Main result
Theorem (Huesmann-Goldman-T.)
For every d\ge 3 it holds
\mathsf{c}_{low}(2,d) = \mathsf{c}_{upp}(2,d).
Previously only known for
- d=1 and p< 1/2
- p=d=2.
2024-12-06
The assignment problem (or bipartite matching) seeks an optimal correspondence between two sets of objects.
Given \{x_i\}_{i=1}^n and \{y_i\}_{i=1}^n and a cost function c: \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n c(x_i, y_{\sigma(i)})
Studied in many fields: operations research, algorithm theory, graph theory, probability, statistics, and theoretical physics.
x_i = X_i, y_i= Y_i are random variables,
Still realistic but also simpler than worst cases analysis.
Simulations
200 pairs of points on [0,1]^2,
Simulations
200 pairs of points on [0,1]^2, c(x,y) = |x-y|^{2}
Simulations
200 pairs of points on [0,1]^3
Simulations
200 pairs of points on [0,1]^3, c(x,y) = |x-y|^{2}
Heuristics: n points in [0,1]^d \Rightarrow typical distances \approx n^{-1/d}:
\min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p \approx n \cdot n^{-p/d}
TRUE for d \ge 3, but FALSE for d =1, 2.
Theorem (Ajtai-Komlos-Tusnady, Talagrand, Barthe-Bordenave, Ledoux)
For p\ge 1 and n+n i.i.d. uniform random points on [0,1]^d, \mathbb{E}\left[ \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p \right] \approx R_{d,p}(n) := \begin{cases} n \cdot n^{-p/2} & \text{for $d=1$,} \\ n \cdot (\log n /n)^{p/2} & \text{for $d=2$,}\\ n \cdot n^{-p/d} & \text{for $d\ge 3$.} \end{cases}
Theorem (BdMonvel-Martin, Barthe-Bordenave, Ambrosio-Stra-T., Goldman-T., )
For p>0 and n+n i.i.d. uniform random points on [0,1]^d, the limit \lim_{n \to \infty} \frac{ \mathbb{E}\left[ \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p \right] }{R_{d,p}(n)} is currently known to exist in the cases:
d=1, p\neq 1/2,
d=2, p=2,
d\ge 3, p>0.
What happens if the random points \left\{ X_i \right\}_{i=1}^n, \left\{ Y_i \right\}_{i=1}^n are i.i.d. but not uniform?
Heuristics: if the density at x is \lambda(x), a cube of side length r contains \approx n \lambda(x) r^d points
\Rightarrow typical distance is \approx (n \lambda(x))^{-1/d}: \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p\approx n^{1-p/d} \int \lambda^{1-p/d}
Theorem (BoutetDeMonvel-Martin, Barthe-Bordenave, Goldman-T. )
For d \ge 3 and p\ge 1, there are constants 0<\mathsf{\alpha}_{low}(p,d) \le \mathsf{\alpha}_{upp}(p,d)<\infty such that for every (smooth, strictly positive) density \lambda on [0,1]^d and (X_i)_{i=1}^n, (Y_i)_{i=1}^n i.i.d. with common distribution \lambda:
\liminf_{n \to \infty}\frac{ \mathbb{E}\left[ \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p \right] }{n^{1-p/d}} \ge \mathsf{\alpha}_{low}(p,d) \int \lambda^{1-p/d}
\limsup_{n \to \infty} \frac{ \mathbb{E}\left[ \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p \right] }{n^{1-p/d}} \le \mathsf{\alpha}_{upp}(p,d)\int \lambda^{1-p/d}
Limiting constants and boundary cost
\mathsf{\alpha}_{upp}(p,d) := \lim_{n \to \infty} \frac{ \mathbb{E}\left[ \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p \right] }{n^{1-p/d}}
\mathsf{\alpha}_{low}(p,d) := \lim_{n \to \infty} \frac{ \mathbb{E}\left[ \min_{\sigma \in \mathcal{S}_n} \sum_{i=1}^n \mathsf{b}^p_{[0,1]^d}(X_i, Y_{\sigma(i)}) \right] }{n^{1-p/d}}
where \left\{ X_i \right\}_i, \left\{ Y_i \right\}_i i.i.d. uniform and boundary cost: \mathsf{b}^p_{\Omega}(x,y) = \min\left\{ |x-y|^p, \min_{z,z' \in \partial \Omega} |x-z|^p + |z'-y|^p \right\}
Open problem: prove that \mathsf{\alpha}_{low}(p,d) = \mathsf{\alpha}_{upp}(p,d).
Simulations
200 pairs of points on [0,1]^2,
Simulations
200 pairs of points on [0,1]^2, c(x,y) = |x-y|^{2}
Simulations
200 pairs of points on [0,1]^2, c(x,y) = \mathsf{b}_{[0,1]^2}^{2}(x,y)
Simulations
200 pairs of points on [0,1]^3
Simulations
200 pairs of points on [0,1]^3, c(x,y) = |x-y|^{2}
Simulations
200 pairs of points on [0,1]^3, c(x,y) = \mathsf{b}_{[0,1]^3}^{2}(x,y)
Birkhoff-Von Neumann theorem \Rightarrow \min_{\sigma \in \mathcal{S}_n} \sum_{i} |x_i-y_{\sigma(i)}|^p = \min_{\pi} \sum_{i,j} |x_i-y_j|^p \pi(x_i, y_j)
Wasserstein cost of order p: \mathsf{W}^p \left( \mu, \lambda \right) = \min_{\pi} \int_{\mathbb{R}^d\times \mathbb{R}^d} |x-y|^p \pi(dx, dy)
Matching to the reference measure: \mathsf{W}^p \left( \frac 1 n \sum_{i=1}^n \delta_{X_i}, \lambda \right).
Theorem (Dereich-Scheutzow-Schottstedt, Goldman-T. )
For d \ge 3 and p\ge 1, there are constants 0<\mathsf{c}_{low}(p,d) \le \mathsf{c}_{upp}(p,d)<\infty
such that for every (smooth, strictly positive) density \lambda on [0,1]^d and i.i.d. (X_i)_{i=1}^n with common distribution \lambda:
\liminf_{n \to \infty}\frac{ \mathbb{E}\left[ \mathsf{W}^p\left( \frac 1 n \sum_{i=1}^n \delta_{X_i}, \lambda \right) \right] }{n^{-p/d}} \ge \mathsf{c}_{low}(p,d) \int_{[0,1]^d} \lambda^{1-p/d} \limsup_{n \to \infty} \frac{ \mathbb{E}\left[ \mathsf{W}^p\left( \frac 1 n \sum_{i=1}^n \delta_{X_i}, \lambda \right) \right]}{n^{-p/d}} \le \mathsf{c}_{upp}(p,d)\int_{[0,1]^d} \lambda^{1-p/d}
Limiting constants and boundary cost
\mathsf{c}_{upp}(p,d) := \lim_{n \to \infty} \frac{ \mathbb{E}\left[ \mathsf{W}^p\left( \frac 1 n \sum_{i=1}^n \delta_{X_i}, \mathcal{L}^d_{[0,1]^d} \right) \right] }{n^{-p/d}}
\mathsf{c}_{low}(p,d) := \lim_{n \to \infty} \frac{ \mathbb{E}\left[ \mathsf{Wb}^p_{(0,1)^d} \left( \frac 1 n \sum_{i=1}^n \delta_{X_i}, \mathcal{L}^d_{[0,1]^d} \right) \right] }{n^{-p/d}}
where \left\{ X_i \right\}_i are i.i.d. uniform on [0,1]^d and for \Omega \subseteq \mathbb{R}^d, \mathsf{Wb}^p_{\Omega} \left( \mu, \lambda \right) = \min_{\pi} \int_{\Omega\times \Omega} \mathsf{b}^p_{\Omega} (x,y) \pi(dx, dy).
Theorem (Huesmann-Goldman-T.)
For every d\ge 3 it holds
\mathsf{c}_{low}(2,d) = \mathsf{c}_{upp}(2,d).
Previously only known for
\quad \Rightarrow PDE ansatz for \mathsf{W}, \mathsf{Wb}
\quad \Rightarrow quadratic response for Kantorovich potentials
\quad \Rightarrow Intermediate-scale Poincaré inequality
Caracciolo-Parisi-Lucibello-Sicuro linearization (ansatz)
For measures \mu, \lambda on a domain \Omega, \mathsf{W}^2 (\mu, \lambda) \approx \int_{\Omega} |\nabla f|^2, where f solves the Poisson equation with null Neumann boundary conditions \Delta f = \mu- \lambda \quad \text{in $\Omega$.}
Theorem (Dacorogna-Moser, Benamou-Brenier)
If \lambda(x) \ge \lambda_0>0 for x\in \Omega, then \mathsf{W}^2(\mu,\lambda)\lesssim\lambda_0^{-1} \int_{\Omega} |\nabla f|^2.
We just argue in the PDE heuristics (to simplify).
Linearization: boundary transport case
For measures \mu, \lambda on \Omega, \mathsf{Wb}^2_{\Omega} (\mu, \lambda) \approx \int_\Omega |\nabla u|^2, where u solves the Poisson equation with null Dirichlet boundary conditions. \Delta u = \mu- \lambda \quad \text{in $\Omega$.}
Dual formulations
Neumann case (standard OT): \int_\Omega|\nabla f|^2 = \inf_{b} \left\{ \int_\Omega|b|^2\, : \, \operatorname{div}b = \mu - \lambda,\, b \cdot \nu_{\Omega} = 0 \right\}.
Dirichlet case (boundary OT): \int_\Omega|\nabla u|^2 = \inf_{b} \left\{ \int_\Omega |b|^2\, : \, \operatorname{div}b = \mu - \lambda \right\}.
Start from b_0 := \nabla u and correct for the boundary flux.
Cut-off: \eta =1 on \partial \Omega and \eta = 0 at distance r>0, b_1 := b_0 - \eta b_0
We find \operatorname{div}b_1 - (\mu - \lambda) = -\eta (\mu- \lambda) - \nabla \eta \cdot \nabla u.
\Rightarrow further corrections.
\operatorname{div}b_1 - (\mu - \lambda) = -\eta (\mu- \lambda) - \nabla \eta \cdot \nabla u.
Key identity (removes \nabla u)
\nabla \eta \cdot \nabla u = \operatorname{div}( u \nabla \eta) - u \Delta \eta
Further steps: b_2 := b_1 + u \nabla \eta
Solve the PDE \Delta g = \eta(\mu- \lambda) - u \Delta \eta with null Neumann conditions,
b_3 := b_2 + \nabla g .
Dual formulation \Rightarrow \int_\Omega |\nabla f|^2 \le \int_\Omega |b_3|^2
Estimates for elliptic PDE’s and \nabla \eta \approx r^{-1}, \Delta \eta \approx r^{-2}:
Neumann-Dirichlet upper bound
For every \varepsilon\in (0,1), \begin{equation*}\begin{split} & \int_{\Omega} |\nabla f|^2 - \int_\Omega |\nabla u|^2 \lesssim\varepsilon\int_\Omega |\nabla u|^2\\ & \quad + \frac{1}{\varepsilon}\left[ \left\| \eta(\mu - \lambda) \right\|_{H^{-1,2}(\Omega)}^2 + \left( r^{-2}+ \operatorname{diam}(\Omega)^2 r^{-4} \right)\int_\Omega |u|^2 \right] \end{split} \end{equation*}
Theorem (Huesmann, Goldman, T.)
Let \Omega \subseteq \mathbb{R}^d be convex and bounded,
\mu such that 1/2 \le \mu(\Omega)/|\Omega| \le 2 and set \lambda:= \mu(\Omega)/|\Omega| \mathcal{L}^d_{\Omega}
\eta be a smooth cutoff with \eta=1 on \partial \Omega, \eta= 0 at \mathsf{d}( , \Omega^c) \ge r
(v,u) be Kantorovich potentials for \mathsf{Wb}_{\Omega}^2\left( \mu, \lambda \right).
Then, for every \varepsilon\in (0,1), \begin{equation*}\begin{split} \mathsf{W}^2\left( \mu, \lambda \right)& - \mathsf{Wb}_{\Omega}^2\left( \mu, \lambda \right) \lesssim\varepsilon\mathsf{Wb}_{\Omega}^2\left( \mu, \lambda \right) + \frac 1 {\varepsilon} \Bigg[ \mathsf{W}^2\left( \frac{\int_{\Omega} \eta d \mu }{\int_{\Omega} \eta } \eta , \eta \mu \right) \\ & \quad + \left( r^{-2} + \operatorname{diam}(\Omega)^2 r^{-4} \right) \int_{\Omega}|u|^2 \\ & \quad + \operatorname{diam}(\Omega)^{2} \left( \left| \frac{⨍_{\Omega} \eta d\mu }{ ⨍_{\Omega} \eta }-1 \right|^2 \int_{\Omega} \eta^2 + r^{-4} \mathsf{Wb}_{\Omega}^2(\mu, \lambda) ^{\frac{d+4}{d+2}} \right) \Bigg] \end{split} \end{equation*}
\Rightarrow typical distance is of order \approx 1.
Aim
\lim_{L \to \infty} \frac{ \mathbb{E} \left[ \mathsf{W}^2\left(\sum_i \delta_{X_i}, \mathcal{L}^d_{(0,L)^d} \right) \right] }{L^d} = \lim_{L \to \infty}\frac{\mathbb{E} \left[ \mathsf{Wb}^2_{(0,L)^d} \left( \sum_i \delta_{X_i}, \mathcal{L}^d_{(0,L)^d} \right) \right]}{L^d}
\mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla u|^2 \right] \approx \frac{\mathbb{E} \left[ \mathsf{Wb}^2_{(0,L)^d} \left( \sum_i \delta_{X_i}, \mathcal{L}^d_{[0,L]^d} \right) \right]}{L^d} \approx 1
(roughly) |\nabla u| \approx 1.
Expected Neumann-Dirichlet upper bound
Set r := \delta L (eventually \delta \to 0 and then \varepsilon\to 0): \begin{equation*}\begin{split} & \mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla f|^2 \right] - \mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla u|^2 \right] \lesssim\varepsilon\mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla u|^2 \right]\\ & \quad + \frac{1}{\varepsilon}\left[ L^{-d} \mathbb{E}\left[ \left\| \eta(\mu - \lambda) \right\|_{H^{-1,2}((0,L)^d)}^2 \right] + \delta^{-4} L^{-2} \mathbb{E}\left[ ⨍_{(0,L)^d} |u|^2 \right] \right] \end{split} \end{equation*}
L^{-d} \mathbb{E}\left[ \left\| \eta(\mu - \lambda) \right\|_{H^{-1,2}((0,L)^d)}^2 \right] + \delta^{-4} L^{-2} \mathbb{E}\left[ ⨍_{(0,L)^d} |u|^2 \right]
Competition:
|\nabla u| \approx 1 \Rightarrow Poincaré inequality |u| \lesssim L:
\delta^{-4} L^{-2} \mathbb{E}\left[ ⨍_{(0,L)^d} |u|^2 \right] \lesssim \delta^{-4}
We argue that \mathbb{E}\left[ ⨍_{(0,L)^d} |u|^2 \right]\ll L^{2} (roughly) |u| \ll L.
Idea:
\mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla \tilde u|^2 \right] = \mathbb{E}\left[ ⨍_{(0,L_0)^d} |\nabla u_0|^2 \right]
\lim_{L_0 \to \infty} \mathbb{E}\left[ ⨍_{(0,L_0)^d} |\nabla u_0|^2 \right]= c_{low}(d,2)
\mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla \tilde u|^2 \right] - \mathbb{E}\left[ ⨍_{(0,L)^d} |\nabla u|^2 \right] \ll 1
\mathbb{E}\left[ ⨍_{(0,L)^d} |u- \tilde u|^2 \right] \ll L^{2}
(roughly) |u - \tilde u| \ll L.
By construction |\tilde u| \ll L_0 \ll L
\Rightarrow triangle inequality:
\mathbb{E}\left[ ⨍_{(0,L)^d}|u|^2 \right] \ll L^{2}.
Theorem (after Mérigot-Delalande-Chazal)
Extend to the actual bipartite problem
Extend to non-quadratic case p \neq 2
Obtain quantitative rates of convergence