dy

〉
,

where δ is the Dirac delta: this is nothing else than f (x0, y0)! We can use ACA.

31

Practical approximation

How do we compute such expansion? We can try to follow our rules from yesterday:

• Is the problem low-dimensional enough that we can perform an SVD directly? No

— not a viable solution (unless . . .)

• Is it easy to perform a matrix vector multiplication by Tf or TT
f ? In this case this

would mean computing∫ 1

−1
f (x , y)g(y) dy , or

∫ 1

−1
f (y , x)g(y) dy .

This might be problem dependent, but in general it seems quite difficult: no

Lanczos or randomized sampling.

• Can we evaluate the matrix point-wise? In this case, this would be the equivalent

of computing A(i , j) = eTi Aej = 〈ei ,Aej〉, which means〈
δ(x − x0),

∫ 1

−1
f (x , y)δ(y − y0) dy

〉
,

where δ is the Dirac delta: this is nothing else than f (x0, y0)! We can use ACA.

31

Practical approximation

How do we compute such expansion? We can try to follow our rules from yesterday:

• Is the problem low-dimensional enough that we can perform an SVD directly? No

— not a viable solution (unless . . .)

• Is it easy to perform a matrix vector multiplication by Tf or TT
f ? In this case this

would mean computing∫ 1

−1
f (x , y)g(y) dy , or

∫ 1

−1
f (y , x)g(y) dy .

This might be problem dependent, but in general it seems quite difficult: no

Lanczos or randomized sampling.

• Can we evaluate the matrix point-wise? In this case, this would be the equivalent

of computing A(i , j) = eTi Aej = 〈ei ,Aej〉, which means〈
δ(x − x0),

∫ 1

−1
f (x , y)δ(y − y0) dy

〉
,

where δ is the Dirac delta: this is nothing else than f (x0, y0)! We can use ACA.
31

ACA in a functional setting

Recalling how ACA works, it can be easily adapted to work in this functional setting1

• We choose a pivot point (x0, y0) where f (x , y) is maximum in modulus.

• We consider the rank 1 approximant

f1(x , y) = f (x , y0)f (x0, y0)−1f (x0, y).

• We subtract f1(x , y) from f (x , y) and we continue the iteration, until the pivot

point becomes too small.

Notice that this uses complete pivoting, so it would require to find the maximum of

the function at each pivot choice.

1Indeed, ACA was first designed for the approximation of bivariate matrix functions, and the case of

matrices came as an afterthought.

32

ACA in Chebfun

The actual algorithm implemented in Chebfun uses some heuristic:

• At the beginning, the function f (x , y) is interpolated on a 9× 9 grid, where

9 = 2j + 1 with j = 3.

• The rank of this approximant is determined by recompressing using an economy

SVD. If it is larger than 2j−2 + 1, j is increased to j + 1, and the function is

interpolated on a larger grid going back to point 1.

• The first rough approximation will be used to choose the first pivot points

(x1, y1), . . . , (xk , yk).

• The Gaussian elimination is started, choosing the pivot on the grid. The function

in the various directions are resolved down to machine precision.

• The process is repeated on the residual function f (x , y)− fk(x , y) until

convergence.

A few tests: example chebfun2.m

33

Arithmetic operations

• Chebfun allows to perform arithmetic operations between chebfun and chebfun2

objects.

• For instance, one can sum, multiply, take square roots, . . .

• Many operations are implemented by resampling the function.

• In some cases, it is possible to give a representation directly (example: f + g).

• In the case of chebfun2 there might be a need for recompression:

f ≈ UV T , g ≈WZT =⇒ f + g ≈ [U V] [W Z]T .

• The recompression algorithm is exactly the same as in the matrix case.

34

2D rootfinding

Rootfinding in 2D follows the same ideas of the 1D case, but is more delicate. We

could have two meanings for “2D rootfinding”:

• We determine f (x , y) = 0, which in general will be a level curve – and can be

represented using a (piecewise) chebfun.

• Given two chebfuns, we look for solution to the systemf1(x , y) = 0

f2(x , y) = 0
.

Generally, this set is finite, and we want to compute the points.

In the latter case, if f1, f2 are polynomials of degree m, n, by Bezout theorem we know

that the system has mn solutions.

See: example rootfinding.m

35

Optimization in 2D

As in the 1D case, one of the most interesting applications is global optimization of 2D

functions. We may consider a function

f (x , y) : [−1, 1]2 → R,

and then compute the solution of the system of equations:∂f
∂x (x , y) = 0

∂f
∂y (x , y) = 0

• The partial derivatives can be computed with the command diff, or directly

using gradient.

• They are also Chebfun — indeed, it is the same process of computing derivatives

in 1D.

See: example optimization.m

36

