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Matrix equations

We consider a problem apparently unrelated to the low-rank approximation framework:

assume we have A,B,C ,D,E such that

AXE + DXB = C ,

where all the matrices have compatible sizes.

• We would like to solve the equation for X .

• Several equations fall in this category with particular choices of A,B,C ,D,E .

• The equation is linear. Indeed, up to reassembling the unknowns this is a linear

system.

• Solving it as a linear system hides most of the structure.
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Classification

AXE + DXB = C

Depending on the matrices we choose, we give this equation a different name:

• E = D = I , then this is a Sylvester equation:

AX + XB = C , A ∈ Cm×m, B ∈ Cn×n, X ,C ∈ Cm×n

• If in addition B = AH , then this is a Lyapunov equation AX + XAH = C .

The equations above are called continuous time Sylvester and Lyapunov, and they

have a discrete time counter part:

AXB + X = C , AXAH + X = C .

They arise from control theory — from continuous and discrete time ODEs,

respectively.
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Tools for the job

We need some standard tools in linear algebra, so let’s make a brief recap:

• We denote with A⊗ B the Kronecker product of A and B, that is:
a11B . . . a1nB
...

...

am1B . . . amnB

 .
• We denote by vec(X ) the vectorized of X , which is the vector obtained by

stacking the column of X one on top of the other:

vec(X ) :=


Xe1

...

Xen

 .
• MATLAB notation for these two operations: kron(A, B) and X(:).
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Important properties

• Kronecker products and vec operations play very well together.

• vec(AXB) = (BT ⊗ A)vec(X ).

• ‖vec(X )‖2 = ‖X‖F .

• (A⊗ B)(C ⊗ D) = AC ⊗ BD (this is valid any time the dimensions are

compatible, so is for vectors as well).

• (A⊗ B)T = AT ⊗ BT .

• rank(A⊗ B) = rank(A)rank(B).

• We have important properties on the spectrum and the singular values:

Λ(A⊗ B) = {λiµj , λi ∈ Λ(A), µj ∈ Λ(B)}
σij(A⊗ B) = σi (A)σj(B),

where the last equality is valid up to proper reordering.
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Matrix equations as linear systems

Knowing properties of Kronecker products immediately allows to recast matrix

equations as linear systems:

AXE + DXB = C ⇐⇒ (ET ⊗ A + BT ⊗ D)vec(X ) = vec(C ).

• Particular cases have stronger structure, for instance the Sylvester equation

AX + XB = C gives rise to the linear system

(BT ⊗ I + I ⊗ A)vec(X ) = vec(C ).

• If the matrix equation involves an m × n matrix X , this is an mn ×mn linear

system; using a non-structured linear system solver, we need O(m3n3) flops to

solve it. Often too expensive!
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Existence of solution

Using the characterization of eigenvalues, it is easy to check when the solution of a

Sylvester equation exists is unique:

• AX + XB = C ⇐⇒ (BT ⊗ I + I ⊗ A)vec(X ) = vec(C ).

• The above linear system is uniquely solvable iff the matrix has no zero

eigenvalues. That is,

λi (A) + λj(B) 6= 0 ⇐⇒ λi (A) 6= −λj(B),

which is to say that A,B have disjoint spectrum.

• Similar conditions for AXB + I = C :

λiλj(B) + 1 6= 0 ⇐⇒ λi (A) 6= −λ−1
j (B).

• Can we answer for the more general case?
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Existence of solution

If we consider the general equation

AXE + DXB = C ,

the associated linear system BT ⊗ D + ET ⊗ A is nonsingular if and only if the pencils

(A− λD), (B + λE )

have disjoint spectrum.

Proof.
Let us assume that E ,D are nonsingular. Then,

det(BT ⊗ D + ET ⊗ A) 6= 0 ⇐⇒ det(E−TBT ⊗ I + I ⊗ D−1A) 6= 0,

and the latter inequality holds if and only if

λi (E
−TBT ) 6= −λj(D−1A),

which are exactly the eigenvalues of the pencils above. What if E ,D singular?
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Shifting the equation

The previous hypothesis about E ,D non-singular is not really restrictive. Given

AXE + DXB = C , we can always introduce shifts

(A− λD)X (B + ηE ) + (ηD − A)X (λE + B) = (η − λ)C

• If we cannot find λ, η such that B + ηD and ηE − A or A− λE and λ+ B are

nonsingular, then we can easily construct a nonzero solution in the kernel.

• If you are familiar with matrix pencils, it means both have nontrivial singular

blocks in the Kronecker Canonical Form.

• Otherwise, we can always shift the pencils to be in the valid situation for the proof.

• This shifting property will come useful later!
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Operator theory

The equation makes also sense when A,B,C ,D,X are operators on some Banach

algebra. In that case, the condition for existence of solution becomes on the spectra of

the pencils:

unique solution ⇐⇒ {λ | ‖(A− λD)−1‖ <∞} ∩ {λ | ‖(B + λE )−1‖ <∞} = ∅.

• We get again the condition on eigenvalues in the finite dimensional case.

• Spectra are more complicated in an infinite dimensional case, not all points in the

spectrum are eigenalues. The condition is anyway “the spectra are disjoint”.

• The proof we had before does not work straight-away.
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Closed formula for the solution

It turns out that one can write closed formula for the solution of Sylvester equations.

These apply also to the infinite-dimensional case and can be indeed used for the proof.

Theorem
Let ΓA and ΓB close the spectrum of A and B, respectively, and assume that the

enclosed set is disjoint. Then, the solution of AXE + DXB = C is

X = − 1

4π2

∫
ΓA

∫
ΓB

(λD − A)−1C (µE − B)−1

λ+ µ
dλdµ

In addition, if Γ encloses the spectrum of A but not the one of B, then

X = − 1

2πi

∫
Γ
(A− λD)−1C (B + λE )−1 dλ.

The condition for having disjoint spectra is clear in this last result.
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Closed formula for the solution (continues)

These formula are mostly of theretical interest, because numerically it can be difficult

to approximate them. Another which draws a connection with matrix functions is, for

AX + XB = C , for A,B with spectrum in the left half plane,

X = −
∫ ∞

0
etACetB dt.

• Note that this only makes sense for operators which are stable, i.e., for which

‖etA‖ → 0 as t →∞.

• The same formula could be given when A,B have eigenvalues with positive real

parts — up to switching the sign.

• The formula is valid under the weaker condition that A and −B have spectra

separated by a vertical line. Why?

12



Solution of a Sylvester equation – small scale

We now consider the case where A,B, are reasonably small, say below 1000× 1000.

• We ruled out the possibility to use a Kroneckerized operator. That would only be

feasible for n up to ≈ 60 or so.

• Luckily, a Sylvester equation with n × n matrices can be solved in O(n3) flops,

making use of Schur decompositions.

• Brief reminder: given any matrix A, we have a unitary matrix Q such that

QHAQ = T ,

with T upper triangular.

• The decomposition can be computed in O(n3) time using the QR method.
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Solution of a Sylvester equation – small scale

Here is the algorithm to solve the equation AX + XB = C .

• Compute the Schur forms for A and B:

QH
A AQA = TA, QH

B BQB = TB .

• Transform the equation using QA and QB :

QH
A CQB = QH

A (AX + XB)QB = TAQ
H
A XQB + QH

A XQBTB = TAY + YTB ,

where TA,TB are upper triangular.

• Solve the equation TAY + YTB = QH
A CQB by back-substitution, computing the

entries starting from the entry in position (n, n) up to (1, 1).

• Recover the original solution as X = QAYQ
H
B .

Cost: O(n3). Known as Bartels-Stewart algorithm. More efficient variants are

nowadays available (for instance, the Hessenberg-Schur method).
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Stability

The Bartels-Stewart algorithm is stable, as a linear system solver. That is, the

computed solution X + δX of AX + XB = C will satisfy

(A+ δA)vec(X + δX ) = vec(C + δC ),

where A = BT ⊗ I + I ⊗ A. Does δA have the same structure of A? That is, does it

hold that: [
(B + δB)T ⊗ I + I ⊗ (A + δA)

]
vec(X + δX ) = vec(C + δC ).

Unfortunately, not. However, error bounds in the Frobenius norm are easily derivable

from the linear system.
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Condition number

Associated with stability one is also interested in understanding the condition number

of a matrix equation AX + XB = C (or a more general one).

If we use a stable algorithm, then the computed solution will satisfy

‖δX‖ ≤ κ · ε+O(ε2),

where ε is the size of the backward error, and κ the condition number.

• We cannot go into details, but essentially:

κ ≈ 1

sep[(A,−B)]
,

where sep measures the distance between the spectra of A and −B.

• Related to the (structured) condition number of BT ⊗ I + I ⊗ A.
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Solution for large A and small B

Suppose A ∈ Cm×m is large, and B ∈ Cn×n is small. Then,

AX + XB = C

can be solved efficiently by the following steps:

• We transform B to upper triangular form, which yields the transformed system:

AY + YTB = CQB , Y = XQB , QH
B BQB = TB .

• Then, we have the following equation for the first column of Y :

AYe1 + YTBe1 = CQBe1 ⇐⇒ (A + (TB)11I )Ye1 = CQBe1.

• Once we solve it, we can continue with the second column:

AYe2 = YTBe2 = CQBe2 ⇐⇒ (A + (TB)22I )Ye2 = CQBe2 − (TB)12Ye1.

• We continue until we get all the columns if Y (which are a few).

• Requires to solve a bunch of shifted linear systems with A, so it makes it easy to

exploit sparsity and other features of the larger scale matrix.
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Large scale case

We now consider the case where both A,B are large scale, so that the strategies

described previously are not applicable to the problem.

• In this setting, we need to make additional hypotheses on the data we have at

hand.

• This will draw a connection with low-rank approximation.

Standard setup from now on:

AX + XB = C = UV T , U ∈ Cm×k , V ∈ Cn×k .

In practice, we will consider k = 1, as it simplifies the discussion and everything

generalizes easily. We will add a few comments on the general case only when the

differences are relevant.
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The plan

We will cover a few possibilities for the approximation of the solution X . In all cases,

we will assume that X has numerically low-rank; we will later on see how this is

justified.

• We will use projection methods, and in particular Krylov subspaces.

• Then, we will see that the solution can be computed much faster with a particular

iteration related to rational functions: the ADI method. This will be highly

relevant from a theoretical perspective as well.

• Finally, we will see that rational Krylov subspaces can put together all the

advantages of the previous tools.
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Projection methods

Projection methods, including Krylov subspaces, can all be formulated in a similar

manner. We will derive them by looking again at the Kronecker system.

• This is a slightly unusual derivation, but I feel it gives some insight on why these

methods are so powerful.

• It also helps to bridge the gap with iterative methods for linear system.

• Once this approach is clear, the more “usual” derivation follows very easily.

Before starting, we need a very short 1-minute recap on iterative methods for linear

system.
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Solving linear system iteratively (by projection methods)

Let’s switch focus for a second, and assume we are solving a linear system Ax = b.

• Suppose A is large scale, so we only have a a fast matrix-vector operation

available.

• We cannot look at the entries of A explicitly: no sparse factorization methods. In

particular, no A\b in MATLAB.

General idea: construct a sequence of low-dimensional subspaces U1 ⊆ U2 ⊆ . . . such

that

• The dimension of U` is typically `; we denote U` an orthogonal basis for it.

• For each `, we find a solution x` = U`x̂` that is the “best” under some appropriate

metric. For instance, it might minimize ‖Ax` − b‖2 among all possible x` of the

above form.

• If we choose our space wisely, then x` → x and ‖Ax` − b‖2 → 0 fast enough.
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Krylov subspaces

The usual choice of the projection subspace is a Krylov subspace generated by A and b:

U` = K`(A, b) := span{b,Ab, . . . ,A`−1b}.

This has many advantages:

• The projected matrix A` := UT
` AU` is automatically available from the Arnoldi

iteration, and the basis can be computed with `− 1 matrix-vector products +

reorthogonalizations.

• One can interpret the solution of the linear system as evaluating the matrix

function f (z) = 1
z , this gives the FOM method.

• Other strategies possible — using the rectangular Hessenberg matrix gives

GMRES, and so on.
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Convegence analysis

The convergence can be linked to a polynomial approximation problem. The residual

at step ` satisfies:
ρ`
ρ0
≤ min

deg p(x)≤`−1
p(0)=1

‖p(A)‖2 · ‖b‖2, ρ` := ‖Ax` − b‖2.

• We have already discussed the issues in evaluating ‖p(A)‖: this is connected with

the eigenvalues only in the normal case.

• In the latter case, the convergence is very fast is the spectrum is clustered around

1 (or any other value).

• Otherwise, polynomial approximation might be quite slow (and therefore, we need

preconditioning).

• Similar convergence properties among all the methods in this class (FOM,

GMRES, . . . ).

• x` ∈ U` =⇒ (Ax` − b) ∈ U`+1: checking the residual is very economical.
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Choosing a smarter space

In our case, the matrix of the linear system has a particular structure:

A := I ⊗ A + BT ⊗ I .

• We can make a smarter choice for the space, trying to preserve this structure.

• If we choose U` = V` ×W`, then we have

U` = V` ⊗W` =⇒ UT
` AU` = I ⊗ V T

` AV` + W T
` BTW` ⊗ I .

• The projected problem still retains the same structure, i.e., it is still a matrix

equation.

• The dimension of U` is, in general, `2.
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Choosing Uj

Since we have seen that Krylov subspace work so well, we may set (recall that

C = UV T ):

V` = K`(A,U), W` = K`(BT ,V ).

Then, it follows that the projected linear system takes the form

UT
` AU` = I ⊗ A` + BT

` ⊗ I ,

where A` := V T
` AV` and B` = W T

` BW`. This is equivalent to solving a `× ` matrix

equation

A`Y + YB` = V T
` CW`,

• Since this is now small scale, we can solver with our favorite dense solver

(Bartels-Stewart or Hessenberg-Schur).

• The approximation is given by X` = V`YW
T
` .
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Computing the residual

In order to stop the iteration, we would like to verify that the residual norm is smaller

than some tolerance

‖R`‖F = ‖AX` + X`B − C‖F ≤ τ

• Very natural condition, since it ensures a small backward error on the underlying

linear system.

• In principle, it looks super-expensive to compute!

• Luckily, we have that R` ∈ U`+1.
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A sketched algorithm to solve the problem

• Compute the tensorized Krylov subspace

U`+1 := K`+1(A,U)×K`+1(BT ,V ).

• Solve the projected equation A`Y + YB` = V T
` C` in the smaller subspace U`, and

call Y the solution of the projected problem. Cost: O(`3)!.

• Evaluate the residual as

‖R`‖2 = max
{
‖eT`+1A`+1Y ‖2, ‖YB`+1e`+1‖2

}
• . . . or

‖R`‖F =
√
‖eT`+1A`+1Y ‖2

2 + ‖YB`+1e`+1‖2
2

• Quite easy proof!
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Take-home messages (part 1)

• Exploiting the structure of the problem at hand makes the projected problem of

the same type.

• This enables a much more efficient solution of the small problem.

• It also enables to construct a space of dimension `2 at the cost of one of

dimension `.

However, the approach is not drawback-free:

• Convergence with rate ρ =
√
κ−1√
κ+1

, where κ ≈ κ(BT ⊗ I + I ⊗ A):

‖R`‖2 ≤ Cρ`

The expression for κ can be given in terms of separation of the spectra for normal

matrices.

• For positive definite problems where A or B are ill-conditioned, this is very slow.

• Very often the case in practice! This made the choice of Krylov methods not so

attractive for a long time in this setting.
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ADI iteration: back to rational functions

Recall that AX + XB = UV T holds iff

(A− λI )X (B + ηI ) + (ηI − A)X (λI + B) = (η − λ)C = (η − λ)UV T

Assuming λ 6∈ Λ(A) and η 6∈ Λ(−B), and C = UV T ,

X = r(A)−1Xr(−B) + (η − λ)(A− λI )−1UV T (B + ηI )−1,

where r(z) = −(z − λ)/(z − η).

• This observation will be the basis of the ADI method.

• Can also be used as a theoretical tool to prove that X is numerically low-rank.
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A closer look at the solution

X = (η − λ)(A− λI )−1UV T (B + ηI )−1 + r(A)−1Xr(−B)

• Here η, λ are completely arbitrary — so we may consider the relation it for

different parameters

η1, λ1, . . . , η`, λ`.

• We can compose the relation with itself over and over:

X = (η1 − λ1)(A− λ1I )
−1UV T (B + η1I )

−1 + r1(A)−1Xr1(−B)

X = (η2 − λ2)(A− λ2I )
−1UV T (B + η2I )

−1

+ r2(A)−1(η1 − λ1)(A− λ1I )
−1UV T (B + η1I )

−1r1(−B) + r12(A)−1Xr12(−B),

where r12(z) = r1(z)r2(z).
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A closer look at this relation

X = (η − λ)(A− λI )−1UV T (B + ηI )−1 + r(A)−1Xr(−B)

• Reiterating we obtain that, for any rational function r(z) of degree (`, `),

X = X` + r(A)−1Xr(−B), X` ∈ U ⊗ V

• X` ≈ X if ‖r(A)−1Xr(−B)‖ is small, indeed:

‖X − X`‖F ≤ ‖X‖F · ‖r(A)−1‖2‖r(−B)‖2 = ‖X‖F
max

z∈Λ(B)
|r(−z)|

min
z∈Λ(A)

|r(z)|
,

where the last equality only holds for normal matrices.

• Related to Zolotarev problem, explicit solution if

Λ(A) = Λ(B) ⊆ [a, b] ⊆ R+.
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ADI iteration

• We observe that, after ` steps, the decomposition of X can be written as:

X = X` + r(A)−1Xr(−B), r(z) =
∏̀
j=1

λ− z

z − η
.

• X` does not depend on X :

X1 = (η1 − λ1)(A− λ1I )
−1UV T (B + η1I )

−1

X2 = (η2 − λ2)(A− λ2I )
−1UV T (B + η2I )

−1

+ r2(A)−1(η1 − λ1)(A− λ1I )
−1UV T (B + η1I )

−1r1(−B)

= X1 + r2(A)−1X1r1(−B)

...

• Is X` a good approximation to X? This only depends on the remaining term:

‖X − X`‖2 = ‖r(A)−1Xr(−B)‖2 ≤ ‖r(A)−1‖‖X‖2‖r(−B)‖2.
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ADI iteration

This iteration is known as ADI iteration, and the equation

X − X` = r(A)−1Xr(−B)

is often referred as the ADI residual representation.

• The iteration can be formulated explicitly as a matrix iteration involving shifted

inverses of A and B.

• The rank of X` is at most ` (or `k if UV T = C has rank k): it is the sum of `

rank 1 (or rank k) matrices.

• The explicit error representation makes it very powerful: we exactly know what we

need to minimize when choosing ηj , λj .
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Factored ADI

• Since X` has rank k` — at most — we can make the iteration very efficient.

• We have a low-rank parametrization for X1 from the start:

X1 = (η1 − λ1)(A− λ1I )
−1U︸ ︷︷ ︸

W1

V T (B + η1I )
−1︸ ︷︷ ︸

ZT
1

= W1Z
T
1 .

• Then, we set X2 = r2(A)−1X1r2(−B) + X1, which yields:

X2 = [W1 r2(A)−1W1] [Z1 r2(−BT )Z1]T .

• It may seem that the above has rank 2` at step `, but we could write it in a

smarter way so that it becomes obvious that it has rank at most `. Key

observation1:

W` ∈ span

U, (A− λ1I )
−1U, (A− λ2I )

−1(A− λ1I )
−1U, . . . ,

∏̀
j=1

(A− λj I )−1U

 .

1Note that the order in which we take matrix products does not matter, because they all commute.
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Convergence theory

The key question is: how fast does this converge, if it does?

• Clearly the iterations are more expensive that the Krylov case: they require matrix

inversions.

• Unclear how we can make ‖r(A)−1‖2 and ‖r(−B)‖ small.

Lemma
Let A,B be normal matrices. Then,

‖r(A)−1‖2‖r(−B)‖ ≤
maxz∈Λ(B) |r(−z)|

minz∈Λ(A) |r(z)|
.

Intuition: at least in the normal case, we need to find a rational function that is large

on Λ(A) and small on Λ(−B). This is known as the fourth Zolotarev problem.
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Zolotarev problems

In his paper in 1877, Zolotarev posed (and solved!) the following problems:

1. What is the solution of the following minimax problem?

min
deg p(z)≤`

maxz∈[a,b] |p(z)|
minz∈[−b,−a]|p(z)|

.

2. What is the best polynomial approximant of degree at most (`, `) for the sign

function over [a, b] ∪ [−b,−a]?

3. What is the solution of the following minimax problem?

min
deg r(z)≤(`,`)

maxz∈[a,b] |r(z)|
minz∈[−b,−a]|r(z)|

.

4. What is the best rational approximant to the sign function over [−b,−a] ∪ [a, b]

of degree at most (`, `)?

We are mainly interested in problem 3.
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Equivalence of the problems and the square root

It can be seen that problem 3. and 4. are indeed equivalent: the same method used for

the minimax problem yields an approximant for the sign function as well.

We also note that this yields a rational approximant for the square root. Indeed, if r(x)

is the best rational approximant for sign(x) we need to have

r(x) = x
p(x2)

q(x2)
,

because the optimal approximant needs to be odd for symmetry reasons. Then, note

that, for x ≥ 0, √
x

sign(
√
x)
≈ q(x)

p(x)
,

and therefore q(x)/p(x) is the best rational approximant to
√
x with respect to

relative accuracy: it has the minimum possible ‖ε(x)‖∞ such that:

√
x =

q(x)

p(x)
(1 + ε(x)),
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Convergence speed

Zolotarev found the best approximant, and also described the convergence speed. We

denote by

Z`([a, b]) := min
deg r(z)≤(`,`)

maxz∈[a,b] |r(z)|
minz∈[−b,−a]|r(z)|

.

Then,

Z`([a, b]) ≤ 4e
− `π2

log(4 b
a ) .

The original bound would take the form

Z`([a, b]) ≤ 4e
− `π2

µ( a
b

) ,

where µ is the Grötzsch ring function. But the logarithm is almost as sharp, and much

more easily computable.
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ADI error formula

Plugging this bound into the result for the ADI iteration, we have the following

convergence bound.

Theorem
Let X` the result of the ADI iteration applied to a Sylvester equation AX +XB = UV T

such that A,B are symmetric positive definite with spectrum contained in [a, b]. Then,

‖X − X`‖2 ≤ ‖X‖2 · Z`([a, b]) ≤ 4‖X‖2 · e
− `π2

log(4 b
a ) .

Natural question: how does this compare with the convergence of the polynomial

Krylov method that we saw before?
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Convergence speeds (in practice)

Polynomial Krylov
b/a: 10 100 103 106

5 steps 3.8e-02 3.7e-01 7.3e-01 9.9e-01

10 steps 1.4e-03 1.3e-01 5.3e-01 9.8e-01

20 steps 2.0e-06 1.8e-02 2.8e-01 9.6e-01

ADI method
b/a: 10 100 103 106

5 steps 1.5e-06 2.6e-04 2.6e-03 3.9e-02

10 steps 2.4e-12 7.0e-08 6.8e-06 1.5e-03

20 steps 5.8e-24 4.9e-15 4.6e-11 2.3e-06
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Singular value decay and low-rank approximation

The ADI iteration has another important theoretical conseqeuence: it allows to predict

the numerical rank of the solution X .

We may define:

rankε(X ) = min
‖δX‖2≤ε‖X‖2

rank(X + δX ).

Clearly, rankε(X ) = #{σj(X ) > σ1(X )ε}. Therefore, we can estimate the numerical

rank if we know how fast the singular values decay.

Theorem
Let X be the solution of AX + XB = UV T , with A,B posdef with spectrum inside

[a, b]. Then,

σ`+1(X ) ≤ σ1(X )Z`([a, b]) ≤ 4σ1(X )e
− `π2

log(4 b
a ) .

Proof.
Use ADI error equation.

41



Numerical rank of the solution
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Singular values decay in the solution of AX + XB = C with rank(C ) = 1, for two

different configurations of the spectra of A and −B.
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Take home messages (ADI) - part 2

• ADI can be a very powerful method for approximating the solution if A,B are not

so well-conditioned: much faster convergence than in the polynomial case.

• Error equation of ADI is also a nice theoretical tool.

• The factored version of ADI can be even more efficient.

• For the Hermitian case, there is explicit knowledge of the Zolotarev numbers

Z`([a, b]).

• The solution requires several shifted linear systems: this might be quite expensive,

since it reduces the possibility of reusing LU factorizations and/or preconditioners.
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Rational Krylov subspaces

• X`, the solution at step ` of the ADI iteration, belongs to the subspace V` ⊗W`,

where

V` = span

(A− λ1I )
−1U, . . . ,

∏̀
j=1

(A− λj I )−1U


W` = span

(BT − η1I )
−1V , . . . ,

∏̀
j=1

(BT − ηj I )−1V


,

assuming λi , ηi are the zeros and poles of r(z).

• Vj ,Wj known as rational Krylov subspaces.

This suggests an idea: can we use these subspaces instead of the usual Krylov ones for

approximating the solution?
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Rational Krylov subspaces

A rational Krylov subspace is completely determined by the matrix A, a vector b, and a

sequence of poles ξ1, . . . , ξ`. With our previous definition:

RK`(A, b, {ξ1, . . . , ξ`}) := span

(A− ξ1I )
−1b, . . . ,

∏̀
j=1

(A− ξj I )−1b

 .

• The space does not depend on the order of the poles ξj .

• Analogously to the Krylov case, it contains all the vectors of the form r(A)b,

where r(z) is a rational function p(z)/q(z), with poles included in {ξ1, . . . , ξ1`}
and deg p ≤ `− 1.

• It can be written as:

RK`(A, b, {ξ1, . . . , ξ`}) =
∏̀
j=1

(A− ξj I )−1K`(A, b).

45



Poles at infinity

Using the last definition, we allow for some of the ξj to be ∞. This just means:

RK`(A, b, {ξ1, . . . , ξ`}) =

 ∏̀
j=1
ξj 6=∞

(A− ξj I )−1

K`(A, b).

• Note that if ξ1 = . . . = ξ` =∞, then RK`(A, b, {ξ1, . . . , ξ`}) = K`(A, b).

• If we include at least one infinity pole, then b ∈ RK`(A, b, {ξ1, . . . , ξ`}).

• Natural interpretation in terms of homogeneous polynomials and poles on the

Riemann sphere (a polynomial is a rational function with deg p poles at infinity).
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Rational Arnoldi method

For polynomial Krylov subspaces, the Arnoldi method allows to build the basis of

K`(A, b) by iteratively extending an Hessenberg matrix H that satifies

AU` = U`A` + e`+1v
T
j .

If we allow A` to be (`+ 1)× `, instead of square, we may rephrase this more

compactly:

AU` = U`+1

[
A`

β`+1e
T
`

]
Let us call the above rectangular matrix H`. If we call K` the rectangular matrix with

the `× ` identity on top, and zero elsewhere:

AU`+1K` = U`+1H`

The above is an instance of a rational Arnoldi decomposition.

47



Rational Arnoldi decompositions

We can associate a rational Krylov space RK`(A, b) with a rational Arnoldi

decomposition (RAD):

AU`+1K` = U`+1H`,

where:

• U` spans RK`(A, b), and U`+1 spans RK`+1(A, b).

• K`,H` are upper Hessenberg.

• The matrices can be extended iteratively by solving shifted linear system +

reorthogonalization.

48



Rational Arnoldi procedure

• Initially, we compute the first vector in the basis: u1 := α−1
1 (A− ξ1)−1b, where

α1 is used to renormalize it.

• This yields the starting relation:

AU1K1 = U1H1, U1,K1 ∈ C1×0.

• To go from j − 1 to j , we select a continuation vector cj , and compute:

uj := α−1
j (A− ξj I )−1(Uj−1cj)− Uj−1


θ1

...

θj−1

 .
Here θi and αj are the reorthogonalization and renormalization coefficients.

• Rearrange the above relation as:

αjAuj − αjξjuj = Uj−1cj − αjAUj−1θ + αjξjUj−1θ
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Rational Arnoldi procedure (continued)

• Rearrange the above relation as:

αjAuj − αjξjuj = Uj−1cj − αjAUj−1θ + αjξjUj−1θ

• Extend Uj := [Uj−1 uj ] and then:

A
[
Uj−1 uj

] [Kj−1 αjθ

αj

]
=
[
Uj−1 uj

] [Hj−1 cj + αjξjθ

αjξj

]

Some notes:

• Choice of the continuation vector can be tricky, needs to be designed in a way to

avoid breakdown (cannot just take the last vector as in Krylov subspaces).

• The above procedure needs to be adjusted slightly for infinity poles.
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Rational Arnoldi solver for Sylvester equations

We may replicate the solver we had for the polynomial case, just changing the

projection space:

• Compute the tensorized rational Krylov subspace

U`+1 := RK`+1(A,U, {ξ, . . . , ξ`,∞})×RK`+1(BT ,V , {σ1, . . . , σ`,∞}).

• Solve the projected equation A`Y + YB` = V T
` CW` in the smaller subspace

without the infinity pole. Cost: O(`3)!

• Evaluate the residual as

‖R`‖2 = max
{
‖eT`+1A`+1Y ‖2, ‖YB`+1e`+1‖2

}
• . . . or

‖R`‖F =
√
‖eT`+1A`+1Y ‖2

2 + ‖YB`+1e`+1‖2
2

• The above formulas still work because we added the infinity pole at the end!
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Convergence theory

• We know that the projection space we chose contains a very good solution: the

one by ADI with the poles and zeros chosen as ξj and σj .

• However, there is no guarantee that exactly this solution will be extracted from

the space.

Theorem (Beckermann)
The rational Galerkin method for Sylvester equations obtains a solution X̃` that

satisfies:

‖AX̃` + X̃`B − C‖2 ≤ C‖AX` + X`B − C‖2,

where X` is any solution given by ADI with the chosen poles, and

C ≈ max{|λi (A)− λj(−B)|}/min{|λi (A)− λj(−B)|} (for normal matrices).
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Convergence theory (continued)

The message appears to be that this method is almost as good as ADI, but indeed it

can be made more specific.

Theorem
In the rational Galerkin method as before, with normal matrices A and B, it holds

‖AX̃` + X̃`B − C‖2 ≤ C min
rA(z) with poles ξj

maxz∈Λ(A) |rA(z)|
minz∈Λ(B) |rA(−z)|

+ C min
rB(z) with poles σj

maxz∈Λ(B) |rB(z)|
minz∈Λ(A) |rB(−z)|

where C is a moderate multiple of max{|λi (A)− λj(−B)|}/min{|λi (A)− λj(−B)|}.

This solves one problem of ADI: if the parameters are chosen inaccurately, the method

might converge slowly (or not converge). Rational Galerkin has automatic optimization

of the numerator built-in, which largely solves the issue.
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Rational Krylov: retrieving the poles

Given a RAD decomposition, we can read the poles by taking the ratio of the

subdiagonal elements in the pencil H − λK :

AUj+1


× × × ×
α1 × × ×

α2 × ×
α3 ×

α4

 = Uj+1


× × × ×
β1 × × ×

β2 × ×
β3 ×

β4


The poles in this examples are:

βj
αj

, for j = 1, . . . , 4.

Since we need the last pole to be infinity (for checking the residual), we will have to

choose α` = 0.
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Reordering the poles

Classical trick with rotation. Consider the following upper triangular matrices:

T =

[
α1 ×

α2

]
, S =

[
β1 ×

β2

]
Then, considering the pencil T − λS , we can construct unitary matrices Q,Z such

that QTZH and QSZH have the diagonal entries swapped (up to rescaling):

• Construct M = β1T − α1S . Notice that this matrix has rank 1, and its row span

is orthogonal to eT1 , the left eigenvector of α1/β1.

• Compute a rotation G such that

GM =

[
× ×
0 0

]
• Construct a rotation H such that GTH has a zero in position (2, 1). Then also S

does, and the diagonal entries are swapped (Why?).
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Reordering the poles

We can use the trick to reorder the poles in our RAD; note that this does not change

the space, but reorders the basis; for checking the residual, we need our infinity poles

at the end!

For instance, consider rotations G ,H acting on rows 2 and 3, computed with the

matrices [
α2 ×

α3

]
,

[
β2 ×

β3

]
.

Then,

AUj+1


× × × ×
α1 × × ×

α2 × ×
α3 ×

α4

 = Uj+1


× × × ×
β1 × × ×

β2 × ×
β3 ×

β4


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Reordering the poles

We can use the trick to reorder the poles in our RAD; note that this does not change

the space, but reorders the basis; for checking the residual, we need our infinity poles

at the end!

For instance, consider rotations G ,H acting on rows 2 and 3, computed with the

matrices [
α2 ×

α3

]
,

[
β2 ×

β3

]
.

Then,

AUj+1G
HG


× × × ×
α1 × × ×

α2 × ×
α3 ×

α4

H = Uj+1G
HG


× × × ×
β1 × × ×

β2 × ×
β3 ×

β4

H
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Reordering the poles

We can use the trick to reorder the poles in our RAD; note that this does not change

the space, but reorders the basis; for checking the residual, we need our infinity poles

at the end!

For instance, consider rotations G ,H acting on rows 2 and 3, computed with the

matrices [
α2 ×

α3

]
,

[
β2 ×

β3

]
.

Then,

AŨj+1


× × × ×
α1 × × ×

α3 × ×
α2 ×

α4

 = Ũj+1


× × × ×
β1 × × ×

β3 × ×
β2 ×

β4


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Reordering the poles

• Reordering the poles changes the matrix H,K .

• It also updates the matrix Ũj to have the infinity poles at the end, for instance.

• In this way, we can run the algorithm and check convergence at a minimal cost.

A few more details: the projected matrix in this case is given by

AUj+1Kj = Uj+1Hj =⇒ AUj K̃j = Uj H̃j =⇒ UT
j AUj = H̃j K̃

−1
j ,

where K̃j , H̃j are the Hessenberg matrices with the last row removed.

If we wish, we could avoid inverting K̃j by projecting down to a generalized Sylvester

equation (little changes, but K̃j is usually well-conditioned).
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Take home message (part 3)

We have seen three methods for solving matrix equations:

• Polynomial Krylov is easy to formulate, works OK for well-conditioned matrix

equations.

• ADI very powerful, especially a a theoretical tool to predict singular values decay

in the solution.

• rational Galerkin takes the best of both worlds: very fast convergence, and less

fragile than ADI.
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Sylvester equations and low-rank structure

• We have observed that solutions of low-rank Sylvester equations have usually

numerical low rank.

• The solvers for Sylvester equations are good candidates for being low-rank

approximation methods: fast and guaranteed convergence under suitable

hypotheses.

• We now see that several matrices of interest in applications satisfy particular

Sylvester equations.

Recall that we have a bound for the decay of Zolotarev numbers in case of symmetric

real intervals:

Z`([−b,−a], [a, b]) ≤ 4ρ`, ρ := e
− π2

log(4 b
a ) .
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Extending the bound to other intervals

We may consider the Zolotarev minimax problem on more general domains:

Z`(E ,F ) ≤ ???

If we can get a bound, the following extension of the previous theorem holds:

Theorem
Let A,−B be normal matrices with spectra contained in E ,F , respectively, and X a

solution of

AX + XB = UV T , rank(UV T ) = k

Then,

σk`+1(X ) ≤ σ1(X ) · Z`(E ,F ).
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Möbius transforms

Consider the following rational map:

MA(z) =
αz + β

γz + δ
, A :=

[
α β

γ δ

]
,

such that A is invertible. Then, MA(z) is an automorphism of the Riemann sphere. In

particular, note that for any rational function r(z) of degree at most (`, `) r(MA(z)) is

still a rational function of degree at most (`, `).

Lemma
Let A,−B be normal matrices with spectra contained in E ,F , respectively, with

E ⊆ MA([a, b]) and F ⊆ MA([−b,−a]). If X is a solution of

AX + XB = UV T , rank(UV T ) = k

Then,

σk`+1(X ) ≤ σ1(X ) · Z`(E ,F ) = Z`([−b,−a], [a, b]) ≤ 4ρ`,

where ρ = e
− π2

log(4 b
a ) . 61



Matrices with displacement structure

In the context of structured matrices, Sylvester equations are called displacement

equations. We say that X has displacement rank k if

AX + XB = UV T , rank(UV T ) = k ,

for some A,B.

• The point of view is rather different: we are not trying to compute X .

• Indeed, the equation says that X is determined by far less parameters than mn, as

a generic m × n matrix.

• If:

1. A,B normal

2. The spectra of A and −B are well separated.

Then, the matrix X will have numerically low-rank.
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Example: Toeplitz matrices

A matrices is said to be Toeplitz if its diagonals are constant:

T =


a0 a1 . . . an−1

a−1 a0
. . .

...
...

. . .
. . . a1

a−m+1 . . . a−1 a0


Let Z be the downshift matrix, that sends ej into ej+1. Then, any Toeplitz matrix has

displacement rank 2:

ZT − TZ =


−1 0

0 a−1

...
...

0 am+2




0 1

a1 0
...

...

an−2 0


T
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Example: Toeplitz matrices

Does the previous result mean that Toeplitz matrices have low numerical rank?

• The identity matrix is Toeplitz, so this subtly suggests that no, Toeplitz matrices

do not have numerically low-rank (in general).

• Let us look at the matrices defining the displacement relation:

• Z is singular, and indeed has all eigenvalues equal to 0: the spectrum of Z and

−(−Z ) are not well separated.

• Z is also horribly non-normal.

This examples essentially puts together all the things that can go wrong in our

argument. However, there are many structured matrices for which this approach

succeed.

64



Another example: Cauchy matrices

Let x , y be two vectors with length m, n. The Cauchy matrices associated with these

vectors is defined as:

[C (x , y)]ij =
1

xi + yj
, i = 1, . . . ,m, j = 1, . . . , n.

Lemma
A Cauchy matrix C (x , y) solves the displacement equation

DxC (x , y) + DyC (x , y) = eeT ,

where e = [1 . . . 1]T is the vector of all ones, and Dx and Dy are the diagonal matrices

with x and y on the diagonal.
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Another example: Cauchy matrices

Are the hypothese verified in this case?

• Are the matrices Dx ,Dy normal? Yes!

• Are the spectra of Dx and −Dy well separated? This is only true if the vectors x

and −y are included in disjoint intervals.

Theorem
Let C (x , y) be a Cauchy matrix with real x , y, and such that xj ∈ [a, b] and

−yj ∈ [c , d ], with [a, b] ∩ [c , d ] = ∅. Then,

σj+1(C (x , y)) ≤ ‖C (x , y)‖2 · ρ`, ρ := e−
π2

log 4κ , κ =

√∣∣∣∣(c − a)(d − b)

(c − b)(d − a)

∣∣∣∣.
See: example cauchy.m
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Krylov matrices

One may think of considering as basis for the Krylov subspace K`(A, b) the matrix:

K :=
[
b Ab . . . A`−1b

]
.

• Is it a good basis? If it’s not, how bad it is?

• Everybody think it’s not, and indeed we use the Arnoldi process to build a much

better one (which is orthogonal).

We will see that it can be “exponentially bad”.

Note: By a “good basis”, we mean a well-conditioned basis, with singular values close

to 1; such a basis would imply that if we write

y = Kx =⇒ ‖y‖2 ≈ ‖x‖2,

and therefore perturbation analysis on x can be transferred to y .
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Krylov matrices

Lemma
Krylov matrices generated by A satisfy the displacement relation

AK − KQ = (A` + I )beT` ,

where

Q =


−1

1
. . .

1

 , K :=
[
b Ab . . . A`−1b

]
.

Proof.
Direct check.

What does this say on the decay of the singular values? Clearly, it depends on A.
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Vandermonde matrices are Krylov matrices

For interpolating a polynomial, we often need to solve a linear system

Vx = f , V :=


1 x1 . . . x`−1

...
...

1 xn . . . x`−1
n


We note that V is nothing else the the Krylov matrix with:

A = Dx , b =


1
...

1


It is rather well-known that Vandermonde matrices can be horribly ill-conditioned, but

that’s not always true. If, for instance, we consider the case xj = ωj
n, where the nodes

are the roots of the unity, then V is unitary, and therefore all the singular values are

one.

What does our result say in that case? 69



Fourier matrix and normal matrices

For the Fourier matrix, observe that the eigenvalues of Dx are the roots of the unity,

exactly the same of the eigenvalues of Q2! Therefore, our theorem gives us the trivial

bound:

σ`(V ) ≤ σ1(V ) · 1

It turns out, that in this case is sharp: all the singular values are one.

We shall consider another case: what happens if the matrix A generating the Krylov

matrix is Hermitian? Then,

AK − KQ

is a Sylvester equation with normal matrices. If we assume that n is even (not really

restrictive!) then A and Q have disjoint spectra.

2Assuming we choose the top-right entry to be 1. Otherwise, they are shifted roots of the unity, they

do not coincide, but are completely interlaced.
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Normal matrices

Theorem
If A is Hermitian, and n is even, then the K Krylov matrix with the vectors Aj−1b as

columns satisfies

σ1+2j(K ) ≤ 4ρj · ‖K‖, ρ := e
−π2

4 log(8 n
2π )

Proof.
Complicated — at the blackboard if we have time.
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Positive definite Hankel matrices

Theorem
Any real n × n positive semi-definite Hankel matrix H satisfies

σ1+2`(H) ≤ 16ρ`+1, ρ := e
−π2

4 log(8 n
2π ) .

Proof.
H is Hankel and positive semidefinite if and only if: Hij =

∫∞
−∞ x i+j−2dµ(x), for some

nonnegative measure dµ(x). Let w , x be Gauss quadrature weights and nodes of order

n associated with dµ(x). Since they integrate exactly polynomials of degree up to

2n − 1, we have:

Hij =
n∑

s=1

wsx
i+j−2
s =

n∑
s=1

(
√
wsx

i−1)(
√
wsx

j−1).

Therefore, H = KHK , where K is the Krylov matrix with diag(x) and initial vector w .

In particular σ1+`(H) = σ1+`(K )2.
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