
Low-Rank Approximation

Lecture 5 – PDEs and matrix equation

Leonardo Robol, University of Pisa, Italy

Cagliari, 23–27 Sep 2019

1



Disclaimer

Our aim today is to try to use matrix equations for solving PDEs on a rectangular

domain.

• The focus will be on the use of matrix equation, and not really on the differential

problems.

• We will try to consider the simplest possible discretization.

• Most considerations work in a more general setting (e.g., we will mostly do finite

differences, but there is little change if you like finite elements more).

2



Model problem

General idea: we consider a model problem, and we will enrich it with new features one

step at a time. We are concerned with 2D problems, but to fix the notation we start

with:

∂2u
∂x2

+ f (x) = 0, x ∈ [−1, 1]

u(−1) = u(1) = 0

• Model a diffusion process given a source f (x , y).

• We consider a discretization of [−1, 1] into n + 2 points.

• Can be discretized into finite differences by using:

∂2u

∂x2
≈ u(x − h)− 2u(x) + u(x + h)

h2
+O(h2).

3



Matrix discretization

The discrete differential operator is only well-defined in the inner-part of the interval:


∂2u(x1)
∂x2

...
∂2u(xn)
∂x2

 ≈ 1

h2


1 −2 1

. . .
. . .

. . .

1 −2 1


︸ ︷︷ ︸

A


u(x0)

u(x1)
...

u(xn)

u(xn+1)


• Since we know the value of u(x0) amd u(xn+1), we can transform this into a

square linear system by removing the first and last column of the above matrix.

• For the steady state, one has then to solve:

Aû = −f̂ − u(x0)Ae1 − u(xn+1)Aen+2,

where f̂j = f (xj), for j = 1, . . . , n.

See: example pde 1d.m
4



Time-dependent equation

Instead of computing the steady-state, we might be interested in tracing the solution

on a time interval [0,T ], given the PDE
∂u(x ,t)

∂t = ∂2u(x ,t)
∂x2

+ f (x , t), x ∈ [−1, 1]

u(−1, 0) = u(1, 0) = 0

• We may discretize in time with implicit Euler, to get unconditional stability, which

yields:
ut+1 − ut

∆t
= Aut+1 + ft+1 + u(x0)Ae1 + u(xn+1)Aen+2

• Re-arranging the terms:

(I −∆tA)ut+1 = ut + ft+1 + u(x0)Ae1 + u(xn+1)Aen+2

See: example pde 1d time.m

5



Going 2D

We can now replace [−1, 1] with [−1, 1]2. If we do so, we will need to replace the

equation with: 
∂2u(x ,y)

∂x2
+ ∂2u(x ,y)

∂y2 + f (x , y) = 0.

u(x , y) ≡ 0 on ∂[−1, 1]2.

• Clearly, [−1, 1] is chosen just to make computations easier.

• Now, if we discretize on an (n + 2)× (n + 2) grid, we have n2 unknowns!

• If we put all the unknownn in a vector, we have:

∂2u

∂x2
≈ A⊗ I ,

∂2u

∂y2
≈ I ⊗ A.

• n = 512 gives a linear system of size (about) 262000× 262000!

• In principle we could repeat all the steps.

6



Matrix equations

If we arrange the unknown u in matrix form:

U =


u(x0, yn+1) . . . u(xn+1, yn+1)

...
...

u(x0, y0) . . . u(xn+1, y0)

 ,

then the second derivative in x and y can be rephrased much more naturally as:

∂2

∂x2
≈ U 7→ UA,

∂2

∂y2
≈ U 7→ AU.

Therefore, the linear system can be solved by solving:

AU + UA + F = 0.

7



Matrix equations

Note that:

• If f (x , y) is smooth, then we expect its sampling F to be of low-numerical rank.

• Its representation can be retrieved using, for instance, ACA.

• Once F is of low-rank, we can exploit low-rank matrix equation solvers, since A

and −A have disjoint spectra (being A posdef). Notice that this is valid for any

elliptic operator.

8



Matrix equations in practice

The hm-toolbox contains the following matrix equation solvers:

• ek lyap based on the Extended Krylov subspaces, works for most cases with

positive definite coefficients and, in general, with positive symmetric part.

• rk lyap based on the general rational Krylov; needs the poles by the user.

They both have a similar syntax of MATLAB’s lyap, but they require a low-rank RHS

in factored form (UV T ). Example:

[Xu, Xv] = ek_lyap(A, B, U, V, maxit, tol, debug);

X = Xu * Xv’;

solves AX + XB + UV T = 0. The flags maxit gives the maximum number of

iterations (can be inf), tol the required relative tolerance for the residual, and debug

is a boolean variable.

9



Superfast Toeplitz solver

We can use (hierarchically) low-rank matrices to solve Toeplitz systems in O(n log2 n)

time. Remember that the displacement equation

ZT − TZ = UV T

gives little information on the low-rank structure of T . Therefore, we move our

attention to Z1T − TZ−1 = F where

Zx :=


x

1
. . .

1


• Now both Z1 and Z−1 are unitary and therefore normal;

• They have disjoint spectra (but not so much).

• F has only the first row and last column different from zero (i.e., it is rank 2).

10



Changing the displacement relation

We can modify the displacement relation to transform the Toeplitz matrix in another

one that has a particular structure.

Let Ωn denote the matrix of the Fourier transform, scaled to be unitary. Then, since

Z1 is circulant, ΩnZ1Ω∗
n is diagonal, and in particular it has the n-th roots of the unity

on the diagonal. We call such matrix D1.

In a similar fashion, if we define D0 = diag(1, ω2n, . . . , ω
n−1
2n ), where ω2n is e

iπ
n , we

have the relation

ΩnD0Z−1D
∗
0Ω∗

n = D−1,

where D−1 = ω2nD1.

11



Changing the displacement relation (continued)

Multiplying the displacement relation from the left by Ωn and from the right by D∗
0Ω∗

n

yields the new relation

D1C − CD−1 = GFT

where G ,F can be defined as G = ΩnU and F = ΩnD
∗
0V , and C = ΩnTD

∗
0Ω∗

n. The

previous relation tells us that the matrix C has a Cauchy-like structure; since the

coefficients of the displacement equation are diagonal, we can explicitly write its

entries as:

Cij =
GiH

T
j

ω
2(i−1)
2n − ω

(2j−1)
2n

This Cauchy-like matrix is not low-rank: the two vectors are not well-separated;

however, its off-diagonal blocks are! (Why)? Therefore, it has an HSS or HODLR

structure.

12



Constructing the HODLR representation

If you remember on Monday, we discussed matrices with hierarchical low-rank

structure.

Now, we know how to approximate the off-diagonal low-rank blocks: for instance, we

can use ACA. This is already implemented in hm-toolbox:

C = hodlr(’handle’, @(i,j) cauchy_like(i,j));

where cauchy like is a function that computes the element in position (i , j). If we

have a fast-matrix product at our disposal, we can use more efficient constructors.

Indeed, recall that

T = Ω∗
nCΩnD0, C = ΩnTD

∗
0Ω∗

n.

We can use this relation both to recast linear systems with T into linear systems with

C , and matrix vector products with C into matrix-vector products with T .

If you compute the complexity, you will get O(n log2 n) (this uses that the Cauchy-like

has rank O(log n)).
13



Exercise session

You can try to:

• Solve some PDEs using matrix equations (see the assignment online);

• Construct the fast Toeplitz solver (full disclosure: it is also provided in the toolbox

as the function toeplitz solve).

14


